

16th KeY Symposium July 2016

Mattias Ulbrich

KIT - Die Forschungsuniversität in der Helmholtz-Gemeinschaft

www.kit.edu

More precisely:

Effective/Efficient Verification of Relational Properties

More precisely:

Effective/Efficient Verification of Relational Properties

Domain D

(set of input-/output-values, set of states)

Domain D

(set of input-/output-values, set of states)

• Evaluation $E = D \times D$

(pair of input and output value)

Domain D

(set of input-/output-values, set of states)

• Evaluation $E = D \times D$

(pair of input and output value)

• Program $P \subseteq E$

Domain D

(set of input-/output-values, set of states)

- Evaluation E = D × D (pair of input and output value)
- Program $P \subseteq E$
- Deterministic Program $P: D \to D, x \mapsto P(x)$ $P = \{(x, P(x)) \mid x \in D\} \subseteq E$

Functional Property

 $F \subseteq E$

the set of "good" evaluations.

Functional Property

 $F \subseteq E$

the set of "good" evaluations.

Program P satisfies F iff $P \subseteq F$

Functional Property

 $F \subseteq E$

the set of "good" evaluations.

Program P satisfies F iff $P \subseteq F$

Ex.: for $D = \mathbb{Z}$.

$$F = \{(i, o) \mid o \ge 0\}$$

 $\begin{array}{l} \text{postcondition} \\ \textit{result} \geq 0 \end{array}$

Functional Property

Relational Property

 $F \subseteq E$

 $R\subseteq E\times E$

the set of "good" evaluations.

the set of "good" evaluation pairs.

Program P satisfies F iff $P \subseteq F$

Ex.: for $D = \mathbb{Z}$.

$$F = \{(i, o) \mid o \geq 0\}$$

 $\begin{array}{l} \text{postcondition} \\ \textit{result} \geq 0 \end{array}$

Properties and			Hyperproperties	
	Functional Property		Relational Property	
	$F \subseteq E$		$R \subseteq E \times E$	
	the set of "good" evaluations.		the set of "good" evaluation pairs.	
	Program P satisfies F iff $P \subseteq F$		Program P satisfies R iff $P \times P \subseteq R$	
	<i>Ex.:</i> for $D = \mathbb{Z}$.			
	$F = \{(i, o) \mid o \geq 0\}$			
	postcondition $result \ge 0$			

Fu	nctional Property	Relational Property
	$F \subseteq E$	$R \subseteq E imes E$
th	ne set of "good" evaluations.	the set of "good" evaluation pairs.
Pro Fi	ogram P satisfies iff $P \subseteq F$	Program P satisfies R iff $P \times P \subseteq R$
-		
EX.	\therefore for $D = \mathbb{Z}$.	
F =	$= \{(i, o) \mid o > 0\}$	R =
pos	stcondition	$ \{ ((i_1, o_1), (i_2, o_2)) \mid i_1 = i_2 \Rightarrow o_1 = o_2 \} $
res	$ult \ge 0$,
		P satisfies R iff it is
		deterministic.

Properties and Hyperproperties				
Functional Property	Relational Property	k-Safety Property		
$F \subseteq E$	$R \subseteq E imes E$	$R_k \subseteq E^k$		
the set of "good" evaluations.	the set of "good" evaluation pairs.			
Program P satisfies F iff $P \subseteq F$	Program <i>P</i> satisfies <i>R</i> iff $P \times P \subseteq R$			
<i>Ex.:</i> for $D = \mathbb{Z}$.				
$F = \{(i, o) \mid o \ge 0\}$	$R = \{((i_1, o_1), (i_2, o_2)) \mid$			
$result \ge 0$	$i_1=i_2\Rightarrow o_1=o_2\}$			
	<i>P</i> satisfies <i>R</i> iff it is <i>deterministic</i> .			

Properties and I		
Functional Property	Relational Property	k-Safety Property
$F \subseteq E$	$R \subseteq E imes E$	$R_k \subseteq E^k$
the set of "good" evaluations.	the set of "good" evaluation pairs.	
Program P satisfies F iff $P \subseteq F$	Program <i>P</i> satisfies <i>R</i> iff $P \times P \subseteq R$	Program P satisfies R_k iff $P^k \subseteq R_k$
<i>Ex.:</i> for $D = \mathbb{Z}$.		
$F = \{(i, o) \mid o \ge 0\}$ postcondition	$R = \{((i_1, o_1), (i_2, o_2)) \mid i_1 = i_2 \Rightarrow o_1 = o_2\}$	
$result \ge 0$	D satisfies D iff it is	
	deterministic.	

Properties and Hyperproperties					
Functional Property	Relational Property	k-Safety Property			
$F \subseteq E$	$R \subseteq E imes E$	$R_k \subseteq E^k$			
the set of "good" evaluations.	the set of "good" evaluation pairs.				
Program P satisfies F iff $P \subseteq F$	Program <i>P</i> satisfies <i>R</i> iff $P \times P \subseteq R$	Program P satisfies R_k iff $P^k \subseteq R_k$			
Ex.: for $D = \mathbb{Z}$. $F = \{(i, o) \mid o \ge 0\}$ postcondition	$R = \{((i_1, o_1), (i_2, o_2)) \mid i_1 = i_2 \Rightarrow o_1 = o_2\}$	Ex.: for $D = \mathbb{Z}$ Hom ₊ $\in E^3$ P satisfies Hom ₊ iff P(x+x) = P(x) + P(x)			
$result \ge 0$	P satisfies R iff it is deterministic.	r(x+y)-r(x)+r(y)			

