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Abstract—Smart contracts are programs building on
blockchain technology. They implement functionality that has
been agreed on between the concerned parties on a network.
However, their immutability and exposed position make them
vulnerable to programming errors, leading to faulty behavior
and possible exploits. Therefore, smart contracts demand a
particularly thorough analysis, ideally using formal program
verification. In this paper, we present an approach for the
deductive verification of Hyperledger Fabric smart contracts
using the KeY prover. We have extended KeY to handle Fabric
ledger implementations; in particular, we have developed
mechanisms for reasoning about serialization and object
persistence. The feasibility of our approach is demonstrated
with a small case study.

Index Terms—formal program verification, blockchain, smart
contract, Hyperledger Fabric.
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I. INTRODUCTION

Distributed ledger technology and blockchains are rapidly
gaining both popularity and maturity for business applications.
Blockchain systems enable the establishment of trade net-
works, financial services, and many other systems that depend
on consistency and trust even when the concerned parties do
not fully trust each other.

Smart contracts take blockchain technology to yet another
level. While a blockchain transforms private data into shared
data, i.e., a distributed ledger, smart contracts transform private
programs into shared programs, providing a transparent and
regulated interface to access and update this ledger [1].

Smart contracts have already garnered lots of attention with
the rise of, most prominently, Bitcoin [2] and Ethereum [3],
but they are present in numerous other systems as well, e.g.,
Stellar (www.stellar.org), Ripple (www.ripple.com), or Root-
Stock (www.rsk.co). What all smart contracts have in common
is that they manage value, in the form of digital currencies
or tokens representing real-world assets. Thus, faulty program
behavior can immediately cause losses for the contract parties.
Furthermore, smart contracts cannot be easily changed, since
this requires the consent of all concerned parties. In a public
blockchain setting, smart contracts are entirely public, and

even in a private blockchain network, network-wide visibility
of contracts can be useful. Therefore, smart contracts also are
interesting targets for attackers who examine the program’s
code to find exploitable bugs. We, hence, argue that smart
contracts must be thoroughly checked and analyzed, ideally
using formal verification methods. Then, both the developers
and the users of contracts can be provided with a trusted
mathematical correctness proof as a guarantee that the contract
behaves as specified.

In this work, we present an approach for the formal spec-
ification and verification of smart contracts for Hyperledger
Fabric (see Section II) written in Java. We use KeY (see
Section III), a system for proving the formal correctness of
annotated Java source code, as our verification platform. We
extend KeY to integrate the Hyperledger Fabric API and to
enable reasoning about serialized objects that are stored on
the ledger (Section IV). In Section V, we demonstrate the
feasibility of our approach using a small case study: We
present an implementation of the Rock-Paper-Scissors game as
a Fabric smart contract, alongside with formal specifications,
which we verify using KeY. Reasoning about serialized objects
still requires some interaction, but the contract’s functional
properties are proven fully automatically.

II. HYPERLEDGER FABRIC

Hyperledger [4] is a collaboration aiming to develop
blockchain technologies for business use cases. Initiated in
2015, it is hosted by the Linux Foundation and supported
by numerous companies from the technology and financial
services industries. Initially contributed by IBM and Digital
Asset, Hyperledger Fabric (often shortened to Fabric) was
among the first projects emerging from Hyperledger in 2016.

Fabric focuses on private, permission-based blockchains,
i.e., network participants are preselected by a central au-
thority, and smart contract function calls can be limited to
a subset of network participants. Fabric does not have a
built-in cryptocurrency, although one can be implemented if
needed. In a Fabric network, the participants (called peers)
form communication channels. For each channel, there is a
ledger, which is stored on every peer in a consistent manner.
Smart contracts, called chaincode in the Fabric context, are
programs, installed on the peers, that provide controlled access
to the ledger. Furthermore, they define the functionality that
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has been agreed on, and the assets that are stored on the ledger.
Chaincode can be written in Go or Java; future versions of
Fabric are meant to support more languages.

In the Fabric context, a transaction is an invocation of a
smart contract function from an application or a client outside
of the network. Each such invocation is performed locally on
the peer and atomically with respect to the ledger as only
after code execution, the peer creates a transaction from the
performed operations and passes it to the ordering service. The
transaction first needs to be accepted by one or more peers
(as defined in the chaincode’s endorsement policy) before a
client transfers the transaction to the ordering service, where
the transactions are arranged in blocks and redistributed to
the peer nodes who then update the ledger accordingly. Since
Fabric is private and permission-based by default, there is
no need for a proof-of-work consensus algorithm, resulting
in very high transaction speed compared to the Bitcoin or
Ethereum networks [5].

