
A JMM-Faithful Non-Interference Calculus
for Java

Vladimir Klebanov

University of Koblenz-Landau
Institute of Computer Science
vladimir@uni-koblenz.de

Abstract. We present a calculus for establishing non-interference of
several Java threads running in parallel. The proof system is built atop
an implemented sequential Java Dynamic Logic calculus with 100% Java
Card coverage. We present two semantic and one syntactic type of non-
interference conditions to make reasoning efficient. In contrast to previ-
ous works in this direction, our method takes into full account the weak
guarantees of the Java Memory Model concerning visibility and ordering
of memory updates between threads.

1 Introduction

Concurrent programming in Java, as in other languages supporting concurrency
and shared memory, exposes the phenomenon of interference. Sequential pro-
grams proven correct may go awry when composed as threads in a concurrent
setting. The problem results from concurrent modification of shared datastruc-
tures, and its control has been long of interest in software verification (albeit
mostly for simple programming languages).

We present a proof system for establishing non-interference of Java threads,
i.e., we specify the conditions Φ1 . . . Φn such that the following parallel compo-
sition rule (stated using dynamic logic) is sound.

〈p1〉φ1 〈p2〉φ2 Φ1 . . . Φn

〈p1 ‖ p2〉φ1 ∧ φ2
par comp

In contrast to previous works in this field [1], our proof system takes into full
account the weak guarantees of the Java Memory Model (JMM) concerning
visibility and ordering of memory updates between threads. Software verified
with our method will thus always work as expected when executed on a real
Java Virtual Machine.

The calculus we present follows the style of Owicki and Gries [9]. While the
Owicki-Gries method is not compositional, we have chosen this fundamental
approach for our work before working on compositionality. Also, only the mu-
tual exclusion primitives of Java (the synchronized keyword) are considered.
Primitives for condition synchronization (wait() and notify()) are not.

Our work is based on an implemented and complete sequential proof system
— the KeY system [7, 2] — which we will introduce briefly.



2 Foundations

2.1 Java Dynamic Logic

Introduced in [3], Java Dynamic Logic (Java DL) is a modal logic with the
modalities 〈p〉 (“diamond”) and [p] (“box”) for every program p. The modality
〈p〉 refers to the successor worlds (called states in the DL framework) that are
reachable by running the program p. The formula 〈p〉φ expresses that the pro-
gram p terminates in a state, in which φ holds. In contrast, the formula [p]φ
asserts that, if the program p terminates, then in a state satisfying φ.

A formula φ→ 〈p〉ψ is valid if, for every state s satisfying precondition φ,
a run of the program p starting in s terminates, and in the terminating state
the post-condition ψ holds. Thus, the formula φ→ [p]ψ is similar to the Hoare
triple {φ}p{ψ}, while φ→ 〈p〉ψ implies the total correctness of p.

2.2 The KeY Calculus

As usual for deductive program verification, we use a sequent-style calculus. A
sequent is of the form Γ ` ∆, where Γ,∆ are duplicate-free lists of formulas.
Intuitively, its semantics is the same as that of the formula

∧
Γ →

∨
∆.

A proof for a goal (a sequent) S is an upside-down tree with root S. In
practice, rules are applied from bottom to top. That is, proof construction starts
with the initial proof obligation at the bottom and ends with axioms (rules with
an empty premiss tuple).

Besides the standard first-order and rewriting rules, the KeY calculus con-
tains rules for symbolic execution of Java programs and induction. Most rules
(rule instances) have a focus, i.e., a single formula, term, or program part (in
the conclusion of the rule) that is modified or deleted by applying the rule.

Furthermore, symbolic execution rules operate only on the first active state-
ment p of a program πpω. The non-active prefix π consists of an arbitrary se-
quence of opening braces “{”, labels, beginnings “try{” of try-catch-finally
blocks, etc. The postfix ω denotes the “rest” of the program. For example,
if a rule is applied to the following Java block, the active statement is i=0;:
l:{try{︸ ︷︷ ︸

π

i=0; j=0; }finally{ k=0; }}︸ ︷︷ ︸
ω

.

