
CVE-2017-5462: DRBG Flaw in NSS

Franziskus Kiefer
Mozilla, Germany

mail@franziskuskiefer.de

Vladimir Klebanov
VerifyThis.org

vladimir@verifythis.org

On April 19, 2017, Mozilla Foundation published the Se-
curity Advisory 2017-10 outlining several recently fixed secu-
rity vulnerabilities.1 One of these vulnerabilities, tracked as
CVE-2017-5462, affects the Pseudo-Random Number Gen-
erator (PRNG) within the Network Security Services (NSS)
library prior to version 3.29.5 and Firefox prior to version 53.

This document provides background information on the
vulnerability and its discovery. While the security impact of
the particular flaw is low, we take this opportunity to discuss
several technical methods of quality assurance for PRNGs.

1. INSIDE THE NSS PRNG
NSS implements a so-called Hash DRBG as PRNG, which

is one of several PRNG schemes defined in the NIST Special
Publication 800-90 [1]2. While the standard contains all
the details, the features relevant here can be summarized as
follows.3

The state of a Hash DRBG is composed of three values:

• A 55-byte integer state variable V , which is updated
with each request of new bits

• A 55-byte integer constant C that depends on the seed

• A counter c tracking the number of requests for pseudo-
random bits.

To generate random bits, Hash DRBG concatenates

H(V) ||H(V + 1) ||H(V + 2) || . . .

until enough bits are generated, where H denotes a crypto-
graphic hash function. NSS uses the SHA-256 hash function
with a digest length of 32 bytes. After generating new bits,
the state variable V is updated according to the equation

Vc+1 = V + H(0x03 ||Vc) + C + c (1)

and the counter c is incremented by one. Addition is per-
formed modulo 2440 = 28×55, corresponding to the 55-byte
size of V .

1https://www.mozilla.org/en-US/security/advisories/
mfsa2017-10/#CVE-2017-5462
2NIST uses the name Deterministic Random Bit Gener-
ator (DRBG) for its schemes generating pseudo-random
numbers, and Non-Deterministic Random Bit Generator
(NRBG) for schemes generating “true” random numbers,
otherwise also known as TRNGs.
3This summary is partially based on the answer posting of
Paul Ebermann on Cryptography Stack Exchange: https:
//crypto.stackexchange.com/a/1399

The PRNG implementation can be found in the file drbg.c4

within the NSS codebase.

2. THE BUG
The bug identified in CVE-2017-5462 is in the code im-

plementing addition. The relevant code excerpt is shown
in Figure 2. When the PRNG performs addition in equa-
tion (1), it uses the macro PRNG_ADD_BITS_AND_CARRY, which
first delegates to the macro PRNG_ADD_BITS to add the two
summands without considering the final carry and then the
macro PRNG_ADD_CARRY_ONLY to add the carry.

The summands are a shorter number of length len stored
in add and a longer number of length dest_len stored in dest.
The result of addition modulo dest_len is stored, again,
in dest. Note that numbers are represented as sequences
of bytes, with byte number zero being the most-significant
one.

In this setup, it is clear that the carry should be added
at the position preceding the original most-significant-byte
of the shorter of the two summands. This fact was sup-
posed to be represented by the index dest_len-len supplied
as parameter to PRNG_ADD_CARRY_ONLY in line 29. The essence
of the bug is that dest_len-len does not point to the cor-
rect position of the carry, which should have been added at
position dest_len-len-1 instead.

This situation is illustrated in Figure 1 and a concrete
example is shown at the end of Section 4.

add[len] 0 1 2 3 4

dest[dest_len] 0 1 2 3 4 5 6

correct bug

Figure 1: Position for adding the carry when adding
two numbers (example with len = 5 and dst len =
7). The flawed code shown in Figure 2 adds the
carry at position dest len−len = 2 instead of position
dest len−len−1 = 1.

