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Abstract. Quantitative information flow analysis (QIF) is a portfolio
of security techniques quantifying the flow of confidential information to
public ports. In this paper, we advance the state of the art in QIF for
imperative programs. We present both an abstract formulation of the
analysis in terms of verification condition generation, logical projection
and model counting, and an efficient concrete implementation targeting
ANSI C programs. The implementation combines various novel and ex-
isting SAT-based tools for bounded model checking, #SAT solving in
presence of projection, and SAT preprocessing. We evaluate the tech-
nique on synthetic and semi-realistic benchmarks.

1 Introduction

Quantitative information flow analysis (QIF) is a collection of techniques for
security assessment of software. The research in QIF is motivated by the obser-
vation that it is not feasible to completely prevent information leaks (i.e., the
flow of confidential information to public ports) in realistic systems. Instead,
practical security analysis demands a measure of leaked information in order to
decide if a leak is tolerable.

QIF techniques have been applied to a variety of problems. Deciding whether
a PIN generation algorithm produces PINs that are hard to guess [1], or whether
a particular image transformation is a secure anonymization mechanism (cf. Fig-
ure 1) [17] are examples of QIF applications. While the information-theoretical
foundations of QIF in deterministic programs are relatively well-understood,
practical analysis techniques and tools are still under development.

So far, QIF analyses have been typically described operationally, i.e., with
focus on algorithm development. One contribution of this paper is an abstract
formulation, describing a whole class of QIF analyses in terms of verification



condition generation, logical projection (most notably), and model enumera-
tion/counting. This view facilitates understanding and comparison of existing
approaches and better connects QIF to the existing body of work in these areas.

Inspired by this connection is another contribution of this paper: a novel
combination of SAT preprocessing, projection, and counting, resulting in a QIF
analysis that is more efficient than its predecessors. Our toolchain for analysis
of C programs consists of an off-the-shelf bounded model checker CBMC [6],
a propositional formula preprocessor that we developed previously, and three
tools for propositional model enumeration/counting under projection that we
developed (resp. extended) for this paper.

The discerning properties of our analysis are: (1) The implemented analy-
sis is general-purpose, i.e., it is not taylored to a particular software applica-
tion domain. No restrictions on the shape of the indistinguishability relation
are posed (in contrast to [2,14,13]). The implementation supports almost all of
ANSI C by virtue of using CBMC. (2) The analysis is not compositional, but it
is fully automated—the only required user input is the program under analysis.
Loops are handled by bounded unwinding, which is computationally expensive,
but fully automatic and complete (with unwinding assertion checking). (3) The
analysis supports measuring both the conditional min-entropy (counting the
number of program outputs) and conditional Shannon entropy (counting output
preimage sizes). (4) The analysis is, conceptually, sound and precise (in contrast
to [17,18,21]). Of course, QIF is a hard problem, so computational constraints
may force the user to settle for merely deriving (more or less tight) leak bounds
as program complexity increases. (5) The analysis outpferforms comparable pre-
vious approaches both for theoretical reasons (e.g., it avoids computationally
expensive program self-composition used in [11,12,2,13]) and practically due to
the use of a number of well-connected novel and existing state-of-the-art tech-
niques and tools for propositional reasoning.

(a) Original image (b) Image (a) swirled by (c) Image (b) swirled by
720 degrees —720 degrees

Fig. 1: Anonymization by image swirling. Details in Section 6.3



2 QIF Basics and Technical Preliminaries

Programs, states, and transition relation. A program state is a semantical
structure assigning values to mutable program vocabulary of a program p. Let S
be the set of all (program) states for p. A program p induces a transition rela-
tion p, C S xS on states as follows: (s, s’) € p, iff p started in state s terminates
in a state s’. A security analysis may sometimes wish to focus on a particular
set of initial states S; C S. In this case p, € S; x S.

We only consider programs that are written in a deterministic (read: sequen-
tial) programming language and are terminating, i.e., we require that p, is a
total function. The termination requirement is enforced by model checking (see
Section 4). We call a pair of an initial and a final state (s, s’) € p, a run of p.

Unless stated otherwise, we establish the convention that the program takes
its input in the variable I and produces its output in the variable O. The short-
hand phrase value of I resp. O is to be understood as referring to the value in
the initial resp. final state of a given run of p. Whenever necessary, I and O
are silently lifted to be vectors (with 7 N O = (). A treatment of C structs as
program output is shown in Section 6.2.

