
KARLSRUHE INSTITUTE OF TECHNOLOGY – INSTITUTE OF THEORETICAL INFORMATICS

Automated Verification for Functional and Relational
Properties of Voting Rules

Bernhard Beckert, Thorsten Bormer, Michael Kirsten, Till Neuber, Mattias Ulbrich | July 26, 2016

KIT – The Research University in the Helmholtz Association

www.kit.edu

http://www.kit.edu

Motivation: An Example

Exemplary election for candidates A, B, and C, and nine voters

Ballot Profile

Voter Ballot
1 A

B C

2 A

B C

3 A

B C

4 A

B C

5 B

, C

A

6 B

, C

A

7 B

, C

A

8 C

B A

9 C

B A

What should be the election outcome?
Candidate B?

What if B is actually a coalition of the
three candidates B, D, and E?

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 2/15

Motivation: An Example

Exemplary election for candidates A, B, and C, and nine voters

Ballot Profile

Voter Ballot
1 A

B C

2 A

B C

3 A

B C

4 A

B C

5 B

, C

A

6 B

, C

A

7 B

, C

A

8 C

B A

9 C

B A

What should be the election outcome?

Candidate B?
What if B is actually a coalition of the
three candidates B, D, and E?

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 2/15

Motivation: An Example

Exemplary election for candidates A, B, and C, and nine voters

Ballot Profile

Voter Ballot
1 A

B C

2 A

B C

3 A

B C

4 A

B C

5 B , C

A

6 B , C

A

7 B , C

A

8 C

B A

9 C

B A

What should be the election outcome?

Candidate B?
What if B is actually a coalition of the
three candidates B, D, and E?

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 2/15

Motivation: An Example

Exemplary election for candidates A, B, and C, and nine voters

Ballot Profile

Voter Ballot
1 A > B > C
2 A > B > C
3 A > B > C
4 A > B > C
5 B > C > A
6 B > C > A
7 B > C > A
8 C > B > A
9 C > B > A

What should be the election outcome?

Candidate B?
What if B is actually a coalition of the
three candidates B, D, and E?

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 2/15

Motivation: An Example

Exemplary election for candidates A, B, and C, and nine voters

Ballot Profile

Voter Ballot
1 A > B > C
2 A > B > C
3 A > B > C
4 A > B > C
5 B > C > A
6 B > C > A
7 B > C > A
8 C > B > A
9 C > B > A

What should be the election outcome?
Candidate B?

What if B is actually a coalition of the
three candidates B, D, and E?

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 2/15

Motivation: An Example

Exemplary election for candidates A, B, C, D, and E, and nine voters

Ballot Profile

Voter Ballot
1 A > B > D > E > C
2 A > E > D > B > C
3 A > B > E > D > C
4 A > D > B > E > C
5 B > E > D > C > A
6 E > D > B > C > A
7 B > D > E > C > A
8 C > E > D > B > A
9 C > E > B > D > A

What should be the election outcome?
Candidate B?

What if B is actually a coalition of the
three candidates B, D, and E?

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 2/15

Motivation: The General Idea

Voting Rule V

Axiomatic Property P

∀x , y .∃z . . .

Tedious, non-trivial and error-prone

Especially for multiple properties

Can this be automated?

Computer-aided verification
for trustworthy voting rules!

Ballot Profile B

Outcome
V(B)

Does V satisfy P ?

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 3/15

Motivation: The General Idea

Voting Rule V

Axiomatic Property P

∀x , y .∃z . . .

Tedious, non-trivial and error-prone

Especially for multiple properties

Can this be automated?

Computer-aided verification
for trustworthy voting rules!

Ballot Profile B

Outcome
V(B)

Does V satisfy P ?

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 3/15

Motivation: The General Idea

Voting Rule V

Axiomatic Property P

∀x , y .∃z . . .

Tedious, non-trivial and error-prone

Especially for multiple properties

Can this be automated?

Computer-aided verification
for trustworthy voting rules!

Ballot Profile B

Outcome
V(B)

Does V satisfy P ?

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 3/15

Motivation: The General Idea

Voting Rule V Axiomatic Property P

∀x , y .∃z . . .

Tedious, non-trivial and error-prone

Especially for multiple properties

Can this be automated?

Computer-aided verification
for trustworthy voting rules!

Ballot Profile B

Outcome
V(B)

Does V satisfy P ?

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 3/15

Motivation: The General Idea

Voting Rule V Axiomatic Property P

∀x , y .∃z . . .

Tedious, non-trivial and error-prone

Especially for multiple properties

Can this be automated?

Computer-aided verification
for trustworthy voting rules!

Ballot Profile B

Outcome
V(B)

Does V satisfy P ?

