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Abstract. With this paper, we want to provoke discussion on whether
verification tools and calculi themselves need to be formally verified. We
argue that though verifying the verifier is useful, it is not an absolute
necessity. The (limited) resources in academia may be better spent on
improving verification systems in other ways.

1 The Question

Do program verification systems and calculi need to be verified? Many people,
both within and outside of the formal methods research community, seem to
think so.1 Is a verification calculus without a formal soundness proof useful?
And if we do not use our own product, why should our customers? So far,
academia has put a lot of effort into soundness proofs of verification calculi.2

In this paper we argue that though it is useful to formally verify a verification
system, it is not a necessity. The (limited) resources in academia may be better
spent on improving verification systems in other ways.

2 Why Verifying the Verifier is Not a Necessity

2.1 The Different Artefacts

Before we go on, we clarify which different artefacts we have to distinguish, using
deductive program verification as an example:

1 “A Hoare logic that is unsound would be useless since its very purpose is to verify
correctness of programs. Thus after giving a Hoare logic the proof of its soundness
is obligatory, in particular when—like in our case—the rules are rather involved and
thus their correctness is by far not obvious.” [16]

2 “The proof rules are specified in KIV and their correctness with respect to the
[own] semantics has been proved. [. . . ] All 57 rules have been proved correct. The
specification and verification effort required several months of work. [. . . ] As can be
imagined several errors were found during verification. Most of them are errors only
for type incorrect programs.” [13]



– The program language specification. Note that, in the case of Java, this is
written in English. It is precise but not formal. There is no official formal

Java semantics. This is the only informal artefact that we have to consider.
– A formal specification of the program language semantics.
– The verification calculus (e.g., a Hoare logic calculus).
– The system that executes the calculus (e.g., a tactical theorem prover).
– The program that is to be verified.

2.2 Correctness is Not the Only Criterion—Verification as an

Engineering Tool

If we want our program verification systems to be used in practice, we have to
consider the practitioners’ viewpoint:

– Practitioners know that verified software may still fail.3 This can happen
because the software is part of a larger system that fails (compiler, operating
system, hardware); or because the specification has an error or does not cover
an important aspect, such as security, quality of service, or, in particular,
fault tolerance of the whole system. Thus, correctness is never an absolute.
Nothing is 100% correct in the sense that it does never fail.

– Practitioners know that formal methods are not the only way to reach a
high level of dependability. High dependability of a verification tool used
in practice can be achieved with testing and experience from long-term use
as well. For example, people do believe in the correctness of Isabelle even
though the implementation is not verified (neither is the implementation
of ML verified, etc.). That shows that at some point, even formal methods
people stop verifying things that are well tested.

– Practitioners not only want dependable software but software that they can
trust to be dependable. Trust is a social process. Thus, introducing a tech-
nology (such as a verification calculus or system) cannot be done abruptly
but requires a step-wise process. The new technology has to be evaluated in
practice, even if it has been formally proven correct. When it is introduced, it
has to be compared to and supported by well-known and trusted techniques
(such as testing).

– Practitioners are interested in other things besides correctness: How efficient
the verification mechanisms and tools are; how well they are integrated into
their software development tools and processes; the tools’ coverage of the
programming language and its interesting features; and how well the mech-
anism is suited for uncovering errors apart from proving their absence.

As a consequence of these considerations, correctness of the verification mech-
anism is not an absolute but there is a trade-off between degree/probability
of correctness and other properties of the verification system. For this reason,

3 For example, the current airborne software regulations DO-178B [11] (authoritative
for the whole aviation industry) state that “formal methods are complementary to
testing”.



developers of verification tools should think hard, whether verifying the verifi-
cation tool and calculus is worth the effort or whether that effort is better spent
improving the calculus and tools in other respects such as usability, coverage,
and efficiency. To make our point, we compare this scenario:

Researcher: I have a verification calculus covering 75% of all features of
your programming language. It is 100% correct.

Practitioner: So what?! I can’t use it in practice.

To this one:

Researcher: I have a verification calculus covering 100% of all features
of your programming language. It is 99.9% correct.

Practitioner: Interesting. Show me!