More amenable to reasoning is a description of p, by a logical formula with
two free variables I and O. We denote such formula as (p)(I, O) or, later, sim-
ply (p). The formula (p) (o, Oy) evaluates to TRUE iff p started with the input
denoted by Iy terminates with output denoted by Og.

Attacker model and indistinguishability relation. We assume that the
attacker knows the program p, and that the input I is secret and the output O
is public. The attacker has observed the value of the output O in a final state of
some run of p and wants to learn something about the value of I in the initial
state. It is the goal of QIF analysis to measure p’s vulnerability to such an attack.

In the above attacker model, each program induces a partition on secret
inputs ~, called the indistinguishability relation. Each block in this partition is
a set corresponding to some output value of the program and containing exactly
the input values leading to this output. Formally, ~,= {p,'(s') | s € p, 0 St}
One also speaks of blocks in ~, as preimages of program outputs. For example,
if I is an unsigned 32-bit integer, then the program if (I==42) 0=1 else 0=0;
induces ~,= {{0,...,41,43,...,2% — 1} {42}}.

Intuitively, an attacker can discern secret inputs from different blocks but
not within one block. Secure programs have a coarse ~,, while insecure a fine
one. If =, is identity (very fine), then all blocks are singleton sets, and each
output corresponds uniquely to a secret input: the attacker has perfect knowl-
edge. Conversely, the coarsest indistinguishability relation ~,= S; x S; with
only one block means that the attacker learns nothing about the secret inputs
by observing program outputs (a scenario known as “non-interference”).

Sometimes, a more powerful attacker is considered who can observe multiple
runs while partially choosing the program inputs (so called low inputs). In this
case, the indistinguishability relation becomes parametrized by a set of actualized



low inputs L. If the set L is small, the QIF problem can be reduced to the no-
low-input case by calculating the cartesian product of outputs for each low input
l € L. If the set L is large, other approaches (typically based on computationally
more expensive self-composition) must be used.

Quantitative security measures. Given the number and sizes of blocks in ~,
it is possible to compute a range of security measures summarizing information
flow (leakage) in a program. The leaked information is the difference between the
attacker’s initial uncertainty about the secret inputs and the remaining (a.k.a.
residual) uncertainty after observing the output of the program [23].

It should be noted that different security measures have different properties
and are appropriate for different scenarios. It may also be necessary to consider
several measures in order to give dependable operational guarantees. We focus
on two popular measures and refer to [23] for an in-depth discussion.

For quantification purposes, we interpret I and O as random variables ranging
over Sy and S respectively. The program p restricts the values of I and O that
can occur simultaneously. We assume that I follows a uniform distribution, i.e.,
that all secret inputs are equally likely. If this is not the case, techniques exist
for reducing the analysis to a uniform case [1].

Under these assumptions, and given ~,= {Ci,...,C,} (n is, thus, the to-
tal number of possible distinct outputs of p), the following measures can be
computed [23,2]:

H.(I|0) = 1og2@ and  H(I|O) = Z|C’ |log,|C|
n |51 ?
where the conditional min-entropy Ho(I]O) is a measure in bit reflecting the
probability of correctly determining I in a single guess after observing O, and
the conditional Shannon entropy H(I|O) is a lower bound in bit on the expected
message length needed to communicate the remaining secret about I after ob-
serving O.

3 Analysis, Abstractly

In this section, we formulate our QIF framework in abstract logical terms. Our
implementation, described later, is based on propositional logic, but other log-
ics supporting model generation (e.g., QF_ABV) could be used just as well. We
assume that logical formulas are built from usual logical connectives (A, V, —,
etc.) and user-defined vocabulary X. In propositional logic, X' is a set of propo-
sitional variables. A model is a logic-specific semantical structure used to give
meaning to user-defined vocabulary of a formula. In propositional logic, a model
m: X — {TRUE, FALSE} is a map assigning every variable in X' a truth value.
In general, a given model m can be homomorphically extended to give a truth
value to a formula & according to standard rules for logical connectives. We call a
model m a model of @, if m assigns @ the value TRUE. A formula @ is satisfiable
if it has at least one model, and unsatisfiable otherwise.