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 3/15

Motivation: The General Idea

Voting Rule V Axiomatic Property P

∀x , y .∃z . . .

Tedious, non-trivial and error-prone

Especially for multiple properties

Can this be automated?

Computer-aided verification
for trustworthy voting rules!

Ballot Profile B

Outcome
V(B)

Does V satisfy P ?

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 3/15

Motivation: The General Idea

Voting Rule V Axiomatic Property P

∀x , y .∃z . . .

Tedious, non-trivial and error-prone

Especially for multiple properties

Can this be automated?

Computer-aided verification
for trustworthy voting rules!

Ballot Profile B

Outcome
V(B)

Does V satisfy P ?

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 3/15

Used Verification Techniques

bounded
interactive automatic

universal
Deductive

Theorem Proving

Bounded Model
Checking (BMC)

KeY

CBMC

Established verification techniques

Expressive languages for imperative algorithms (C / Java) and
properties (FOLN)

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 4/15

Used Verification Techniques

bounded
interactive automatic

universal
Deductive

Theorem Proving

Bounded Model
Checking (BMC)

KeY

CBMC

Established verification techniques

Expressive languages for imperative algorithms (C / Java) and
properties (FOLN)

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 4/15

Used Verification Techniques

bounded
interactive automatic

universal
Deductive

Theorem Proving

Bounded Model
Checking (BMC)

KeY

CBMC

Established verification techniques

Expressive languages for imperative algorithms (C / Java) and
properties (FOLN)

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 4/15

Functional and Relational Properties

Functional Properties (intra-profile (Fishburn 1973))
Consider individual election evaluations (one profile with outcome)

Examples: majority criterion, Condorcet criterion

Relational Properties (inter-profile (Fishburn 1973))
Consider multiple election evaluations (two profiles with outcomes)

Examples: anonymity property, monotonicity property

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 5/15

Functional and Relational Properties

Functional Properties (intra-profile (Fishburn 1973))
Consider individual election evaluations (one profile with outcome)

Examples: majority criterion, Condorcet criterion

Relational Properties (inter-profile (Fishburn 1973))
Consider multiple election evaluations (two profiles with outcomes)

Examples: anonymity property, monotonicity property

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 5/15

Verification of Relational Properties

Separate Evaluations
X

B ∼ XB′

V V

...
...

...
...

...
...

V (B) ≈ V (B′)

Example

maxc
∑N

i=0 Bi,c = maxc
∑N

i=0 B′
i,c

Coupling Evaluations
X

B ∼ XB′
...

≈...

...

...

≈...

...

...

≈

...
...

. . . ≈
...

. . .

Example

result1 = result2

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 6/15

Verification of Relational Properties

Separate Evaluations
X

B ∼ XB′

V V

...
...

...
...

...
...

V (B) ≈ V (B′)

Example

maxc
∑N

i=0 Bi,c = maxc
∑N

i=0 B′
i,c

Coupling Evaluations
X

B ∼ XB′
...

≈...

...

...

≈...

...

...

≈

...
...

. . . ≈
...

. . .

Example

result1 = result2

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 6/15

Verification of Relational Properties

Separate Evaluations
X

B ∼ XB′

V V

...
...

...
...

...
...

V (B) ≈ V (B′)

Example

maxc
∑N

i=0 Bi,c = maxc
∑N

i=0 B′
i,c

Coupling Evaluations
X

B ∼ XB′
...

≈...

...

...

≈...

...

...

≈

...
...

. . . ≈
...

. . .

Example

result1 = result2

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 6/15

Verification of Relational Properties

Separate Evaluations
X

B ∼ XB′

V V

...
...

...
...

...
...

V (B) ≈ V (B′)

Example

maxc
∑N

i=0 Bi,c = maxc
∑N

i=0 B′
i,c

Coupling Evaluations
X

B ∼ XB′
...

≈...

...

...

≈...

...

...

≈

...
...

. . . ≈
...

. . .

Example

result1 = result2

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 6/15

Verification of Relational Properties

Separate Evaluations
X

B ∼ XB′

V V

...
...

...
...

...
...

V (B) ≈ V (B′)

Example

maxc
∑N

i=0 Bi,c = maxc
∑N

i=0 B′
i,c

Coupling Evaluations
X

B ∼ XB′
...

≈...

...

...

≈...

...

...

≈

...
...

. . . ≈
...

. . .