This point resounds in [5]. Even though the author has verified the rules of her
Hoare Logic w.r.t. her own semantics in both PVS and Isabelle/HOL, she pon-
ders extensively and takes a contrary stand on a related issue—the correctness
of the underlying theorem prover.4

Also, in model checking and SAT-based approaches, most of the systems are
not verified.5 Nonetheless these formal methods are among the most successful
in practice.

2.3 The Sorry Lack of an Official Formal Language Semantics

There is no official formal semantics of the Java programming language. Sun
Microsystems, the holder of the Java trademark, decides what constitutes a valid
Java implementation within the framework of the Java Community Process.
It is assumed that every such implementation adheres to the Java Language
Specification, which is a precise but informal document. A similar statement
holds for most programming languages used in practice today.

Lately, several research groups have come up with a number of formal se-
mantics for (fragments of) the Java language. Ultimately, there is no way to
judge whether any of these semantics is adequate, i.e., reflects the official infor-
mal specification correctly. Verifying a calculus against these formal semantics is
helpful, but some doubt will always remain about whether the calculus is correct
w.r.t. the official language specification and its implementations (compilers, vir-
tual machines), which is what counts in practice. Consequently, other methods
such as testing the calculus using a large number of programs (e.g., a compiler
test suite like [6]) can lead to the same—or even a higher—degree of correctness
w.r.t. the informal language specification as a formal proof.

4 “Of course, a theorem prover should be sound. [. . . ] However, also efficiency is an
important consideration in the design. If a tool is sound, but too slow, it is not
useful for verifications of larger systems. Also, as explained above, even though PVS
contains soundness bugs, it is still a great help in specification and verification, since
most of the time it works ‘correctly’.” [5]

5 As far as we know, there are currently only two verified model checker implementa-
tions available [10, 12], none of which is in wide practical use.



2.4 Localized Effect of Errors

In verification calculi for programming languages like Java, most of the (many)
rules correspond to particular features of the language. Therefore, the effects of
an error in most cases remain localized and do not lead to catastrophe. That is,
verification proofs for (parts of) programs not containing the particular feature
are not affected.

However, this argument does not hold for the generic parts of the calculus
that do not correspond to a particular program language feature (for example,
an error in the induction rule). Thus, correctness proofs for the core calculus are
a different story. On the other hand, the core usually has much fewer rules, so
that its correctness proof is usually less work and may even be done with paper
and pencil (e.g. [3]).

2.5 Different Kinds of Errors Require Different Validation Methods

Assume that a calculus has an unsound rule, where that rule reflects the seman-
tics of a particular feature of the programming language.

Such an error can have different reasons. It may result from a simple over-
sight, or the designer of the calculus may have misunderstood how the program
language feature actually works. Also, one has to distinguish rules for program-
ming language features that occur frequently from those for obscure features
rarely used in practice. And, finally, there are errors that lead to an unsound
proof only if the bug in the program is “compatible” to the bug in the rule, as
opposed to errors that can lead to an unsound proof whenever the corresponding
program language feature occurs.

Verifying the calculus is well-suited for finding most kinds of errors but is
prone to fail if an unsoundness results from a misunderstanding of how the lan-
guage features works, as then there is a high probability that the same problem
occurs in the formal language semantics as well (in particular, if both the formal
semantics and the calculus are constructed by the same person).

Testing the calculus by applying it to many example programs may fail to
find errors in rules for obscure features rarely occurring in the examples. On
the other hand, testing is good for uncovering misunderstandings. It is much
easier to do a cross-validation with test programs written by different people
than to cross-verify a calculus w.r.t. different formal semantics (see Section 3).
Note, however, that it is important to use both correct and incorrect programs
for testing a calculus.

Also, it is easy to automatically redo tests when the system or calculus is
modified, while reusing a verification proof may be difficult and require interac-
tions and/or a proof-reuse mechanism.

Thus, both approaches to validating a calculus (formal correctness proofs and
testing) have their strengths and weaknesses; neither one is inherently superior.



2.6 Scalability of Validation Approaches

When validating a piece of software (by testing or verification), there are two
things that can make it hard to find a particular error: the size of the program
and the “complexity” of the error, i.e., how complex a test case has to be to
uncover the error and how probable it is that a particular test case will do so.
Both dimensions (size of program, complexity of error) have to be considered
when we talk about scalability of a validation method.