Since there is (at least) one rule schema in the Java DL calculus for each Java
programming construct, we cannot present all of them in this paper. Instead, we
give a simple but typical example, the rule if else split for the if statement:

Γ, b = TRUE ` 〈π p ω〉φ
Γ, b = FALSE ` 〈π q ω〉φ
Γ ` 〈π if(b) p else q ω〉φ

if else split

The rule has two premisses, which correspond to the two cases of the if state-
ment. The semantics of this rule is that, if the two premisses hold in a state,
then the conclusion is true in that state. In particular, if the two premisses are



valid, then the conclusion is valid. Note, that this rule is only applicable if the
condition b is known (syntactically) to be free of side-effect. Otherwise, if b is a
complex expression, other rules have to be applied first to evaluate b.

2.3 Symbolic Execution

We will call an application of a rule that has a program as its focus (e.g.,
if else split) a symbolic execution step. Each symbolic execution step is thus
inherently related to (1) a sequent (matching the conclusion of the rule), (2) a
modal formula in this sequent, (3) the program in this formula, and (4) the
active (first) statement in this program.

To unify the presentation, we assume that the focus sequent of every symbolic
execution step is of the form

Γ ` U〈p〉φ or Γ ` U [p]φ

where U is a (possibly empty) list of updates, which are described below. This
requirement does not destroy completeness and can be easily achieved by insert-
ing first-order normalization steps into any given proof. In the following we will
use the sequent form with a diamond; the results are valid for the box form as
well though.

2.4 Updates

A special significance comes to the assignment rules(s) when handling program
state. The Java Dynamic Logic does not work with states as first-class citizens.
Assignment cannot be treated by syntactic substitution either because of alias-
ing (the possibility that different syntactical entities reference the same storage
location). The solution Java DL employs is called updates.

These (state) updates are of the form 〈loc := se〉 and can be put in front of
any formula or term. This expression then has to be evaluated in the state where
loc has the value se. The expressions loc and se must be simple in the following
sense: loc is (a) a local variable var, or (b) a field access obj.attr, or (c) an
array access arr[i]; and se is free of side effects. More complex expressions are
not allowed in updates. Other rules have to be applied first to break these down.

The assignment rule takes the following form (U stands for an arbitrary
sequence of updates):

Γ ` U〈loc := se〉〈π ω〉φ
Γ ` U〈π loc = se; ω〉φ

assignment

That is, it just adds the assignment to the list of updates U . The KeY system
uses special simplification rules to compute the result of applying an update
to logical terms and formulas not containing programs. This delayed evaluation
has the advantage that a maximal amount of information is available for efficient
simplification after the program has been symbolically executed to completion.



3 Characterizing Program State With Formulas

To reason about (non-)interference of symbolic execution steps we need to make
tangible the notion of program state, which the KeY calculus never handles
explicitly. All sequents are evaluated in the same (start) state; evaluation of in-
dividual formulas can be performed in a changed state by attachment of updates.

Definition 1 (Sequent state formula state(S)) By restricting the focus se-
quent form as described above, we define a single formula characterizing the pro-
gram state in which a given symbolic execution step originates. For a sequent S
of the form Γ ` 〈x := y〉〈p〉φ

state(S) := ∃v 〈x := v〉Γ ∧ x .= 〈x := v〉y

where Γ in this formula is a conjunction of all formulas in the antecedent of the
sequent S.

Note. The above definition is simplified for the assumption that there is only

one update and x is unqualified. If x is of the form o.a then the second conjunct

must read (〈x := v〉o).a
.
= 〈x := v〉y . If x is of the form a[i] then the second conjunct

must read (〈x := v〉a)[〈x := v〉i ] .
= 〈x := v〉y. The extension for several updates is

straightforward. �

The definition given above encodes information about the state contained in
Γ and the updates attached to 〈p〉φ as a single formula of our logic. The fresh
variable v is used to capture the value of x prior to performing the update. An
example is presented in Table 1.