Example

result1 = result2

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 6/15

Relational Verification
Often enables short and concise specifications (only differences)

Eases verification effort

Specification with Coupling Evaluations

Example: Homogeneity for plurality rule
V: Each voter chooses one candidate, candidate with most votes wins

P: Outcome only depends on proportion of each ballot type, i.e., if every
ballot is replicated N times, the outcome is indifferent

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 7/15

Specification with Coupling Evaluations

Example: Homogeneity for plurality rule
V: Each voter chooses one candidate, candidate with most votes wins

P: Outcome only depends on proportion of each ballot type, i.e., if every
ballot is replicated N times, the outcome is indifferent

/∗@ requ i res votes1.length == V ∧ votes2.length == N ∗ V ;
@ requ i res (∀ int a; 0 ≤ a < V; 0 ≤ votes1[a] < C) ;
@ requ i res (∀ int a; 0 ≤ a < N ∗V; 0 ≤ votes2[a] < C) ;
@ requ i res (∀ int v,k; 0 ≤ v < V ∧ 0 ≤ k < N ;
@ votes1[v] == votes2[k + v ∗ N]) ;
@ assignable res1, res2, result1, result2 ;
@ ensures result1 == result2 ;
@∗ / void vo t i ng (i n t [] votes1 , i n t [] votes2) ;

Example: JML method contract for homogeneity

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 7/15

Specification with Coupling Evaluations

Example: Homogeneity for plurality rule
V: Each voter chooses one candidate, candidate with most votes wins

P: Outcome only depends on proportion of each ballot type, i.e., if every
ballot is replicated N times, the outcome is indifferent

/∗@ requ i res votes1.length == V ∧ votes2.length == N ∗ V ;
@ requ i res (∀ int a; 0 ≤ a < V; 0 ≤ votes1[a] < C) ;
@ requ i res (∀ int a; 0 ≤ a < N ∗V; 0 ≤ votes2[a] < C) ;
@ requ i res (∀ int v,k; 0 ≤ v < V ∧ 0 ≤ k < N ;
@ votes1[v] == votes2[k + v ∗ N]) ;
@ assignable res1, res2, result1, result2 ;
@ ensures result1 == result2 ;
@∗ / void vo t i ng (i n t [] votes1 , i n t [] votes2) ;

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 7/15

Specification with Coupling Evaluations

Example: Homogeneity for plurality rule
V: Each voter chooses one candidate, candidate with most votes wins

P: Outcome only depends on proportion of each ballot type, i.e., if every
ballot is replicated N times, the outcome is indifferent

/∗@ requ i res votes1.length == V ∧ votes2.length == N ∗ V ;
@ requ i res (∀ int a; 0 ≤ a < V; 0 ≤ votes1[a] < C) ;
@ requ i res (∀ int a; 0 ≤ a < N ∗V; 0 ≤ votes2[a] < C) ;
@ requ i res (∀ int v,k; 0 ≤ v < V ∧ 0 ≤ k < N ;
@ votes1[v] == votes2[k + v ∗ N]) ;
@ assignable res1, res2, result1, result2 ;
@ ensures result1 == result2 ;
@∗ / void vo t i ng (i n t [] votes1 , i n t [] votes2) ;

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 7/15

Specification with Coupling Evaluations

Example: Homogeneity for plurality rule
V: Each voter chooses one candidate, candidate with most votes wins

P: Outcome only depends on proportion of each ballot type, i.e., if every
ballot is replicated N times, the outcome is indifferent

/∗@ requ i res votes1.length == V ∧ votes2.length == N ∗ V ;
@ requ i res (∀ int a; 0 ≤ a < V; 0 ≤ votes1[a] < C) ;
@ requ i res (∀ int a; 0 ≤ a < N ∗V; 0 ≤ votes2[a] < C) ;
@ requ i res (∀ int v,k; 0 ≤ v < V ∧ 0 ≤ k < N ;
@ votes1[v] == votes2[k + v ∗ N]) ;
@ assignable res1, res2, result1, result2 ;
@ ensures result1 == result2 ;
@∗ / void vo t i ng (i n t [] votes1 , i n t [] votes2) ;

res1 and res2: arrays for counting the candidates’ votes

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 7/15

Specification with Coupling Evaluations

Example: Homogeneity for plurality rule
V: Each voter chooses one candidate, candidate with most votes wins

P: Outcome only depends on proportion of each ballot type, i.e., if every
ballot is replicated N times, the outcome is indifferent

/∗@ requ i res votes1.length == V ∧ votes2.length == N ∗ V ;
@ requ i res (∀ int a; 0 ≤ a < V; 0 ≤ votes1[a] < C) ;
@ requ i res (∀ int a; 0 ≤ a < N ∗V; 0 ≤ votes2[a] < C) ;
@ requ i res (∀ int v,k; 0 ≤ v < V ∧ 0 ≤ k < N ;
@ votes1[v] == votes2[k + v ∗ N]) ;
@ assignable res1, res2, result1, result2 ;
@ ensures result1 == result2 ;
@∗ / void vo t i ng (i n t [] votes1 , i n t [] votes2) ;

result1 and result2: fields storing the elected candidates

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 7/15

Specification with Coupling Evaluations

Example: Homogeneity for plurality rule
V: Each voter chooses one candidate, candidate with most votes wins