Our approach focuses on statically (i.e., before actually
executing the code) verifying functional correctness, non-
exceptional behavior, and termination of the chaincode, so
that the caller of a function as well as the peers – where the
function is executed – and the author of the code can be sure
that the code behaves as specified.

III. THE KEY VERIFICATION SYSTEM

KeY [6] is a semi-interactive deductive theorem prover
for statically verifying sequential Java programs formally
specified using the Java Modeling Language (JML) [7]. In
JML, each Java method can be annotated with pre- and
postconditions, together with the program locations which
the method’s execution may change, such that verification
can be done modularly. A successful verification using KeY
proves that the method, when started in a state satisfying the
precondition, terminates in a state satisfying the postcondition,
and that it only affects those memory locations for which
changes are allowed by the specification. Modularity is done
at method level, i.e., method calls can be handled in proofs
by replacing them with the logical translation of their JML
contracts. Specification in JML allows using side-effect-free
Java expressions in first-order predicates with extensions such
as, e.g., quantifiers and abstract data types.

Verification is done by automatically translating the spec-
ified Java method into a – logically equivalent – formula in
Java dynamic logic (JavaDL) [8], where the source code can be
executed and reasoned about inside the logic using symbolic
execution to capture the possible effects the program method
in logical formulas.

KeY uses a sequent calculus, consisting of various de-
duction rules, which may either be applied automatically or
interactively. As verification with KeY is done statically, i.e.,
without actually running the code, a successful verification
produces a formal proof which universally guarantees that,
whenever the verified code is used in a setting where the
specified precondition is satisfied, the program will satisfy
the specified postcondition and change at most the specified

memorys locations. An advantage of static analysis is that
no runtime overhead is incurred as is the case with other
approaches such as runtime monitoring.

KeY allows, moreover, to define custom extensions to the
JML language such as theories on abstract data types. Two
prominent examples are the theory of the String data type and
the theory of finite sequences [9]. Finite sequences are com-
monly used as abstractions of Java arrays, but also for other
finite ordered structure. KeY allows writing definitions of such
theories as well as deduction rules via so-called taclets [10].
Taclets are lightweight entities for logical and technical rule
definitions, which can be easily extended and implemented by
the user. New taclets, which extend the calculus, need to be
proven, i.e., shown to be deducible from the existing taclets.
Proofs can often be constructed automatically by the built-in
strategies based on configurable heuristics and various pre-
defined macros.

IV. APPROACH

In this section, we describe how we have extended the
KeY system to support verification of functional properties
for smart contracts written in Java for the Hyperledger Fabric
framework – in addition to the verification of regular sequen-
tial Java programs. Note that verifying the correctness of the
Fabric framework itself (e.g., communication between peers
and orderer), on which the contracts are executed, is not within
the scope of this work. The fact that individual invocations
of smart contracts are atomic justifies their verification as
sequential Java programs. In this work, we focus on the
verification of functional properties of single smart contract
functions. Nevertheless, our approach can be extended to
verifying properties regarding function call sequences.

What distinguishes smart contracts from other Java pro-
grams are read and write operations on the distributed ledger.
In order to support the verification of these operations in KeY,
we add JML specifications of the Fabric API methods for
reading and writing data on the ledger to KeY. We assume
that the implementation of the API methods fulfills these
specifications, i.e., the verification within this work targets the
user-specific part and not the API methods as they are part of
the general fabric infrastructure.

A second distinguishing feature of Hyperledger smart con-
tracts is the use of object serialization resp. deserialization
when writing and reading data to and from the ledger. In
this section, we formulate guarantees that serialization and
deserialization need to fulfill and that, hence, can be assumed
after the usage of such operations in smart contracts. As
this problem can be dealt with and expressed separately
to that of verifying smart contracts, we do not verify the
implementation of the (de)serialization functions in this work.
Instead, we make use of the general assumption that the
provided deserialization function is the inverse of the provided
serialization function. The user must provide their own or find
some general implementation of the (de)serialization functions
that fulfills these guarantees.



In what follows, we explain how we extend the logic of
the KeY theorem prover with formalizations to deal with both
features – reading/writing and (de)serialization – and enable
the verification of smart contracts under these guarantees.

A. Specification of the Hyperledger Fabric API Methods

The Fabric API class ChaincodeStub provides the
functionality for reading, writing, and deleting data from
the ledger, using the methods getState, putState, and
deleteState, respectively. We provide specifications for
these three methods that can be used when proving smart
contracts. For modelling the ledger itself, we make use of
a JML extension provided by KeY to reason about the theory
of finite sequences (an abstract data type as described in Sec-
tion III). We model the distributed ledger as a sequence of
entries, where each entry has an id of type Integer1 and a value
expressed as a sequence of bytes. We specify the methods
getState, putState and deleteState as follows:

• getState takes an id and returns the last entry (which
may be the special constant deleted, see below) in the
sequence with this id. If no such entry exists, the special
constant empty is returned.