Sequent S state(S) Validity Eqv.

x
.
= 0 ` 〈x := x + 1〉〈p〉φ ∃v 〈x := v〉x .

= 0 ∧ x
.
= 〈x := v〉x + 1 x

.
= 1

x
.
= 0 ` 〈x := 2〉〈p〉φ ∃v 〈x := v〉x .

= 0 ∧ x
.
= 〈x := v〉2 x

.
= 2

Table 1. Example for state characterization.

Theorem 1 (State characterization is adequate) The sequent S of the
form Γ ` 〈x := y〉〈p〉φ and the sequent ` state(S) → 〈p〉φ are validity
equivalent. �

4 Semantic Non-Interference Conditions

A proof tree for a property of a single sequential program represents all possible
paths of program execution steps. We wish to ascertain that each of these steps
can be performed correctly (w.r.t. our desired property) even if the scheduler



chooses to interleave steps from other threads that are running in parallel. In
other words, we verify that the assumptions required for the correctness proof
of one thread are not damaged by the updates that other threads might carry
out on the common state.

Definition 2 (Proof robustness) A proof P1 is robust under parallel compo-
sition with proof P2 if for every symbolic execution step S1 in P1 and every
symbolic execution step S2 in P2 that performs a state update the condition
Φ(S1, S2) holds. Different kinds of the condition Φ are presented below. �

Now we employ the notion of proof robustness to state the main result of
symmetric non-interference.

Theorem 2 (Non-Interference) Two proofs P1 and P2 are non-interfering if
P1 is robust under parallel composition with P2, and P2 is robust under parallel
composition with P1. The parallel composition rule par comp is correct with
these premisses. A justification is presented in Section 4.3. �

Thus, to establish non-interference involving two threads with m and n state-
ments we have to verify O(m×n) conditions. For this reason it is desirable that
the conditions are as simple as possible. The majority of these conditions can,
in fact, be discharged automatically. In the following we present and discuss two
semantic and one syntactic condition.

Note on inter- vs. intra-object interference The number of noninter-
ference conditions can be reduced dramatically up-front if we prohibit qualified
access to fields in programs (as in [1]). Under this (sensible) restriction, expres-
sions like o.a are not allowed, and methods can only refer to fields of the local
object, like this.a. Interference is thus confined within object boundaries, which
allows us to drop all conditions that involve code from classes not in a direct
line of inheritance.

Note on double and long variables The semantical conditions rely on
the atomicity of a simple assignment in the sense of Section 2.4. This atomicity
is not given for variables declared as double or long [8, §8.4].

4.1 Preservation of Pre-State

A naive version We will start with a simplified version of Φ(S1, S2), which
is analogous to previous formulations of the Owicki-Gries method. This simpli-
fication assumes the existence of a consistent global state for both threads. It
is adequate for theoretical programming languages or a Java VM with much
stronger memory model guarantees than the ones actually given by the current
official specification. We will weaken these assumptions later on.

The now following condition ensures that the execution of an (atomic) as-
signment loc=se; in the sequent of S2 does not falsify assumptions appearing
in the symbolic execution step with sequent S1. The condition Φ(S1, S2) is ex-
pressed in this case by a logical formula, which has to be proved in our calculus.
We define

Φpre(S1, S2) := state(S1) ∧ state(S2) → [loc=se;]state(S1)



Note the use of the box modality here, since loc=se; could terminate abruptly due
to a NullPointerException (if loc is a field or array access) or an ArrayIndex-
OutOfBoundsException (if loc is an array access). In case of abrupt termination
no state update is performed, and there is no danger of interference, as the
thrown exception is not visible to other threads. A diamond modality would, in
contrast, always require normal termination.

A JMM-faithful version For a single thread the JMM provides strong guar-
antees about the visibility and ordering of memory updates, which are consistent
with our intuition and reflected by the KeY calculus [8, § 8.1]. There is, how-
ever, no guarantee that memory updates performed by one thread will be visible
(in any particular order, or even at all) by other threads in absence of proper
synchronization [8, §§8.1, 8.3, 8.11].