P: Outcome only depends on proportion of each ballot type, i.e., if every
ballot is replicated N times, the outcome is indifferent

/∗@ requ i res votes1.length == V ∧ votes2.length == N ∗ V ;
@ requ i res (∀ int a; 0 ≤ a < V; 0 ≤ votes1[a] < C) ;
@ requ i res (∀ int a; 0 ≤ a < N ∗V; 0 ≤ votes2[a] < C) ;
@ requ i res (∀ int v,k; 0 ≤ v < V ∧ 0 ≤ k < N ;
@ votes1[v] == votes2[k + v ∗ N]) ;
@ assignable res1, res2, result1, result2 ;
@ ensures result1 == result2 ;
@∗ / void vo t i ng (i n t [] votes1 , i n t [] votes2) ;

Wellformedness conditions

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 7/15

Specification with Coupling Evaluations

Example: Homogeneity for plurality rule
V: Each voter chooses one candidate, candidate with most votes wins

P: Outcome only depends on proportion of each ballot type, i.e., if every
ballot is replicated N times, the outcome is indifferent

/∗@ requ i res votes1.length == V ∧ votes2.length == N ∗ V ;
@ requ i res (∀ int a; 0 ≤ a < V; 0 ≤ votes1[a] < C) ;
@ requ i res (∀ int a; 0 ≤ a < N ∗V; 0 ≤ votes2[a] < C) ;
@ requ i res (∀ int v,k; 0 ≤ v < V ∧ 0 ≤ k < N ;
@ votes1[v] == votes2[k + v ∗ N]) ;
@ assignable res1, res2, result1, result2 ;
@ ensures result1 == result2 ;
@∗ / void vo t i ng (i n t [] votes1 , i n t [] votes2) ;

Precondition for homogeneity

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 7/15

Coupling Loop Invariants: Homogeneity

Example: Summing up individual votes into arrays

/∗@ l o o p _ i n v a r i a n t 0 ≤ i1 ≤ V ∧ i1 ∗ N == i2
@ ∧ (∀ int c; 0 ≤ c < C; res2[c] == N∗res1[c]);
@ assignable res1[*], res2[*];
@ decreases V − i1;
@∗ /

for (i n t i1 = 0 , i n t i2 = 0 ; i1 < V | | i2 < V ∗ N ;)
{ i f (i1 < V) res1[votes1[i1++]]++;

while (i2 < i1 ∗ N) res2[votes2[i2++]]++;
}

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 8/15

Coupling Loop Invariants: Homogeneity

First evaluation: One single run

/∗@ l o o p _ i n v a r i a n t 0 ≤ i1 ≤ V ∧ i1 ∗ N == i2
@ ∧ (∀ int c; 0 ≤ c < C; res2[c] == N∗res1[c]);
@ assignable res1[*], res2[*];
@ decreases V − i1;
@∗ /

for (i n t i1 = 0 , i n t i2 = 0 ; i1 < V | | i2 < V ∗ N ;)
{ i f (i1 < V) res1[votes1[i1++]]++;

while (i2 < i1 ∗ N) res2[votes2[i2++]]++;
}

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 8/15

Coupling Loop Invariants: Homogeneity

Second evaluation: One run replicated N times

/∗@ l o o p _ i n v a r i a n t 0 ≤ i1 ≤ V ∧ i1 ∗ N == i2
@ ∧ (∀ int c; 0 ≤ c < C; res2[c] == N∗res1[c]);
@ assignable res1[*], res2[*];
@ decreases V − i1;
@∗ /

for (i n t i1 = 0 , i n t i2 = 0 ; i1 < V | | i2 < V ∗ N ;)
{ i f (i1 < V) res1[votes1[i1++]]++;

while (i2 < i1 ∗ N) res2[votes2[i2++]]++;
}

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 8/15

Coupling Loop Invariants: Homogeneity

Coupling invariant: Relationship between both arrays

/∗@ l o o p _ i n v a r i a n t 0 ≤ i1 ≤ V ∧ i1 ∗ N == i2
@ ∧ (∀ int c; 0 ≤ c < C; res2[c] == N∗res1[c]);
@ assignable res1[*], res2[*];
@ decreases V − i1;
@∗ /

for (i n t i1 = 0 , i n t i2 = 0 ; i1 < V | | i2 < V ∗ N ;)
{ i f (i1 < V) res1[votes1[i1++]]++;

while (i2 < i1 ∗ N) res2[votes2[i2++]]++;
}

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 8/15

Coupling Loop Invariants: Homogeneity

Coupling evaluations: Loop invariant for replicated run

for (i n t i 1 = 0 , i n t i 2 = 0 ; i1 < V | | i2 < V ∗ N ;)
{ i f (i1 < V) res1 [votes1 [i 1 ++]]++ ;

