
Algorithmic Fairness and Secure Information Flow
Extended Abstract

Bernhard Beckert, Michael Kirsten, and Michael Schefczyk

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
beckert@kit.edu, kirsten@kit.edu, michael.schefczyk@kit.edu

Motivation. The concept of enforcing secure information flow is well studied in com-
puter science in the context of information security: If secret information may “flow”
through an algorithm or program in such a way that it can influence the program’s pub-
lic output, this is considered insecure information flow, as attackers could potentially
observe (parts of) the secret. There is a wide spectrum of methods and tools to analyse
whether a given program satisfies a given definition of secure information flow.

We argue that there is a strong correspondence between secure information flow and
algorithmic fairness: if protected attributes such as race, gender, or age are treated as
secret program inputs, then secure information flow means that these “secret” attributes
cannot influence the result of a program.

Contribution. In our paper, we investigate the relationship between secure informa-
tion flow and non-discrimination from both a computer-science and an ethical point of
view. We discuss the roles of various notions of secure information flow when they are
re-interpreted as non-discrimination. We consider notions such as conditional informa-
tion flow to express declassification and quantified information flow to distinguish the
amounts of potentially disclosed secrets. We also discuss formal methods and tools that
have been developed for the analysis and verification of secure information flow and
how they can be adapted to analysing notions of non-discrimination, focusing on formal
methods for the static analysis of programs. We describe some of the available tools and
evaluate their application to examples from the context of algorithmic fairness.

Information Flow. The basic definition of secure information flow can be given as
follows: Consider a program 𝑝 with two inputs ℎ and 𝑙 and an output 𝑜, i.e., 𝑜 =

𝑝(ℎ, 𝑙). The input ℎ represents a secret, while 𝑙 and 𝑜 are publicly observable. Then,
the program 𝑝 is said to contain insecure information flow if there are two secret
inputs ℎ, ℎ′ and a public input 𝑙 such that 𝑝(ℎ, 𝑙) ≠ 𝑝(ℎ′, 𝑙). That is, the two secrets
can be distinguished by observing the outputs. In contrast, a program is secure if
𝑝(ℎ, 𝑙) = 𝑝(ℎ′, 𝑙) for all values ℎ, ℎ′, 𝑙.

When insecure information flow is re-interpreted as (possible) discrimination, we
say that the program 𝑝 is free of discrimination if 𝑝(ℎ, 𝑙) = 𝑝(ℎ′, 𝑙) for all values
ℎ, ℎ′, 𝑙, where now ℎ and ℎ′ are protected attributes defining a protected group. Thus,
the basic version of secure information flow corresponds to counterfactual fairness,
where an individual must be treated equally for different values of ℎ as long as their
other features 𝑙 remain unchanged.



2 Bernhard Beckert, Michael Kirsten, and Michael Schefczyk

Black-box vs. White-box Analysis. In computer science, there are two kinds of anal-
yses for secure information flow: (1) Black-box approaches where information flow is
solely defined and analysed based on the the input/output behaviour of a program, and
(2) white-box approaches where the inner working of the program is considered for the
notion of information flow, its analysis, or both.

In our paper, we focus on the latter: White-box methods can analyse programs
independently of any input data; the input distribution does not need to be known
or measured to decide whether a program uses protected data only in justified ways.
They allow a deeper understanding and may explain why or in what way a program is
potentially discriminating. However, currently available white-box methods are mostly
restricted to programs written in a procedural language, while machine-learning-based
programs are mostly unamenable to white-box analysis. Moreover, static analysis can
identify discrimination based on proxy attributes only if the correlation between the
protected and the proxy attribute is known, as the correlation is not encoded in the
program.

Conditional Information Flow and Declassification. The basic version of secure
information flow as defined above is too restrictive for many applications. Protected
inputs are typically used in some way or another, as otherwise it would not make sense
to have them as input at all. For information-flow control, the concept of allowing limited
flows is introduced, called declassification. The limit may be on what part of the secret
information is revealed, where in the program and when (under what condition) it is
used, or whose permission is needed.

Consider, for example, an attacker who tries to guess a password and uses a password
checker to learn whether their guesses are (by chance) correct. Information about the
secret password is leaked by each check; but that may be considered acceptable as long
as the number of guesses is limited.

As a practical example of declassification in the context of algorithmic fairness,
consider a program making credit decisions. Even if an applicant’s age is a protected
attribute, a credit decision may justifiably depend on whether or not the time span until
the credit is paid back is shorter than the span until the applicant retires. Thus, the age
does interfere with the outcome, and the information flow in its basic form is insecure.
In that case, one may formally specify and check what limited information about the
applicant’s age is used: the program may only check whether the following condition
holds: age + duration ≤ retirement.

The decision if, under which conditions, and to what extent a declassification is
justified and does not lead to discrimination should be taken at an early stage in the
program’s development process – before the program is implemented. The decision can
then be formalised in a tool-readable language, such that the actual implementation can
be automatically checked and compared to the requirement.

Quantified Information Flow. In information-flow control, there is also the notion of
quantifying how much information from the secret may interfere with the output, which
can also be re-interpreted in the context of algorithmic fairness. For example, one may
measure the number resp. proportion of secret input values that may leak to the public



Algorithmic Fairness and Secure Information Flow 3

output. Another interesting measure is the proportion to which the result depends on a
protected attribute (and whether that proportion is different for different values of the
attribute).

Formal Methods and Tools for Analysing Information Flow. Secure information
flow relates program runs for different inputs and cannot simply be tested by considering
individual runs separately. We therefore focus on static analysis methods, e.g., formal
verification, that are based on semantic (logic-based) and syntactic analysis of the
programs without actually running them.


	Algorithmic Fairness and Secure Information Flow