Example 1 Let x, y be object fields. With naive semantics in mind, one could
believe the proof for 〈y=2;x=2;〉x .= 2 to be robust under execution of the as-
signment x=y; in a second thread. The crucial condition required to prove this
is (we simplify the state characterizations)

x
.= 2 ∧ y .= 2 → [x=y;]x .= 2

which obviously holds. In the JMM-faithful semantics this robustness, however,
cannot be expected. The effect of the assignment y=2; may be not visible for
the thread number two, and the assignment x=y; (scheduled after x=2;) would
operate with a stale value of y, which is not necessarily 2.

To reflect the fact that we cannot rely on updates performed by other threads,
we have to establish variable disjointness by renaming variables in one of the
threads. This turns the condition above into

x
.= 2 ∧ y .= 2 → [x=y’;]x .= 2

which (correctly) cannot be proved. �

The condition Φpre has thus to be recast as Φ′
pre:

Φ′
pre(S1, S2) := state(S1) ∧ state ′(S2) → [loc=se′;]state(S1)

where state ′(S2) differs from state(S2) in that all appearing object fields have
been renamed (accented by a dash). se′ appears in that manner in the place of
se in the assignment in the box. This version of the condition is significantly
stronger, as no information flow is assumed from the first thread to the second.
Since the JMM does not guarantee memory update visibility between threads (in
absence of proper synchronization) such an assumption would be indeed false.

On the other hand, should the update loc=se’; not become visible to the
first thread, we would have solely proved one condition too many, thus erring on
the safe side.

Note on volatile variables A relaxation of the above condition can be
achieved for variables declared as volatile. For volatile variables the JMM



enforces state coherence, i.e., the value of a volatile variable is always visible
correctly across all threads. Volatile variables thus need not be accented with a
dash in Φ′

pre.

4.2 Assertion Insensitivity

Failing to prove a Φpre condition does not necessarily mean interference. Non-
interference could still be established by considering a more general condition
at this point. This time the assignment loc=se; in the sequent S2 is allowed to
falsify assumptions made in S1, but only if this does not affect the provability
of the main assertion of S1. We define

Φpost(S1, S2) := state(S1) ∧ state ′(S2) → [loc=se′;]〈p〉φ

Such a criterion is more powerful but less practical, as it involves proving a
version of the (complicated) assertion 〈p〉φ. Furthermore, this proof has to be
checked (with the usual criteria) for non-interference too.

4.3 Correctness of the Parallel Composition Rule

We give a general proof-theoretical argument for the correctness of the compo-
sition rule from Section 1 under the specified non-interference conditions, con-
centrating on the Φpre case. Details for other condition types can be found in
the corresponding sections. An important prerequisite for the argument is the
completeness of the KeY calculus w.r.t. the Java Dynamic Logic1: we assume
that there is a proof for every true assertion in the sequential fragment.

In the following, we will present and justify a transformation that allows
(under conditions specified above) to derive a proof for 〈p1 ‖ p2〉φ1 from the
proof for 〈p1〉φ1 alone. Since the situation is symmetrical, we can derive that
〈p1 ‖ p2〉φ2 holds whenever 〈p2〉φ2 holds, and thus establish 〈p1 ‖ p2〉φ1 ∧ φ2.

Every proof step in a proof falls into one of the following categories:

– Proof steps without modality in focus These rules are in the “proposi-
tional” fragment. It is thus safe to replace every modality of the form 〈p〉 in
the conclusion and premisses of this step with 〈p ‖ p2〉.

– Update simplification steps Update simplification rules have no depen-
dency on the modality they are attached to. The same replacement can be
performed.

– Symbolic execution steps Every symbolic execution step establishes the
validity of the sequent S1 : Γ ` U〈p〉φ1. A single non-interference condition
Φ(S1, S2) states that starting in any state that satisfies state(S1) and exe-
cuting an assignment from the program p2 running in parallel, we arrive in a
state that still satisfies state(S1) (it need not be the same state). The same
is true of any sequence of such assignments, or finally the whole program
p2. Thus we can replace every occurrence of the formula 〈p〉φ in the focus of
a symbolic execution step with the formula 〈p‖p2〉φ without sacrificing the
correctness of the proof.