/∗@ l o o p _ i n v a r i a n t 0 < i1 ≤ V ∧ i2 ≤ votes2.length
@ ∧ (i1− 1) ∗ N ≤ i2 ≤ i1 ∗ N
@ ∧ (∀ int c; 0 ≤ c < C ∧ c 6= votes1[i1− 1];
@ res2[c] == N∗res1[c])
@ ∧ (i2 < i1 ∗ N ==> votes1[i1− 1] == votes2[i2])
@ ∧ res2[votes1[i1− 1]]
@ == res1[votes1[i1− 1]] * N + (i2− i1 ∗ N) ;
@ assignable res2[*] ;
@ decreases (i1 + 1) ∗ N − i2 ;
@∗ /

while (i2 < i1 ∗ N) res2[votes2[i2++]]++; }

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 8/15

Coupling Loop Invariants: Homogeneity

Range restrictions

for (i n t i 1 = 0 , i n t i 2 = 0 ; i1 < V | | i2 < V ∗ N ;)
{ i f (i1 < V) res1 [votes1 [i 1 ++]]++ ;

/∗@ l o o p _ i n v a r i a n t 0 < i1 ≤ V ∧ i2 ≤ votes2.length
@ ∧ (i1− 1) ∗ N ≤ i2 ≤ i1 ∗ N
@ ∧ (∀ int c; 0 ≤ c < C ∧ c 6= votes1[i1− 1];
@ res2[c] == N∗res1[c])
@ ∧ (i2 < i1 ∗ N ==> votes1[i1− 1] == votes2[i2])
@ ∧ res2[votes1[i1− 1]]
@ == res1[votes1[i1− 1]] * N + (i2− i1 ∗ N) ;
@ assignable res2[*] ;
@ decreases (i1 + 1) ∗ N − i2 ;
@∗ /

while (i2 < i1 ∗ N) res2[votes2[i2++]]++; }

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 8/15

Coupling Loop Invariants: Homogeneity

Framing invariant for results from previous rounds

for (i n t i 1 = 0 , i n t i 2 = 0 ; i1 < V | | i2 < V ∗ N ;)
{ i f (i1 < V) res1 [votes1 [i 1 ++]]++ ;

/∗@ l o o p _ i n v a r i a n t 0 < i1 ≤ V ∧ i2 ≤ votes2.length
@ ∧ (i1− 1) ∗ N ≤ i2 ≤ i1 ∗ N
@ ∧ (∀ int c; 0 ≤ c < C ∧ c 6= votes1[i1− 1];
@ res2[c] == N∗res1[c])
@ ∧ (i2 < i1 ∗ N ==> votes1[i1− 1] == votes2[i2])
@ ∧ res2[votes1[i1− 1]]
@ == res1[votes1[i1− 1]] * N + (i2− i1 ∗ N) ;
@ assignable res2[*] ;
@ decreases (i1 + 1) ∗ N − i2 ;
@∗ /

while (i2 < i1 ∗ N) res2[votes2[i2++]]++; }

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 8/15

Coupling Loop Invariants: Homogeneity

Relationship for current round, not strictly necessary

for (i n t i 1 = 0 , i n t i 2 = 0 ; i1 < V | | i2 < V ∗ N ;)
{ i f (i1 < V) res1 [votes1 [i 1 ++]]++ ;

/∗@ l o o p _ i n v a r i a n t 0 < i1 ≤ V ∧ i2 ≤ votes2.length
@ ∧ (i1− 1) ∗ N ≤ i2 ≤ i1 ∗ N
@ ∧ (∀ int c; 0 ≤ c < C ∧ c 6= votes1[i1− 1];
@ res2[c] == N∗res1[c])
@ ∧ (i2 < i1 ∗ N ==> votes1[i1− 1] == votes2[i2])
@ ∧ res2[votes1[i1− 1]]
@ == res1[votes1[i1− 1]] * N + (i2− i1 ∗ N) ;
@ assignable res2[*] ;
@ decreases (i1 + 1) ∗ N − i2 ;
@∗ /

while (i2 < i1 ∗ N) res2[votes2[i2++]]++; }

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 8/15

Coupling Loop Invariants: Homogeneity

Current result array relationship, i1 ∗N is distance from “compartment” start

for (i n t i 1 = 0 , i n t i 2 = 0 ; i1 < V | | i2 < V ∗ N ;)
{ i f (i1 < V) res1 [votes1 [i 1 ++]]++ ;