Mattias Ulbrich – Relational Verification

loav

• Let P_1 , P_2 be two copies of P

• Let P_1 , P_2 be two copies of P

• that operate on x_1 and x_2

- Let P_1 , P_2 be two copies of P
- that operate on x_1 and x_2
- Proof obligation: $\begin{bmatrix} P_1 \end{bmatrix} \begin{bmatrix} P_2 \end{bmatrix} ((old(x_1), x_1, old(x_2), x_2) \in R)$

- Let P_1 , P_2 be two copies of P
- that operate on x_1 and x_2
- Proof obligation: $[P_1][P_2]((old(x_1), x_1, old(x_2), x_2) \in R)$
- Often:

 $x_1 \sim_{in} x_2 \rightarrow [P_1][P_2]x_1 \sim_{out} x_2$

Non-interference (information flow)

 $\mathit{low}_1 = \mathit{low}_2 \
ightarrow \ [P_1][P_2] \ \mathit{low}_1 = \mathit{low}_2$

Non-interference (information flow)

$$low_1 = low_2 \rightarrow [P_1][P_2] low_1 = low_2$$

Program Equivalence

$$x_1 = x_2 \rightarrow [P_1][Q_2] r_1 = r_2$$

Non-interference (information flow)

$$low_1 = low_2 \rightarrow [P_1][P_2] low_1 = low_2$$

Program Equivalence

$$x_1 = x_2 \rightarrow [P_1][Q_2] r_1 = r_2$$

Refinement

$$in_{Abs} \sim in_{Concr} \rightarrow [C]\langle A \rangle \ res_{Abs} \approx res_{Concr}$$

Non-interference (information flow)

$$low_1 = low_2 \rightarrow [P_1][P_2] low_1 = low_2$$

Program Equivalence

$$x_1 = x_2 \rightarrow [P_1][Q_2] r_1 = r_2$$

Refinement

$$in_{Abs} \sim in_{Concr} \rightarrow [C]\langle A \rangle \ res_{Abs} \approx res_{Concr}$$

• Relational Algorithmic Properties, e.g., voting schemes $election_1 \sim eletion_2 \rightarrow [P_1][P_2] winner_1 \approx winner_2$

Effective/Efficient Verification of Relational Properties

Effective/Efficient Verification of Relational Properties

Losely Synchronised Traces

Consider only single-loop programs with a single variable.

Consider only single-loop programs with a single variable.

Claim

Proving an equality using individual loop abstraction requires the strongest loop invariant.

Consider only single-loop programs with a single variable.

Claim

Proving an equality using individual loop abstraction requires the strongest loop invariant.

Justification:

- Strongest loop abstraction is a functional relation.
- Any invariant weaker than the strongest has one input-state x_1 , x_2 such that two post-states satisfy it.
- But outputs must be equal equality is bound to fail for either x₁ or x₂.

Consider only single-loop programs with a single variable.

Claim

Proving an equality using individual loop abstraction requires the strongest loop invariant.

Justification:

- Strongest loop abstraction is a functional relation.
- Any invariant weaker than the strongest has one input-state x_1 , x_2 such that two post-states satisfy it.
- But outputs must be equal equality is bound to fail for either x₁ or x₂.

Strongest functional invariants hard to specify/infer. \Rightarrow Relational regression verification is promising!

Contributions so far

Refinement from algorithms to implementations [Ulbrich 11] [LOPSTR 13] Non-interference calculus in KeY Regression verification of C source code [ASE 14] Regression verification on PLC code [ICFEM 15] • Verifying relational props of voting schemes [COMSOC 16]

Contributions so far

[ICFEM 15]

- Refinement from algorithms to implementations [Ulbrich 11]
- Non-interference calculus in KeY [LOPSTR 13]
- Regression verification of C source code [ASE 14]
- Regression verification on PLC code
- Verifying relational props of voting schemes [COMSOC 16]

Similar, yet not the same

Similar techniques are used.

To be effective/efficient, technique must match application.

Contributions so far

[Ulbrich 11] Refinement from algorithms to implementations [LOPSTR 13] Non-interference calculus in KeY Regression verification of C source code [ASE 14] Regression verification on PLC code [ICFEM 15] [COMSOC 16] • Verifying relational props of voting schemes Regression verification for LLVM bitcode [VSTTE 16] Similar, yet not the same Similar techniques are used. To be effective/efficient, technique must match application.

• To show: Related input gives related output

• **To show:** Related input gives related output

- To show: Related input gives related output
- Loops are synchronised

- To show: Related input gives related output
- Loops are synchronised

- To show: Related input gives related output
- Loops are synchronised
- ... at least loosely synchronised

- To show: Related input gives related output
- Loops are synchronised
- ... at least loosely synchronised

- To show: Related input gives related output
- Loops are synchronised
- ... at least loosely synchronised
- Abstract loops by invariants

- To show: Related input gives related output
- Loops are synchronised
- ... at least loosely synchronised
- Abstract loops by invariants

- To show: Related input gives related output
- Loops are synchronised
- ... at least loosely synchronised
- Abstract loops by invariants
- ⇒ Use Cpl as loop invariant for both programs.

- To show: Related input gives related output
- Loops are synchronised
- ... at least loosely synchronised
- Abstract loops by invariants
- Use Cpl as loop invariant for both programs.

- To show: Related input gives related output
- Loops are synchronised
- ... at least loosely synchronised
- Abstract loops by invariants
- Use Cpl as loop invariant for both programs.

- To show: Related input gives related output
- Loops are synchronised
- ... at least loosely synchronised
- Abstract loops by invariants
- Use Cpl as loop invariant for both programs.