Definition 1. We build our analysis from a number of abstract operators, which
we define below, using the following designations. X and A are vocabularies with
A C X. A XY-entity (i.e., formula or model) is an entity defined (only) over
vocabulary from X. In the following, @ is a X-formula, ¥ is a A-formula, i is an
integer, m is a X-model, my is a A-model, M is a set of models, p is a program,
I and O are program variables.

FEzxpression Meaning

@ .= (p) formula encoding the behaviors of p (i.e., its transition
relation or the set of traces)

A:=(I),A:=(0) vocabulary denoting in (p) the input and output variables
of p (while p is implied)

m := model(P) some model satisfying @. If @ is unsatisfiable, the result
is a special value 1.

M := models(P) the set of all models satisfying ®. If ® is unsatisfiable,
the result is the empty set ().

i := count(P) i := |models(®)| (number of models satisfying P)

my = m|A the A-model that coincides with the X -model m on the
vocabulary A

v .= Q5|A the strongest A-formula that, when interpreted as a

Y -formula, is entailed by ® (projection of & on A).
models(@’A) = {m‘A | m € models(P)}

U.=A~m a A-formula that is true in my1 and false in all other
A-models.
U=A%m —(A ~my), a A-formula that is false in my and true in

all other A-models.

The most interesting operator in the list above is projection. It makes the
formula d5| , say the same things about A as & does—but nothing else. Projec-
tion allows isolating aspects of program behavior along syntactical boundaries.
For instance, the formula (p)| () describes (just) the set of outputs that are
compatible with the behavior of program p. Orthogonally, the formulas A ~ my
and A % m; allow—when conjoined with (p)—selecting or rejecting particular
runs of the program. These formulas are easier to illustrate if the underlying
logic is first-order; an implementation in propositional logic is given later. For
instance, the first-order formula (p) A (O) =5 would be a particular instance of
() A (O) ~ my (for m; where (O) has the value 5) and describe all those runs
of p that terminate with O = 5. Employing projection, we can describe the set
of inputs that produce the output O =5 by ({(p) A (O) =5)|,. In this light, we
now formulate a general result:

[+

Proposition 1.

Ho(110) = log, and  H(I|O) = Z 0)| log,|C(0)]

>|<o> eM

where M = models(<p>}<o>) and |C(0)| = count(({p) A (O) =~ 0)|<I>).



We note that computing H(I|0O) requires model enumeration and counting, while
H(I|0O) only requires counting. We also note that since searching for models
is computationally expensive, determining the residual min-entropy is easier the
more secure the program of a given complexity is (fewer blocks in ~;,). This does
not hold for the Shannon entropy, as there is a tension between the number and
size of blocks in =, (fewer blocks entail larger block sizes and vice versa).

4 From Program to Transition Relation with Bounded
Model Checking

SAT-based bounded model checking. To implement the (-) operator for
translating programs into (propositional) logic, we use the SAT-based model
checker CBMC [6] for C programs. CBMC is a very mature and popular veri-
fication tool supporting almost all ANSI C language features, including pointer
constructs, dynamic memory allocation, recursion, and the float and double data
types [6]. A similar, if less mature, tool for Java is JForge [8].

Given a C program p and a specification spec (given by assert statements
in the code), CBMC generates a formula (p) A =(spec) in propositional logic,
where (p) encodes the behaviors of the program p, and —(spec) encodes the
behaviors that a specification-compliant program should not exhibit. This veri-
fication condition (p) A\ —(spec) is passed to a SAT solver. If it is unsatisfiable,
then the program is correct w.r.t. the specification; otherwise, any model of
(p) A = (spec) describes a violation of the specification.

During CBMC operation, functions are inlined and loops are unwound to
the user-specified depth. CBMC warns the user if the unwinding depth is in-
sufficient to cover all of the program behaviors (this is known as unwinding
assertion checking). The unwound program is transformed into the static-single-
assignment (SSA) form. In this form, statements can be interpreted as equations
over bit vectors. The equations are combined and reduced to a formula of propo-
sitional logic in a process resembling synthesis of arithmetic circuits. The formula
is flattened into conjunctive normal form (CNF) A;V, L; ;j, where each literal
L; ; is either a propositional variable or its negation. The formula can be ex-
changed with other tools by means of a standard DIMACS format.