1 Efforts are currently underway to provide a formal completeness proof [10]



5 Syntactic Non-Interference Condition

This type of condition is less powerful than the two discussed above, but allows
in many cases to dismiss the possibility of interference immediately and without
interaction. Informally, syntactical non-interference is given if programs deal
with disjoint memory locations if write access is involved. We will identify a
read set and a write set for every rule of our calculus denoting symbolic memory
locations read resp. written by the corresponding symbolic execution step.

Definition 3 (Write Set W (r)) The write set contains symbolic locations
whose content is changed by a symbolic execution rule. The only rule with a
non-empty write set is the assignment rule:

Γ ` U〈loc := se〉〈π ω〉φ
Γ ` U〈π loc = se; ω〉φ

assignment

We define W = loc, if loc is not a local variable. �

Definition 4 (Read Set R(r)) An expression e contained in the read set of
a rule r is characterized by the following conditions:

1. e appears inside the diamond in the conclusion of r (i.e., the focus of r)
2. e appears outside a diamond in the premisses of r (including updates, though

not on the left-hand side)
3. e is not a local variable �

Example 2 – Assuming se is not a local variable, R(assignment) = {se} as
se appears in the focus diamond of the conclusion and outside of it in the
premiss. loc /∈ R(assignment) since it appears on the left-hand side of an
update. On the other hand loc ∈W (assignment).

– R(if else split) = {b}, again, assuming b is not a local variable.
– Consider the rule if else eval

Γ ` 〈π boolean b; b=nse; if(nse) p else q ω〉φ
Γ ` 〈π if(nse) p else q ω〉φ

if else eval

R(if else eval) = ∅ as this rule replaces one diamond through another
with the same transition relation. There is no state change and no change
in observable conditions. Note that there is a subtle issue at stake here in
that the symbolic execution rules do not “swallow” any state transitions.
Replacing i++;i--; with an empty statement is not allowed. �

Definition 5 (Syntactic Non-Interference) Within the framework of The-
orem 2 we define a syntactical non-interference condition Φsynt(S1, S2). For this
we need to consider the rules r1 and r2 involved in the steps S1 and S2. We
define that Φsynt(S1, S2) holds if and only if

RS1(r1) uWS2(r2) = ∅
WS1(r1) u RS2(r2) = ∅
WS1(r1) uWS2(r2) = ∅

where u denotes intersection under aliasing. �



Intersection under aliasing treats two symbolic locations as the same if —
regardless of their syntactical form — there is a possibility that they are refer-
ring to the same effective location due to aliasing. Since we have excluded local
variables up front, we can safely assume two symbolic locations as distinct under
aliasing only if they are of non-compatible types.

Ultimately, Φsynt(S1, S2) ensures that program behavior does not change in
presence of other programs. It can be used in place of Φ′

pre(S1, S2) until the “last”
symbolic execution is reached (i.e., S1 removes an empty modality). At this point,
the intactness of the first-order assertions must be checked with Φ′

pre(S1, S2).

6 Synchronization

A special concurrency primitive of Java is the synchronized keyword. This
primitive can be used to achieve mutual exclusion of critical code sections. Blocks
of code or whole methods can be declared as synchronized. Synchronization
happens with respect to an object being locked (for synchronized methods it is
always the current object).

The semantics of synchronized is that no two distinct threads can concur-
rently execute code marked as synchronized w.r.t. the same lockable object refer-
ence. One of the threads would block at the attempt to acquire the lock already
held by the other thread. Note that mutual exclusion does not take place if only
one code section is declared as synchronized (synchronization is not atomicity),
or if the lock object references of two synchronized code sections are different.