When validating a verification system or calculus, the situation is different in
that the size of the calculus and the system is (more or less) fixed. The method
has to be able to handle a calculus or system of that particular size; no scaling
up is needed. On the other hand, scaling along the other dimension (complexity
of the error) is still of great importance.

A measure for the complexity of errors in a verification calculus is the num-
ber of program language features that are involved. For example, the rule for
handling while-loops in Java has to consider the possibility that the loop body
throws an exception and, thus, terminates abruptly. If the loop rule is erroneous
and does not cover the case of abrupt termination, then that problem can only
be found with a test case involving both features: while-loops and exception
throwing.

Finding very complex errors is difficult to do by testing. This problem is
limited, however, by the fact that programming languages are designed in such
a way that their features are as independent as possible (since otherwise they
are hard to understand and use for programmers). Altogether, the question of
scaling along the complexity dimension is an argument in favor of verifying the
verification system—but not a very strong one.

3 Cross-Verification: A Better Way

In most cases when verification calculi are verified, the formal language specifi-
cation, the calculus, and the correctness proof are all done by the same people
(or group of people). That increases the probability that the formal language
specification is inadequate and the discrepancies to the informal specification re-
main undetected. That is, if you have not understood the informal specification
correctly and, thus, the formal semantics is not adequate, a formal correctness
proof does not help.6

Thus, we argue, that if verification calculi are verified, they should be cross-
verified against other people’s specifications of the programming language se-
mantics. With cross-verification, the probability of uncovering errors is much
higher.

6 The UK Defence Standard 00-55 “Requirements for Safety Related Software in De-
fence Equipment” [9] demands that “[. . . ] there should be at least a peer review of
the proof obligations and formal arguments [by a member of the team] other than
the author [. . . ]”.



Another interesting approach to increase system reliability that is based on
cross-validation is described in [14]. To check the correctness of the popular
model checker SPIN, random test-based cross-checking was performed between
different implementations of the LTL formula translation step. It helped uncover
several bugs in SPIN.

4 The Situation in the KeY Project

The authors of this paper have been working on a Java verification system
within the KeY project. The KeY tool [1, 7] is a mature and established ver-
ification system for Java. Its Dynamic Logic calculus covers 100% of Java Card,
including—among other things—full support for dynamic object creation (with
static initialization), efficient aliasing treatment, full handling of exceptions and
method calls, Java-faithful arithmetics, Java Card transactions, etc.

The KeY team has refrained from stating its own formal semantics of the Java
language (besides the rules of the calculus). Thus, the KeY semantics of Java is
given by the calculus itself. Resources saved on this were instead spent on further
improvement of the system. At the same time, the KeY project performs ongoing
cross-verification against other Java formalizations to ensure the faithfulness of
the calculus.

One such effort compares the KeY calculus with the Bali semantics [16],
which is a Java Hoare Logic formalized in Isabelle/HOL. KeY rules are translated
manually into Bali rules. These are then shown sound with respect to the rules
of the standard Bali calculus. The published result [15] describes in detail the
examination of the rules for local variable assignment, field assignment and array
assignments. These rules are of particular importance to every Java calculus.

A different approach is described in [2]. It takes as a reference another Java
semantics [4], which is formalized in Rewriting Logic [8] and mechanized in the
input language of the Maude system. This semantics is an executable specifica-
tion, which together with Maude provides a Java interpreter for free. Considering
the nature of this semantics, we concentrated on using it to verify our program
transformation rules. These are rules that decompose complex expressions, take
care of the evaluation order, etc. (about 45% of the KeY calculus). For the cross-
verification, the Maude semantics was “lifted” in order to cope with schematic
programs like the ones appearing in calculus rules. The rewriting theory was
further extended with means to generate valid initial states for the involved pro-
gram fragments, and to check the final states for equivalence. The result is used
in frequent completely automated validation runs, which is beneficial, since the
calculus is constantly extended with new features.

Furthermore, the KeY calculus is regularly tested against the compiler test
suite Jacks [6]. The suite is a collection of intricate programs covering many
difficult features of the Java language. These programs are symbolically executed



with the KeY calculus and the output is compared to the reference provided by
the suite. This approach has also been taken by others.7

5 Conclusion

Industry people should employ more verification, while verification researchers
should consider more testing (or other empirical methods).
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