Translating programs into logic. First, we carry out a preliminary verifi-
cation pass, during which we incrementally increase the unwinding depth until
CBMC reports no more unwinding assertion violations. This ensures that all
program behaviors are covered and also that the program terminates for all in-
puts. In the main CBMC pass, we augment the program with the specification
assert(0); (i.e., an assertion that is never fulfilled) before each return state-
ment and make CBMC export the verification condition formula (p) A —(spec).
The specification reduces the —(spec) conjunct to true, leaving the desired (p).
The process may consume large amounts of memory but it is not a computa-
tional bottleneck as long as the unwinding depth is reasonable. The runtimes in
our examples ranged from instantaneous to under a minute.



Identifying program variables in the transition relation formula. In-
ternally, CBMC represents each program variable bit-wise according to its type
(and machine architecture). For example, the initial value of a char-typed pro-
gram variable is represented by 8 propositional variables. More precisely, CBMC
tracks the evolution of each program variable over a series of time frames (rel-
ative to each variable). Typically, we are only interested in time frame one
for I (i.e., initial state) and the highest time frame for O (final state). The
mapping from program variables and time frames to sets of propositional vari-
ables is embedded as comments in the CBMC-generated formula (lines starting
with ¢, at the bottom of the DIMACS file). These comments have the following
structure: ¢ function_id :: prg_var_id ! thr_nr @ rec_depth # time prop_var_list.
Thus, ¢ c::main::1::1!001#1 1 2 3 4 5 6 7 8 means that the variable I in
function main in thread 0 at recursion depth 1 during time frame 1 is represented
by propositional variables vy, ...,vs. We extract this information with a simple
parser.

5 Model Enumeration and Counting

In this section, we present two conceptually different approaches and three tools
that we developed to implement models(¢|A) resp. count(@fA).

5.1 Iterative Model Enumeration/Counting

Proposition 2. The algorithm shown in Figure 2 implements model enumera-
tion of a formula under projection.

We have implemented this projection-
capable version of a well-known model enu-
meration algorithm in a tool named SHARP-
CDCL®. The basic model(®)-finding func-
tionality is offered by the SAT solver MINI-

input : Y-Formula &,
projection
scope A C X
output: models(@’A)

SAT [9]. Implementing model projection m)| , M0

is trivial, as one simply restricts the do- m < model(P)

main of the mapping m to the scope A. while m # 1 do

The formula A # m|A can be constructed M+ MU m‘A

as Ve flip(v,m), where flip(v,m) = v, D +— PN(A ,o“:m’A)
if m(v) = FALSE, and flip(v,m) = —w, if m < model(®)
m(v) = TRUE. This way, the truth value of end

at least one variable in m| , must flip in order return M

to satisfy A 2 m|A. Conjoining this formula

(which is already in CNF) with & ensures Fig.2: An algorithm for
that the current model m will not be found enumerating models(@‘A)
again. After the loop terminates (or SHARP-

CDCL is interrupted), the set resp. number

of found models is returned.

* Available at http://tools.computational-logic.org/



5.2 Model Counting via Compilation to d-DNNF

State-of-the-art deterministic #SAT solvers implement count(-) via compila-
tion of the formula to Deterministic Decomposable Negation-Normal Form (d-
DNNF). We have extended two such tools®, SHARPSAT [25] and DSHARP [20],
with projection capabilities—something that has not been available in #SAT
solvers so far. While iterative model enumeration/counting works better on large
formulas with few models, d-DNNF-based #SAT solvers are useful to analyze
smaller formulas with a large number of models. Empirical evidence is presented
in Section 6. Below, we briefly sketch the necessary theoretical results for inte-
grating model counting and projection.

Definition 2. A formula in d-DNNF is a rooted tree such that:

— The label of each leaf node is either true, false, or a literal (i.e., negation
can only appear attached to variables), while the label of each internal node
is either a conjunction (N) or a disjunction (V).

— Decomposability holds: any two children ¢; and c; of a conjunctive node share
no vocabulary: Y., N X, = 0.