/∗@ l o o p _ i n v a r i a n t 0 < i1 ≤ V ∧ i2 ≤ votes2.length
@ ∧ (i1− 1) ∗ N ≤ i2 ≤ i1 ∗ N
@ ∧ (∀ int c; 0 ≤ c < C ∧ c 6= votes1[i1− 1];
@ res2[c] == N∗res1[c])
@ ∧ (i2 < i1 ∗ N ==> votes1[i1− 1] == votes2[i2])
@ ∧ res2[votes1[i1− 1]]
@ == res1[votes1[i1− 1]] * N + (i2− i1 ∗ N) ;
@ assignable res2[*] ;
@ decreases (i1 + 1) ∗ N − i2 ;
@∗ /

while (i2 < i1 ∗ N) res2[votes2[i2++]]++; }

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 8/15

Verification with Coupling Evaluations

Example: Verification using KeY (including required lines of specification)

Plurality V. Approval V. Range V. Borda Count

Anonymity 33 43 44 44
Neutrality 42 56 57 57
Monotonicity 46 47 48 52
Participation 28 50 51 50
Homogeneity 53 70 71 71

Case study for multiple rules and properties
Breaks down verification effort (roughly) to functional verification
Verification using separate evaluations often not feasible
Concise specifications also useful for bounded model checking
→ Guides solver to achieve higher bounds

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 9/15

Verification with Coupling Evaluations

Example: Verification using KeY (including required lines of specification)

Plurality V. Approval V. Range V. Borda Count

Anonymity 33 43 44 44
Neutrality 42 56 57 57
Monotonicity 46 47 48 52
Participation 28 50 51 50
Homogeneity 53 70 71 71

Case study for multiple rules and properties
Breaks down verification effort (roughly) to functional verification
Verification using separate evaluations often not feasible
Concise specifications also useful for bounded model checking
→ Guides solver to achieve higher bounds

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 9/15

Exploiting Symmetries on Functional
Properties

X

X

X
X

S

S

S

S

S

S X

X

X

X

S

S

S

S

X

X

X

SSX

X

Symmetric profiles (for a symmetry property S)
are reachable via symmetry (profile-) operations from minimal elements.

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 10/15

Exploiting Symmetries on Functional
Properties

X

X

X
X

S

S

S

S

S

S X

X

X

X

S

S

S

S

X

X

X

SSX

X

Symmetric profiles (for a symmetry property S)

are reachable via symmetry (profile-) operations from minimal elements.

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 10/15

Exploiting Symmetries on Functional
Properties

X

X

X
X

S

S

S

S

S

S X

X

X

X

S

S

S

S

X

X

X

S

SX

X

Symmetric profiles (for a symmetry property S)
are reachable via symmetry (profile-) operations.

from minimal elements.

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 10/15

Exploiting Symmetries on Functional
Properties

X

X

X
X

S

S

S

S

S

S X

X

X

X

S

S

S

S

X

X

X

S

SX

X

Symmetric profiles (for a symmetry property S)
are reachable via symmetry (profile-) operations from minimal elements.

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 10/15

Exploiting Symmetries on Functional
Properties

X

X

X
X

S

S

S

S

S

S X

X

X

X

S

S

S

S

X

X

X

S

SX

X

These minimal elements form a set X,

via which
all possible profiles are reachable.

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 10/15

Exploiting Symmetries on Functional
Properties

X

X

X
X

S

S

S

S

S

S

X

X

X

X

S

S

S

S

X

X

X

S

S

X

X

These minimal elements form a set X, via which
all possible profiles are reachable.

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 10/15

Exploiting Symmetries on Functional
Properties

X

X

X
X

S

S

S

S

S

S

X

X

X

X

S

S

S

S

X

X

X

S

S

X

X

Hence, if S-operations preserve the desired property P,

verifying P only for elements in X is sufficient.

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 10/15

Exploiting Symmetries on Functional
Properties

X

X

X
X

S

S

S

S

S

S

X

X

X

X

S

S

S

S

X

X

X

SS

X

X

Hence, if S-operations preserve the desired property P,
verifying P only for elements in X is sufficient.

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 10/15

Verification of Functional Properties

Verification Task: Does voting rule V satisfy property P ?
Conjecture: V satisfies symmetry property S.

General Theorem for Verification
1. Verify S for V using relational techniques

2. Verify V satisfies property P only for subset X
3. Prove that X spans all possible profiles

4. Prove that S-operations preserve property P

Example
V : Plurality rule

P: Majority criterion

S: Anonymity property

X: ?

independent of V

program verification

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 11/15

Verification of Functional Properties

Verification Task: Does voting rule V satisfy property P ?
Conjecture: V satisfies symmetry property S.