This leads us to the following refinement of our semantic conditions. If the
statement in focus of the symbolic execution step S1 as well as the assignment
in focus of S2 both lie within a code section marked as synchronized, and the
statement of S1 is not the first statement in the section, we can relax the non-
interference condition Φ′

pre to:

Φ′
pre(s)(S1, S2) := state(S1) ∧ state ′(S2) ∧ ¬syncref (S1)

.= syncref (S2) →
[loc=se′;]state(S1)

where syncref (S1) and syncref (S2) are the lock references of the two sections. If
these references are the same, the non-interference condition holds automatically
since the JVM guarantees mutual exclusion.

Synchronization and memory update visibility The synchronized
keyword has also a second meaning in Java. Beside mutual exclusion functions,
it has a signaling function to the JVM memory subsystem. When a thread exits
a synchronized code section, the content of its local store is flushed into the main
memory. An entry into a synchronized code section, on the other hand, effects a
reloading of the main memory content into the thread’s working store [8, §8.6].

An immediate succession of these two events is thus a means for one thread to
obtain a complete and consistent visibility of memory updates performed by an-
other thread. Unfortunately, tracking such rendez-vous requires considering com-
plete concurrency histories, which is is outside of the scope of a non-interference
calculus.



7 Conclusion, Comparison and Future Work

We have presented (to our knowledge) the first non-interference proof system
for the Java language, which reflects the actual execution semantics as stated by
the Java Virtual Machine specification. Among related works, [1] does not take
the JMM into account, while [4] gives a JMM-faithful operational semantics but
does not provide a proof system. Furthermore, our proof system is built atop an
implemented, complete calculus for sequential Java. A prototype implementation
of it is available with the latest version of the KeY system.

It remains to be seen how the compositional extensions to the Owicki-Gries
method, e.g., [5, 11], can be made to work in the JMM-constrained situation.
Changes would also probably be necessary if the Java Memory Model revision
effort [6] is successful. Development of more powerful parallel composition rules
is furthermore of interest.

Acknowledgment I wish to thank Bernhard Beckert for fruitful discussions,
and Christoph Gladisch and Anne Tretow for their help with the implementation.

References

1. Erika Ábrahám, Frank S. de Boer, Willem-Paul de Roever, and Martin Steffen. In-
ductive proof-outlines for monitors in Java. In International Conference on Formal
Methods for Open Object-based Distributed Systems (FMOODS), 2003. A longer
version appeared as Software Technologie technical report TR-ST-03-1, April 2003.

2. Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Martin Giese,
Reiner Hähnle, Wolfram Menzel, Wojciech Mostowski, Andreas Roth, Steffen
Schlager, and Peter H. Schmitt. The KeY tool. Software and System Modeling
(SoSysM), pages 1–42, 2004. Available at http://www.springerlink.com.

3. Bernhard Beckert. A dynamic logic for the formal verification of Java Card pro-
grams. In I. Attali and T. Jensen, editors, Java on Smart Cards: Programming
and Security. Revised Papers, Java Card 2000, International Workshop, Cannes,
France, LNCS 2041, pages 6–24. Springer, 2001.

4. Pietro Cenciarelli, Alexander Knapp, Bernhard Reus, and Martin Wirsing. An
event-based structural operational semantics of multi-threaded Java. In Formal
Syntax and Semantics of Java, pages 157–200. Springer-Verlag, 1999.

5. Cliff B. Jones. Development methods for computer programs including a notion of
interference. PhD thesis, Oxford University, 1981.

6. Java memory model and thread specification revision. Website at http://jcp.

org/en/jsr/detail?id=133.
7. KeY Project. Website at www.key-project.org.
8. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-

Wesley, 1996.
9. S. Owicki and D. Gries. Verifying properties of parallel programs: an axiomatic

approach. Communications of the ACM, 19(5):279–285, May 1976.
10. André Platzer. An object-oriented dynamic logic with updates. Master’s thesis,

Universität Karlsruhe, 2004.
11. C. Stirling. A generalization of Owicki-Gries’s Hoare logic for a concurrent while

language. Theoretical Computer Science, 58:347–359, 1988.