— Determinism holds: let ®(n) be the formula represented by the subtrees rooted
at node n. For any two children d; and d; of a disjunctive node, ¢(d;) and
&(d;) must be contradictory, i.e., (d;) A P(d;) is unsatisfiable.

| A propositional formula is typ-

T =? ically compiled to d-DNNF by
/®\ an exhaustive DPLL-style algo-
rithm alternating systematic case

distinctions (decisions) and unit

@ - @ . propagation. Each decision gives
rise to an V-node as per equal-

ity & = @[v] V &[—w]. Figure 3 il-
lustrates such a decision on vari-
able x. The #SAT solvers also em-
ploy a number of optimizations (e.g., subtree caching, clause learning, etc.),
but these are of no interest here. After a (computationally hard) compilation

to d-DNNF, both projection computation and model counting—though not in
combination—can be carried out in linear time [7].

Fig.3: A typical d-DNNF fragment

Proposition 3. If & is a X-formula in d-DNNF, then @’A can be computed in
polynomial time by replacing every satisfiable (X'\ A)-subtree in @ by true, and
every unsatisfiable (X \ A)-subtree in @ by false.

This is a direct consequence of [7, Theorems 3 and 9]. Unfortunately, projection
can destroy determinism (e.g., if the nodes x and -z in Figure 3 are removed),
making later model counting impossible. Yet, it is easy to see that:

% Available at http://formal.iti.kit.edu/~klebanov/software/



Proposition 4. Determinism is retained during projection of a d-DNNF' for-
mula @ on scope A, if every subtree rooted at an \V-node associated with a deci-
sion on variable v € X'\ A only contains variables from X\ A.

In other words, losing determinism in a subtree is not harmful, if the whole
subtree is bound to be removed.

We enforce projection determinism by modifying the variable selection heuris-
tic of the #SAT solvers’ d-DNNF compilers to always perform decisions on vari-
ables from A first. Further, we implemented the satisfiability check of Propo-
sition 3 by integrating MINISAT into DSHARP. We omitted a similar check in
projecting SHARPSAT'; the latter can thus report a result that is higher than
the actual model count (though this never happened in our benchmarks). When
computing min-entropy, such overapproximation entails an error on the conser-
vative side.

5.3 Boosting Counting Performance with Formula Preprocessing

In [10], model counting has been improved by a few preprocessing techniques,
namely unit propagation, equivalence reduction and hyper binary resolution.
In general, any equivalence-preserving preprocessing technique can be applied
before model counting, because the set of models does not change. However,
there are also many powerful preprocessing techniques that are merely satisfia-
bility-preserving but not equivalence-preserving, such as variable elimination or
blocked clause elimination. For general model counting, these techniques cannot
be applied. The situation changes when projection is involved.

Proposition 5. Let @ be a propositional X-formula and A C X a projection
scope. Applying satisfiability-preserving preprocessing on X\ A in @ does not
change the set of models of the projection @’A.

We use the propositional preprocessor COPROCESSOR 26 [15,16], which we de-
veloped earlier, for equivalence-preserving simplification and scope-restricted
satisfiability-preserving simplification. While the more advanced simplification
techniques are not always beneficial, preprocessing boosts model counting per-
formance in most cases, as shown in the next section. The benchmark results are
given for default settings. The exact set of applied techniques can be configured
by the user.

6 Benchmarks and Evaluation

6.1 Synthetic Benchmarks

A number of microbenchmarks for general-purpose QIF have appeared in [2]
and [21]. The collection has later been consolidated and extended in [18]. It is
valuable as it is quite varied and targets different bottlenecks in QIF analyses.

5 Available at http://tools.computational-logic.org/



(I >> 16) ~ I); if (I == R1) 0 = R1; 0 = 0;

0 =0 & Oxffff; else if (I==R2) 0 = R2; for (i = 0; i < N; i++) {
0 =01 (0 << 18); m =1 << (31-i);
else if (I==R9) 0 = R9; if (0 + m <= I) 0 += m;
else 0 = R10; }
(a) Mix and duplicate (b) Ten random outputs (c) Binary search

Fig. 4: Benchmarks from [21] and [18]

The only drawback is that the majority of the benchmarks no longer pose a
challenge. Below we report results on five benchmarks (out of eleven total) that
are still difficult or interesting in some sense.

Table 1 summarizes the performance results. The experiments were per-
formed on a machine with an Intel Core i7 860 2.80GHz CPU. We have included
the timings published in [18] for comparison, though no hardware description is
available in that paper. The code is presented in Figure 4. Unless noted other-
wise, the variable I is the secret input, 0 is the observable output, and the type
of variables is uint32_t (32-bit unsigned integer).