3. FINDING THE BUG WITH TESTING
The easiest way to find most types of bugs in PRNGs

following the NIST SP 800-90 standard is by testing the

4https://searchfox.org/nss/rev/
fcdcad1fc1ddb6e70653637b0ea0f3359b8533f2/lib/freebl/
drbg.c

https://www.mozilla.org/en-US/security/advisories/mfsa2017-10/#CVE-2017-5462
https://www.mozilla.org/en-US/security/advisories/mfsa2017-10/#CVE-2017-5462
https://www.mozilla.org/en-US/security/advisories/mfsa2017-10/#CVE-2017-5462
https://crypto.stackexchange.com/a/1399
https://crypto.stackexchange.com/a/1399
https://searchfox.org/nss/rev/fcdcad1fc1ddb6e70653637b0ea0f3359b8533f2/lib/freebl/drbg.c
https://searchfox.org/nss/rev/fcdcad1fc1ddb6e70653637b0ea0f3359b8533f2/lib/freebl/drbg.c
https://searchfox.org/nss/rev/fcdcad1fc1ddb6e70653637b0ea0f3359b8533f2/lib/freebl/drbg.c
https://searchfox.org/nss/rev/fcdcad1fc1ddb6e70653637b0ea0f3359b8533f2/lib/freebl/drbg.c

1 /*
2 * build some fast inline functions for adding.
3 */
4 #define PRNG_ADD_CARRY_ONLY(dest , start , carry) \
5 { \
6 int k1; \
7 for (k1 = start; carry && k1 >= 0; k1 --) { \
8 carry = !(++ dest[k1]); \
9 } \

10 }
11

12 /*
13 * NOTE: dest must be an array for the following to work.
14 */
15 #define PRNG_ADD_BITS(dest , dest_len , add , len , carry) \
16 carry = 0; \
17 PORT_Assert ((dest_len) >= (len)); \
18 { \
19 int k1, k2; \
20 for (k1 = dest_len - 1, k2 = len - 1; k2 >= 0; --k1, --k2) { \
21 carry += dest[k1] + add[k2]; \
22 dest[k1] = (PRUint8)carry; \
23 carry >>= 8; \
24 } \
25 }
26

27 #define PRNG_ADD_BITS_AND_CARRY(dest , dest_len , add , len , carry) \
28 PRNG_ADD_BITS(dest , dest_len , add , len , carry) \
29 PRNG_ADD_CARRY_ONLY(dest , dest_len - len , carry)

Figure 2: Addition modulo as implemented in NSS

implementation with the reference seeds and outputs ac-
companying the standard. And indeed, the bug at hand
did not go unnoticed after such testing functionality was
implemented in NSS. For PRNGs not following the NIST
standard, defining corresponding test suites is a good idea
to avoid regressions during maintenance.

Functional unit testing would have caught this particular
bug as well. As with any software, we advocate factoring
out units with clear, testable functionality (such as addition
here) also for PRNGs.

Statistical tests such as NIST SP 800-22 or DIEHARD-
EST5 are not useful for testing cryptographic PRNGs. Such
tests will not fail as long as the internal state of the PRNG
does not stay constant and output passes through a cryp-
tographic primitive (such as SHA-256) before reaching the
consumer.6

4. FINDING THE BUG WITH THE ENTRO-
POSCOPE STATIC ANALYSIS TOOL

In this section, we describe how the flaw can be found7

with the help of the Entroposcope tool developed by Felix
Dörre and Vladimir Klebanov [2]. Entroposcope is a static
analysis for detecting entropy loss in a PRNG. Entropy loss
occurs when the number of possible output streams is less
than the number of possible seeds, or equivalently, when two
different seeds produce the same output stream (a situation
also known as collision). Entroposcope is built on top of the

5https://github.com/ticki/diehardest
6Statistical tests can potentially be of value in evaluating
external sources of entropy, as long as the collected data has
not been passed through a cryptographic primitive.
7. . . and indeed was found independent of testing efforts.

bounded model checker CBMC [3], which in turn transforms
the problem into a challenge for a SAT solver.