• putState takes an entry (with an id and a value) and
adds it to the end of the sequence.

• deleteState takes an id and adds a new entry to
the sequence with the given id and a special constant
deleted.

The specification of the API methods enables the verifica-
tion of smart contracts.

B. Serialization and Deserialization

In a typical Fabric smart contract written in Java, heap-
based data structures (consisting of objects) are serialized and
the resulting byte sequences are written to the ledger, or,
conversely, byte sequences are read from the ledger and used to
reconstruct a structure of Java objects. This poses a challenge
for verification: we need to show that a structure that was
serialized and written to the ledger is equal – in some sense
– to one that was read and deserialized from the ledger, even
though the two objects have different object identities.

We define two objects (and the structures they refer to) to
be equal if and only if all their respective fields are equal
(note that this is a recursive definition). We argue that for
the use in smart contracts, the objects that are serialized and
written to the ledger mostly serve as data records consisting of
several primitive data types. If the pointer structure of the data
read and written on the ledger is relevant to the application,
then a stricter definition of equality may be used, adding an
axiom to express that serialization and deserialization preserve
isomorphism of the pointer structure (and not just values).

We define an equality relation between objects using a new
abstract data type (see Section III) for each object type that
is written to the ledger. Given a Java class C, we define

1However, the actual API uses Strings instead. Within this paper, we
changed it for the sake of simplicity.

an abstract sort SC and, for each field f of type T , we
define function getF : SC → T . We also define a constructor
newC : (T1 × · · · × Tn)→ SC that takes the values for all
fields f1 : T1, . . . , fn : Tn of the class C and returns an
abstract object. For every field, we add a rule stating that the
function getF for a field f , when called on a constructor,
returns the value of the parameter corresponding to f . This
allows us to formalize equality the following way: two values
of type SC are equal iff the value returned by getF for every
field f of C is equal. We are now able to specify and verify
the equality of objects that are read and written to the ledger.

Furthermore, we define a function γC for transforming
a Java object of class C and a heap to an abstract data
type SC in the following way: γC : C × H → SC
(where H is the set of all heaps). This function allows
us to make the connection between Java objects and their
abstract representations. We add a calculus rule for this
function using the constructor function. Thus, γC(o, f) equals
newC (select(h, o, f1), . . . , select(h, o, fn)).

Finally, we define two JavaDL functions, serializeC :
SC → Seq and deserializeC : Seq → SC , that represent
object serialization and deserialization, respectively. We are
now able to logically express that deserializing a serialized
value always returns the value previously written to the ledger
(we use the equality rule of abstract data types), which we will
use to specify the serialization and deserialization methods in
Java that are used in the smart contracts.

All functions and rules mentioned above are defined in a
generic way and may thus be generated automatically by KeY,
given the Java class of the smart contracts, which is a natural
extension to the work presented here.

V. EXAMPLE

We explain the concepts introduced in the previous section
using a Hyperledger Fabric implementation of the Rock-Paper-
Scissors game. The class Game shown in Listing 1 represents
instances of the game. There are two fields, sign1 and
sign2, where the first and second player, respectively, can
set their sign, as well as a field winner where the winner
of the game is stored once a game is finished. Instances of
this class are stored on the ledger. Both methods can be easily
specified using the JML extensions described in Section IV.

In the following, the JavaDL sort kGame represents the
abstract type of a Game object, together with the functions
for each of its fields sign1, sign2 and winner.

public class Game {
int sign1, sign2, winner;
static abstract byte[] serialize(Game g);
static abstract Game deserialize(byte[] bytes);

}

Listing 1. The Java implementation of the Game type.