The mix and duplicate benchmark (Figure 4a)—we cite [21]—“combines the
two halves of its input word with XOR, and then duplicates these 16 bits in both
the upper and lower halves of its output”, leaking 16 bit of the secret. “[This
leak] is too large to be effectively measured exhaustively, too small for effective
sampling, and too uniformly distributed for range queries, so only our proba-
bilistic #SAT strategy gives an accurate estimate” [21]. We can see that neither
iterative model enumeration nor modern precise #SAT solvers have difficulties
with this benchmark.

The ten-random benchmark (Figure 4b) is essentially a program with ten
outputs that do not follow a particular pattern. On this benchmark, the two-bit
abstraction from [18] overapproximates the leak.

In the sum benchmark 0 = I1 + I2 + I3;, we increase the difficulty com-
pared to [18], dropping the restriction of the summands to the range 0-10. In-

Table 1: Benchmark runtimes (seconds)
w/PP=with preprocessing, t/o=timeout at 1h, *=result overapproximates number of
models. Preprocessing time was negligible in all cases.

Iterative enum. Precise #SAT Overapprox. #SAT
¥ & Q S Q & Q
Q
Frg & & & S £ e
Benchmark <& L @ < N S & <Q

mix-n-dup 216 162 <01 <01 <01 <01 <01 1.3
ten-random 10 <0.1 <01 <01 <01 <01 <0.1 4.6*
sum-three-32 232 t/o t/o t/o <0.1 t/o <01 n/a
bin-search-16 2'° 6.9 9.6 166.6  39.3 129 57 6.4
bin-search-32 232 t/o t/o t/o  48.2 t/o 9.8 555




1 int atalk_getname (struct socket *sock, struct sockaddr *uaddr,

2 int *uaddr_len, int peer)

3 {

4 struct sockaddr_at sat;

5 struct sock *sk = sock->sk;

6 struct atalk_sock *at = at_sk(sk);

7 int err;

8

9 // lock_sock (sk);

10 err = -ENOBUFS;

11 if (sock_flag(sk, SOCK_ZAPPED)) if (atalk_autobind(sk) < 0) goto out;
12

13 *uaddr_len = sizeof (struct sockaddr_at);

14 // memset (8sat.sat_zero, 0, sizeof(sat.sat_zero)); // leak patch
15

16 if (peer) { err = -ENOTCONN;

17 if (sk->sk_state != TCP_ESTABLISHED) goto out;
18 sat.sat_addr.s_net = at->dest_net;

19 sat.sat_addr.s_node = at->dest_node;

20 sat.sat_port = at->dest_port;

21

22 } else { sat.sat_addr.s_net = at->src_net;

23 sat.sat_addr.s_node = at->src_node;

24 sat.sat_port = at->src_port;

25 }

26

27 err = 0;

28 sat.sat_family = AF_APPLETALK;

29 memcpy (uaddr , &sat, sizeof (sat));

30

31 out:

32 // release_sock (sk);

33 unsigned char 0; int ij;

34 for (i=0; i<sizeof (struct sockaddr_at); i++) 0=((char *)uaddr)[il;
35 assert (0);

36 return err;

37 }

Fig.5: AppleTalk driver function leaking kernel memory (CVE 2009-3002)

stead, we consider the sum of three arbitrary 32-bit secret values (variable type
int32_t). Unsurprisingly, iterative enumeration of models is ineffective, while
preprocessing quickly simplifies (p) ’ o to true, corresponding to 232 outputs.

The binary search benchmark (Figure 4c) is valuable, because it is parametric
and can help assess analysis scalability. The program leaks the most significant N
bit of the secret by repeated dichotomy. We note the improved rates of slowdown
between N = 16 and N = 32 with our tools.

6.2 Linux Kernel

This benchmark has originally appeared in [12], where the authors analyze a
number of vulnerabilities previously found in the Linux kernel. The goal is to
measure the amount of unsanitized kernel memory leaking to applications in the
userland. The value of the benchmark stems less from the operational signifi-
cance of the leak size, but rather from its origin in actual systems software. We
revisit the most complex example presented in the above paper, a leak in the
atalk_getname routine in the AppleTalk driver (Figure 5).



