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Preliminaries

Domain D
(set of input-/output-values, set of states)

Evaluation E = D × D
(pair of input and output value)

Program P ⊆ E

Deterministic Program P : D → D, x 7→ P(x)
P = {(x ,P(x)) | x ∈ D} ⊆ E
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Properties and Hyperproperties

Functional Property

F ⊆ E

the set of “good”
evaluations.

Program P satisfies
F iff P ⊆ F

Ex.: for D = Z.

F = {(i , o) | o ≥ 0}

postcondition
result ≥ 0

Relational Property

R ⊆ E × E

the set of “good”
evaluation pairs.

Program P satisfies
R iff P × P ⊆ R

R ={(
(i1, o1), (i2, o2)

) ∣∣
i1 = i2 ⇒ o1 = o2

}
P satisfies R iff it is
deterministic.

k-Safety Property

Rk ⊆ E k

Program P satisfies
Rk iff Pk ⊆ Rk

Ex.: for D = Z
Hom+ ∈ E 3

P satisfies Hom+ iff
P(x+y)=P(x)+P(y)
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Relational Properties in Dynamic Logic

Let P1, P2 be two copies of P

that operate on x1 and x2

Proof obligation:[
P1

][
P2

](
(old(x1), x1, old(x2), x2) ∈ R

)
Often:
x1 ∼in x2 →

[
P1

][
P2

]
x1 ∼out x2
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Instances

Non-interference (information flow)

low1 = low2 → [P1][P2] low1 = low2

Program Equivalence

x1 = x2 → [P1][Q2] r1 = r2

Refinement

inAbs ∼ inConcr → [C ]〈A〉 resAbs ≈ resConcr

Relational Algorithmic Properties, e.g., voting schemes

election1 ∼ eletion2 → [P1][P2]winner1 ≈ winner2
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Synchronised Traces

Prove this linear segment

. . .

. . .

∼in ∼out∼ ∼
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Losely Synchronised Traces

. . . . . .

. . . . . .

. . . . . .
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Why is relational verification often simpler?

Consider only single-loop programs with a single variable.

Claim

Proving an equality using individual loop abstraction
requires the strongest loop invariant.

Justification:

Strongest loop abstraction is a functional relation.
Any invariant weaker than the strongest has one input-state
x1, x2 such that two post-states satisfy it.
But outputs must be equal – equality is bound to fail for
either x1 or x2.

Strongest functional invariants hard to specify/infer.
⇒ Relational regression verification is promising!
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Contributions so far

Refinement from algorithms to implementations [Ulbrich 11]

Non-interference calculus in KeY [LOPSTR 13]

Regression verification of C source code [ASE 14]

Regression verification on PLC code [ICFEM 15]

Verifying relational props of voting schemes [COMSOC 16]

Regression verification for LLVM bitcode [VSTTE 16]

Similar, yet not the same

Similar techniques are used.
To be effective/efficient, technique must match application.
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Relational Verification

Loop synchronisation

f1 f2

=

Cpl

Cpl

Cpl

=

Inv

Inv

Inv

∼in

∼out

∼∼

To show: Related input
gives related output

Loops are synchronised

... at least loosely
synchronised

Abstract loops by
invariants

⇒ Use Cpl as loop invariant
for both programs.

(→coupling invariant)
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