Considering the Hash DRBG, the question whether the
Equation (1) produces a collision and the DRBG loses en-
tropy boils down to whether distinct 55-byte values x1, x2

exist, such that

x1 + H(0x03 ||x1) = x2 + H(0x03 ||x2) .

Now, it is clear that this question cannot be answered with-
out either knowing the output of H for each of the 2440

inputs (which is infeasible) or some (unknown to us and cer-
tainly also to the tool) nontrivial mathematical argument
on the nature of H in this context. In this regard, the
Hash DRBG differs from many other PRNGs that employ
significantly simpler operations on the output of H (mostly
copying) before it makes its way to the PRNG caller.

As a consequence of this design, we cannot use Entropo-
scope to prove absence of entropy loss in the Hash DRBG.
Nonetheless, we can still use it to find bugs. For this pur-
pose, we consider an idealized “PRNG” with

H(b||V) = V and C = V0 .

This is the same kind of idealization that had helped us un-
cover previously unknown bugs in OpenSSL and GnuPG.
With the idealization, on the first iteration (c = 0), Equa-
tion (1) becomes:

V1 = 3× V0 . (2)

Since 3 and 2440 are co-prime, (2) will not produce a collision
if implemented properly. By checking collision-freedom of
the PRNG under an idealized H with Entroposcope, we can
find bugs in the parts of the implementation that are not H.

Indeed, given the idealized code, Entroposcope produces
a counterexample to entropy preservation with two concrete

https://github.com/ticki/diehardest

seeds leading to the same output stream. Tracing these two
executions makes it easy to pinpoint the cause of the colli-
sion in the addition code. The following example illustrates
the collision with summands reduced to one byte in size for
clarity.

Example 1. We note that 3 × 0x40 = 0xc0 under both
proper and broken addition (the latter due to absence of car-
rying in this example). On the other hand, 3×0x95 = 0x01bf
under proper unbounded addition resp. 0xbf under proper
modulo addition. Yet, the result under broken addition is
again 0x01 + 0xbf = 0xc0.

5. MORE FORMAL METHODS FOR PRNG
SECURITY

We note that Entroposcope is only concerned with en-
tropy loss, which can be detected efficiently and subsumes
many of the problems occurring in practice. Formal meth-
ods can also be used to prove stronger properties of cryp-
tographic schemes and their implementations, albeit at the
cost of higher effort. A machine-checked proof of security
of HMAC DRBG (another PRNG scheme from the NIST
SP 800-90 standard) has been recently presented in [4]. The
work shows that the output of HMAC DRBG is pseudo-
random under certain standard assumptions on the proper-
ties of its building blocks and that the C implementation of
HMAC DRBG in mbedTLS is functionally correct w.r.t. a
formalization of the scheme.

6. REFERENCES
[1] E. Barker and J. Kelsey. Recommendation for random

number generation using deterministic random bit
generators. SP-800-90, U.S. DoC/National Institute of
Standards and Technology, 2006.
http://doi.org/10.6028/NIST.SP.800-90Ar1.

[2] F. Dörre and V. Klebanov. Practical detection of
entropy loss in pseudo-random number generators. In
23rd ACM SIGSAC Conference on Computer and
Communications Security (CCS 2016), 2016.

[3] D. Kroening and M. Tautschnig. CBMC – C bounded

model checker. In E. Ábrahám and K. Havelund,
editors, Tools and Algorithms for the Construction and
Analysis of Systems, 2014.

[4] K. Q. Ye, M. Green, N. Sanguansin, L. Beringer,
A. Petcher, and A. W. Appel. Verified correctness and
security of mbedTLS HMAC-DRBG. In 24th ACM
SIGSAC Conference on Computer and
Communications Security (CCS 2017), 2017.

http://doi.org/10.6028/NIST.SP.800-90Ar1

	Inside the NSS PRNG
	The Bug
	Finding the Bug with Testing
	Finding the Bug with the Entroposcope Static Analysis Tool
	More Formal Methods for PRNG Security
	References