The leak is as follows. The kernel allocates a 16-byte structure sat (the secret
input) and initializes it. Later, the content of the structure is copied to userland.
Due to a programming error, parts of the structure are not initialized properly.
The official patch fixing the bug is shown in line 14.

In order to deal with an output that is a C struct, we introduce an auxiliary
variable 0 and a loop reading the structure before the return statement (lines 33—
34). The observable output is then the last sizeof (struct sockaddr_at) val-
ues of 0. This is possible since CBMC actually encodes the full trace of variable
values rather than merely the initial and the final states.

We have used the code from net/appletalk/ddp.c of the Linux kernel 3.4.28
(minus the bugfix). The only simplification that we performed was to remove
the locking calls in line 9 and 32, caused by technical difficulties with the code
organization of the kernel. It took the analysis in [12] one hour and 39 minutes
to find at least 64 blocks in =%, of the function—a time explained by an extreme
form of self-composition exploring the function behavior 64 times. With SHARP-
CDCL, finding 64 blocks was instantaneous, while finding 65536 blocks (i.e., a
16-bit leak) took 20 seconds resp. 14 seconds with preprocessing. The full size
of the leak is too large to be established precisely.

6.3 Image Anonymization

This benchmark has originally appeared in [17], where the authors assess the
effect of several image anonymization techniques on a 125 x 125 pixel test image.
While effective leakage bounds could be established for blurring or pixelation,
no useful bounds (in either direction) could be established for image swirling
demonstrated in Figure 1. While, the analysis in [17] sacrifices soundness and
precision for scalability (cf. next section), we test our tools by establishing precise
leakage in a variant of this application.

As in [17], the source code is derived from the SwirlImage() function of the
popular ImageMagick” image manipulation suite. We deviate from [17] by dis-
counting target image interpolation. This simplification eliminates the influence
of image data, and leaves us with a function that merely transforms a pair of
integer coordinates into another pair (Figure 6). The coordinates that are not
reachable by the swirling transformation appear as black pixels in the illustration
in Figure 1b.

Two things should be noted about analyzing code with non-integral data
types. First, CBMC approximates data types such as double with a 16416
bit fixed-point representation. We think, it is reasonable to assume that this
precision is sufficient in this example. Second, modern general-purpose processors
typically implement mathematical functions such as sine, cosine, and square
root in hardware. For the analysis, we have used their software counterparts
from the popular Freely Distributable C Math Library FDLIBM?®. Thus, the
main function shown in Figure 6 accounts for only 23 out of 379 total lines of

" http://imagemagick.org/. The SwirlImage() function is in fx.c.
8 http://www.netlib.org/fdlibm/



int main(int argc, char xxargv) {

1

2

3 unsigned char x,y; // secret inputs

4 __CPROVER_assume (x>=0 && x<125); // range limit
5 __CPROVER_assume (y>=0 && y<125);

6 unsigned char newx, newy; // observable outputs
7
8
9

double center (double) 125/2.0;

double radius center;
10 double degrees = (double) (3.141593%720.0/180.0);
11 double deltay = (double) (y-center);
12 double deltax = (double) (x-center);
13 double distance = deltax*deltax + deltayx*deltay;
14
15 if (distance < radius*radius) {
16 double factor=1.0-sqrt((double) distance)/radius;
17 double d = (double) (degreesxfactor*factor);
18 double sine=sin(d);
19 double cosine=cos(d);
20
21 newx = ((cosinexdeltax-sinexdeltay)+center);
22 newy = ((sinexdeltax+cosinexdeltay)+center);
23 } else { newx = x; newy = y; }
24 assert (0);
25 return O;
26}

Fig. 6: Image anonymization main function

analyzed code (about 6%). The code contains four loops (maximal unwinding
depth 32). A total of 2079 bitvector equations encode the transition relation (p).

It took SHARPCDCL 4h58m to find all 12228 blocks in ~,, which corre-
sponds to a leak of 13.58 out of 13.93 bit, if one measures min-entropy. In other
words, swirling is not a good anonymization technique. The deanonymization in
Figure 1c actually underestimates the leakage, as the unswirling transformation
used is also lossy.