We exemplarily present the smart contract function which
determines the winner of a rock-paper-scissors game in List-
ing 2. The methods writeGame and readGame are short
hands for serializing and storing, and reading and deserializing
objects to and from the ledger, respectively. The method



sign1Won takes two integers representing the rock, paper
or scissors sign (represented by the corresponding constant
Integer fields) of both players as parameters (i.e., the first
parameter holds the first player’s sign, etc.) and returns true
iff the first sign beats the second sign, i.e., iff the first player
wins. The method getWinner reads a game from the ledger
and writes 1 in the field winner iff the first player has
won, 2 iff the second player has won or 0 if there is a draw.
The specification of getWinner states that, if sign1 beats
sign2 when calling getWinner, then, after the call of
getWinner, the last entry of the game with the id gameId
in the ledger has 1 written in the winner field. This can easily
be specified in JML using our extensions and the auxiliary
method sign1Won, also shown in Listing 2 (which captures
the core game semantics of which sign beats which other sign).
The JML keyword \result specifies the return value of a
method, which can be used in postconditions (the keyword
ensures indicates the postcondition in JML). The term after
assignable describes the locations to be changed at most
during execution of the method (the keyword \nothing
denotes the empty location set). We have verified the method
getWinner as well as methods for creating a new game,
setting a sign, the two methods writeGame and readGame
and other auxiliary methods. Using our extended version of
KeY, verification was mostly automatic, with a couple of
interactive rule applications (which should be easy to automate
in future versions).

public class RPS extends ChaincodeBase {
public Response getWinner(ChaincodeStub stub,

int gameId) {
Game game = readGame(stub, gameId);
int winner = 0;
int s1 = game.sign1; int s2 = game.sign2;
if (sign1Won(s1, s2)) winner = 1;
else if (sign1Won(s2, s1)) winner = 2;
game.winner = winner;
writeGameToLedger(stub, gameId, game);
return newSuccessResponse();

}
...
/*@ ensures \result <==>
@ (s1 == ROCK && s2 == SCISSORS)
@ || (s1 == PAPER && s2 == ROCK)
@ || (s1 == SCISSORS && s2 == PAPER);
@ assignable \nothing;
@*/

private boolean sign1Won(int s1, int s2) {
return (3 + s1 - s2) % 3 == 1;

}
}

Listing 2. The smart contract for getWinner.

VI. RELATED WORK

Despite the recency of the rise of smart contracts, there
have been some attempts at formal verification specifically
targeted at this new technology. Due to the popularity of
Ethereum, these usually target either Ethereum’s Solidity lan-
guage or EVM, the associated bytecode. A number of these
works have already been systematically overviewed [11]. One
approach is to check contracts for common (anti-)patterns

identified in smart contracts vulnerable to exploits [12]–[14].
Another verification approach is to write smart contracts in
a language that is more suited to formal verification such
as, e.g., F* [15], and to provide a canonical translation to
Solidity or EVM. One such solution was temporarily built
into Remix (remix.ethereum.org), a tool for writing, testing
and deploying Solidity smart contracts, enabling users to
formally specify smart contracts and prove their correctness
using the deductive theorem prover Why3 [16]. Besides static
verification, which is done before actually executing the code,
there is also work on designing new blockchain programming
languages which allow enconding security policies which are
enforced at runtime [17]. Stepping away from imperative
programming, there is research on writing declarative smart
contracts that are closer to legal documents [15].

There exists, moreover, work on provably correct (general)
distributed systems, which oftentimes, due to their com-
plexity, targets only simplified distributed protocols. How-
ever, some approaches target implementations of complex
distributed systems [18], [19]. They rely on formal axioms
about (de)serialization functions, for which a formally verified
library was developed in a student research project [20]. As
for Hyperledger Fabric, there is ChaincodeScanner (chaincode.
chainsecurity.com), a tool that checks Fabric smart contracts
written in Go for anti-patterns, such as concurrency, depen-
dence on global state or non-determinism. To the best of our
knowledge, this paper is the first work on formal deductive
verification of smart contracts for Hyperledger Fabric.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach for the formal
verification of smart contracts for the Hyperledger Fabric
framework. We have extended the KeY verification system
such that it can handle the Fabric API methods for read-
ing and writing on the ledger, and also deal with object
(de)serialization. In a small case study, we validated our
approach on a Fabric smart contract of the Rock-Paper-
Scissors game written in Java. Specifying the ledger objects
in a way that enables reasoning about reading and writing
objects in KeY is a manual task as of yet, but can be automated.
Proof construction is mostly automatic and only requires some
interaction in the parts that deal with object serialization. We
were able to automatically prove correctness of the game logic
implementation. Generalizing from here, we expect that, with
our approach, typical smart contracts can be easily verified
once a formal specification is available.

As a next step, we plan to extend KeY to support the API
methods for handling the transaction history of a ledger. In
order to achieve this, methods for extracting and iterating over
the history of an entry must be created in KeY. Moreover, we
want to extend our approach to the verification of chaincode
protocols, i.e., the interplay of several chaincode calls, which
can be integrated using rely/guarantee-style reasoning [21].
Another future research question is how to integrate Hy-
perledger’s concept of identity in order to reason about the
permissions of a channel.
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