General Theorem for Verification
1. Verify S for V using relational techniques

2. Verify V satisfies property P only for subset X
3. Prove that X spans all possible profiles

4. Prove that S-operations preserve property P

Example
V : Plurality rule

P: Majority criterion

S: Anonymity property

X: ?

independent of V

program verification

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 11/15

Verification of Functional Properties

Verification Task: Does voting rule V satisfy property P ?
Conjecture: V satisfies symmetry property S.

General Theorem for Verification
1. Verify S for V using relational techniques

2. Verify V satisfies property P only for subset X
3. Prove that X spans all possible profiles

4. Prove that S-operations preserve property P

Example
V : Plurality rule

P: Majority criterion

S: Anonymity property

X: ?

independent of V

program verification

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 11/15

Verification of Functional Properties

Verification Task: Does voting rule V satisfy property P ?
Conjecture: V satisfies symmetry property S.

General Theorem for Verification
1. Verify S for V using relational techniques

2. Verify V satisfies property P only for subset X
3. Prove that X spans all possible profiles

4. Prove that S-operations preserve property P

Example
V : Plurality rule

P: Majority criterion

S: Anonymity property

X: ?

independent of V

program verification

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 11/15

Verification of Functional Properties

Verification Task: Does voting rule V satisfy property P ?
Conjecture: V satisfies symmetry property S.

General Theorem for Verification
1. Verify S for V using relational techniques

2. Verify V satisfies property P only for subset X
3. Prove that X spans all possible profiles

4. Prove that S-operations preserve property P

Example
V : Plurality rule

P: Majority criterion

S: Anonymity property

X: ?

independent of V

program verification

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 11/15

Verification of Functional Properties

Verification Task: Does voting rule V satisfy property P ?
Conjecture: V satisfies symmetry property S.

General Theorem for Verification
1. Verify S for V using relational techniques

2. Verify V satisfies property P only for subset X
3. Prove that X spans all possible profiles

4. Prove that S-operations preserve property P

Example
V : Plurality rule

P: Majority criterion

S: Anonymity property

X: ?

independent of V

program verification

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 11/15

Verification of Functional Properties

Verification Task: Does voting rule V satisfy property P ?
Conjecture: V satisfies symmetry property S.

General Theorem for Verification
1. Verify S for V using relational techniques

2. Verify V satisfies property P only for subset X
3. Prove that X spans all possible profiles

4. Prove that S-operations preserve property P

Example
V : Plurality rule

P: Majority criterion

S: Anonymity property

X: All sorted (by chosen candidate) profiles

independent of V

program verification

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 11/15

Exploiting Symmetries for Verification

How do we fix the set X for use in verification?

Answer: Use symmetry-breaking predicates (SBP).

Predicates which are only valid for elements in X
Means to reduce search space

Used as precondition for input

Example for anonymity property and plurality rule
Profiles denoted as (b1, . . . , bN) (N number of cast ballots)

Each ballot denotes exactly one chosen candidate

Predicate valid only for sorted ballot profiles:
∀i ∈ {2, . . . ,N} : bi−1 ≤ bi

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 12/15

Exploiting Symmetries for Verification

How do we fix the set X for use in verification?

Answer: Use symmetry-breaking predicates (SBP).

Predicates which are only valid for elements in X
Means to reduce search space

Used as precondition for input

Example for anonymity property and plurality rule
Profiles denoted as (b1, . . . , bN) (N number of cast ballots)

Each ballot denotes exactly one chosen candidate

Predicate valid only for sorted ballot profiles:
∀i ∈ {2, . . . ,N} : bi−1 ≤ bi

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 12/15

Exploiting Symmetries for Verification

How do we fix the set X for use in verification?

Answer: Use symmetry-breaking predicates (SBP).

Predicates which are only valid for elements in X
Means to reduce search space

Used as precondition for input

Example for anonymity property and plurality rule
Profiles denoted as (b1, . . . , bN) (N number of cast ballots)

Each ballot denotes exactly one chosen candidate

Predicate valid only for sorted ballot profiles:
∀i ∈ {2, . . . ,N} : bi−1 ≤ bi

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 12/15

Exploiting Symmetries for Verification

How do we fix the set X for use in verification?

Answer: Use symmetry-breaking predicates (SBP).

Predicates which are only valid for elements in X
Means to reduce search space

Used as precondition for input

Example for anonymity property and plurality rule
Profiles denoted as (b1, . . . , bN) (N number of cast ballots)

Each ballot denotes exactly one chosen candidate

Predicate valid only for sorted ballot profiles:
∀i ∈ {2, . . . ,N} : bi−1 ≤ bi

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 12/15

Exploiting Symmetries for Verification

How do we fix the set X for use in verification?

Answer: Use symmetry-breaking predicates (SBP).