Measuring the residual Shannon entropy of the secret was quite more costly.
It took SHARPCDCL 5h23m to find all six inputs in the preimage of a single
output (newx=87,newy=62), and this was only possible as we used—in this case
only—MINISAT’s randomized variable selection heuristic, which can sometimes
produce much faster SAT solver runs at the price of generally unpredictable
performance.

Altogether, while we do obtain proof of the secret leaking almost completely,
we clearly cannot claim a practical benefit of our analysis in this case. The
reasons for this are twofold. First, the analyzed code is too large, and we see
this benchmark as marking the frontier of what is barely possible with current
technology. Second, the size of the secret is too small, making simple exhaustive
simulation an attractive alternative

A new perspective opens if our toolchain were used as part of probabilistic

QIF for large secrets (and on programs of more appropriate size). Képf and Ry-

balchenko show in [14] that it is sufficient to randomly choose % input

samples and measure the respective size of the enclosing block in ~,, in order



to probabilistically estimate the residual Shannon entropy to a degree of preci-
sion § and a confidence level P € [0,1). As the size of the secret increases, the
polylogarithmic probabilistic approach remains feasible in contrast to exhaustive
simulation.

7 Related Work

We survey most recent and relevant works in the field; a further survey of QIF
models and techniques is available in [19].

Backes et al. [2] describe a precise QIF analysis for programs with affine
indistinguishability relations based on self-composition and Barvinok’s count-
ing algorithm. This was later extended in [14] to improve scalability. In order
to maintain automation, the latter approach gives up precise computation of
the leak and opts for an approximative characterization, deriving lower and up-
per bounds on residual min-entropy, as well as probabilistic bounds on residual
Shannon entropy. A different extension based on symbolic Barvinok counting
was proposed by Klebanov in [13].

Heusser and Malacaria have developed two relevant QIF approaches: [12]
and [11]. The former encodes detection of (small) leaks as a pure model checking
problem via self-composition in CBMC. The latter one and our SAT-based anal-
ysis are quite similar in spirit, though [11] builds on expensive self-composition,
supplementing it with a model enumerator and a #SAT solver.

The following three approaches compute leakage bounds by approximating
the projection <p>| () with a series of entailment queries on (p), followed by
precise or approximative model counting.

Newsome et al. [21] use a series of SMT entailment queries to identify and
narrow down in-/feasible output ranges. Such approximations of <p>|<o> are
amenable to simple model counting. The approach is complemented by sam-
pling and probabilistic counting. Models generated by the SMT solver are used
to identify the presence of a feasible output within a range, but this procedure
is not leveraged fully as an output-finding technique.

Phan et al. [22] encode a full binary search for feasible outputs (models
of <p>| ( o>) in a bounded model checker. This approach is precise, but requires
in practice more than one call to the underlying solver to find a single feasi-
ble output. It is useful when the program verification system does not expose
the underlying logical representation or when the used solver cannot generate
models.

Meng and Smith [18] use “two-bit-pattern” SMT entailment queries to calcu-
late a propositional overapproximation (w.r.t. the number of models) of <p>} )
and count its instances with a #SAT solver of the computer algebra system
Mathematica.

McCamant and Ernst combine in [17] a dynamic bitwise taint analysis with
static analysis to derive bounds on information leakage in C programs. The
technique has been applied to large programs used in practice. On the other



hand, it only measures leakage along one or a few selected program paths, leaving
it to the user to supply “representative” inputs.

Another tool for dynamic analysis is reported by Chatzikokolakis in [5]. The
tool automatically derives bounds of information leakage in terms of mutual
information and capacity from trial runs of the system, which is treated as a
black box.

The theoretical hardness of QIF has been shown by Terauchi et al. in [27,
24]. As with other hard problems (e.g., SAT), these results do not preclude
the existence of efficient analyses for individual instances or subclasses of the
problem.

8 Conclusion

We presented a unifying abstract formulation of a class of QIF analyses for im-
perative programs and an instance of this class outperforming previous compa-
rable approaches. We demonstrated that logical projection is a useful framework
for understanding and implementing QIF. In the future, we are interested in
exploring more advanced projection computation techniques [3, 4, 26].

Though our implementation is not a single tool, all its components are avail-
able publicly. A part of the performance improvement is due to advances in the
underlying reasoning technology, which have been fueled by regular SAT compe-
titions and associated benchmark collections. Maintaining and extending a set
of canonical benchmarks would benefit the QIF field as well.
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