Predicates which are only valid for elements in X
Means to reduce search space

Used as precondition for input

Example for anonymity property and plurality rule
Profiles denoted as (b1, . . . , bN) (N number of cast ballots)

Each ballot denotes exactly one chosen candidate

Predicate valid only for sorted ballot profiles:
∀i ∈ {2, . . . ,N} : bi−1 ≤ bi

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 12/15

Verification Using Symmetry Breaking

Example: Verification using bounded model checking (CBMC)

20 40 60 80 100
0

300

600

900

1,200

1,500

1,800
t /o

Ballots

R
un

-ti
m

e
[s

]

Run-times for 9 candidates in seconds Verified majority for
plurality rule

With and without SBP
for anonymity

Results: Significantly
pushed the boundaries!

Case study for multiple
rules and properties

Composition of
symmetries: anonymity
plus neutrality

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 13/15

Verification Using Symmetry Breaking

Example: Verification using bounded model checking (CBMC)

20 40 60 80 100
0

300

600

900

1,200

1,500

1,800
t /o

Ballots

R
un

-ti
m

e
[s

]

Run-times for 9 candidates in seconds Verified majority for
plurality rule

With and without SBP
for anonymity

Results: Significantly
pushed the boundaries!

Case study for multiple
rules and properties

Composition of
symmetries: anonymity
plus neutrality

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 13/15

Conclusion and Outlook

Results
General approach for verification of axiomatic properties

Coupling evaluations enable short and concise specifications
⇒ Often critical point to make verification feasible!

Exploiting (generalised) symmetries significantly pushes boundaries

Feasibility demonstrated on a variety of well-known results

Future Work
Generalisation of approach to further classes of properties

Application on further and more complex examples

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 14/15

Conclusion and Outlook

Results
General approach for verification of axiomatic properties

Coupling evaluations enable short and concise specifications
⇒ Often critical point to make verification feasible!

Exploiting (generalised) symmetries significantly pushes boundaries

Feasibility demonstrated on a variety of well-known results

Future Work
Generalisation of approach to further classes of properties

Application on further and more complex examples

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 14/15

Conclusion and Outlook

Results
General approach for verification of axiomatic properties

Coupling evaluations enable short and concise specifications
⇒ Often critical point to make verification feasible!

Exploiting (generalised) symmetries significantly pushes boundaries

Feasibility demonstrated on a variety of well-known results

Future Work
Generalisation of approach to further classes of properties

Application on further and more complex examples

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 14/15

Conclusion and Outlook

Results
General approach for verification of axiomatic properties

Coupling evaluations enable short and concise specifications
⇒ Often critical point to make verification feasible!

Exploiting (generalised) symmetries significantly pushes boundaries

Feasibility demonstrated on a variety of well-known results

Future Work
Generalisation of approach to further classes of properties

Application on further and more complex examples

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 14/15

Conclusion and Outlook

Results
General approach for verification of axiomatic properties

Coupling evaluations enable short and concise specifications
⇒ Often critical point to make verification feasible!

Exploiting (generalised) symmetries significantly pushes boundaries

Feasibility demonstrated on a variety of well-known results

Future Work
Generalisation of approach to further classes of properties

Application on further and more complex examples

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 14/15

Conclusion and Outlook

Results
General approach for verification of axiomatic properties

Coupling evaluations enable short and concise specifications
⇒ Often critical point to make verification feasible!

Exploiting (generalised) symmetries significantly pushes boundaries

Feasibility demonstrated on a variety of well-known results

Future Work
Generalisation of approach to further classes of properties

Application on further and more complex examples

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 14/15

Questions and Answers

Thank you
for your attention!

Any questions?

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 15/15

Questions and Answers

Thank you
for your attention!

Any questions?

Introduction Verification of Relational Properties Verification of Functional Properties Conclusion

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 15/15

References

Peter C. Fishburn. The Theory of Social Choice. Princeton
University Press, 1973 (cit. on pp. 18, 19).

References Backup Slides

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 16/15

Verification with Coupling Evaluations

Example: Verification using bounded model checking (CBMC)

1 3 6 9 12 15 18 21 23
0

300

600

900

1,200

1,500

1,800
t /o

Ballots

R
un

-ti
m

e
[s

]

Run-times for 9 candidates in seconds

Verified anonymity for
plurality rule

Concise specifications
useable for BMC⇒
Guidance for SAT-solver

Separate and coupling
evaluations

Results: Achieved
higher bounds

References Backup Slides

Michael Kirsten – Automated Verification of Voting Rules July 26, 2016 17/15

	Introduction
	Motivation
	Techniques
	Different Properties

	Verification of Relational Properties
	Verification of Relational Properties

	Verification of Functional Properties
	Verification of Functional Properties
	Exploiting Symmetries

	Conclusion
	Conclusion

	Appendix
	Backup Slides

