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Abstract

Quantitative information flow analysis (QIF) is a portfolio of software security
assessment techniques measuring the amount of confidential information leaked
by a program to its public outputs. In this paper, we extend the scope of precise
QIF for deterministic imperative programs where information flow can be de-
scribed with linear integer arithmetic. We propose two novel QIF analyses that
precisely measure both residual Shannon entropy and min-entropy of the secret
and that feature improved tolerance to large leaks and large input domains.

For this purpose, we investigate the use of program specifications in QIF.
We present criteria for specification admissibility and a program analysis that
replaces exhaustive program exploration with symbolic execution, while incorpo-
rating user-supplied (but machine-checked) specifications. This kind of program
analysis allows to trade automation for scalability, e.g., to programs with un-
bounded loops. Furthermore, we show how symbolic projection and counting,
based in this instance on symbolic manipulation of polyhedra, avoid subsequent
leak enumeration and enable precise QIF for programs with large leaks.

Keywords: Security, information flow, quantitative analysis, polyhedral
model, symbolic model counting, program specifications

1. Introduction

Quantitative information flow analysis (QIF) is a portfolio of techniques for
security assessment of software [1]. The research in QIF is motivated by the
observation that it is not feasible to completely prevent information leaks (i.e.,
the flow of confidential information to public ports) in realistic systems. Instead,
practical security analysis demands a measure of leaked information in order to
decide if a leak is tolerable.

Information flow (alias leakage) in a program p (assumed known to the at-
tacker) can be described by means of an equivalence relation %f showing which
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confidential inputs are indistinguishable by public program outputs. The rela-
tion %f is parametrized by the set E of experiments, i.e., public program inputs
that an attacker chooses to enact. Information leaks correspond to equivalence
classes of this indistinguishability relation. The more numerous and the smaller
the classes, the more secret information is leaked by the program. A variety of
information-theoretical security metrics can be used to summarize the situation
and assess program security.

Our aim is to advance the state of the art in QIF for the class of deterministic
imperative programs whose information flow can be described with linear arith-
metic. We present two novel QIF analyses that precisely measure both number
and size of equivalence classes and feature improved tolerance for the case that
any of these values is large, as well as for large program input domains. The
analyses are logic-based, i.e., they build on inference in a logical framework as
opposed to, for instance, dynamic analysis (e.g., [2]) or type systems (e.g., [3]).
Historically, our research has been inspired by [4], one of the pioneering works
of logic-based QIF, but also by the preceding work on formalizing (qualitative)
information leakage in a general-purpose program logic [5].

Logic-based QIF for deterministic imperative programs has been a fruitful
research direction, bringing forward a multiplicity of analyses (e.g., [4, 6-11])
with a variety of underlying technologies. A consolidating observation we wish
to make is that, despite the diversity, these analyses can be decomposed into
four abstract components described declaratively. The components are:

1. static program analysis/verification condition generation
2. projection!

3. counting
4

. calculations based on information theory.

It is worth noting that the first three components are, on this level of abstraction,
not unique to QIF, and QIF can profit from research related to these components
in other application areas.

Our analyses follow the same component structure, and we present an im-
plementation of each component (resp. two implementations for component 1)
that has not been used for QIF before. The bigger novelty of our proposal is
in that all four components are symbolic. Rather than enumerate certain sets
(e.g., the set of feasible program outputs), they manipulate potentially more
compact descriptions of these sets. Enumeration bottlenecks are one of the rea-
sons forcing existing approaches either to severely limit the input state space or
to use approximation in at least one of the components, giving up soundness or
precision. Symbolic reasoning enables us to treat programs that could not be
treated before in a manner that is sound and precise.

IProjection (see, e.g.,[12]) is also known as image computation, range computation, (exis-
tential) quantifier elimination, or forgetting. In contrast to, e.g., counting, projection is often
not emphasized in QIF literature, although it is at least as essential.



In detail, the main contributions of our work are:

e Component 1: a symbolic program analysis that replaces enumerative
program exploration (e.g., bounded model checking) with an analysis in-
corporating user-supplied but machine-checked specifications such as loop
invariants and procedure contracts. This enables QIF for programs with a
large number of states/paths, and ultimately for programs that are beyond
the current scope of automated program analysis. An important novel in-
gredient here is a criterion for specification admissibility for QIF. The
implementation is based on the deductive verification system KeY [13].

e Components 2 and 3: projection and counting based on symbolic manip-
ulation of polyhedral sets and relations. The implementation is based on
the 1SL/BARVINOK [14] framework. Together with the symbolic program
analysis, these novel QIF component implementations avoid enumeration
and enable precise measurement of equivalence class number and size be-
yond what was possible so far.?

We also make the following minor contributions:

e Component 4: a sketch of an approach for systematic symbolic computa-
tion of averaging security metrics (such as residual Shannon entropy) from
a symbolic description of equivalence class sizes. The approach is based
on Euler-Maclaurin summation.

e an extension of the QIF analyses above to non-uniform secret distributions
and to non-terminating programs.

Furthermore, the component view and the chosen component implementa-
tions allow us to make another point regarding the structure of logic-based QIF
analyses. These analyses populate so far two largely disconnected classes: those
using the self-composition technique (examples are [4, 7]) and those operating
on the program’s transition relation (for example [8, 10]). While it is well-known
that both approaches are sound, the differences in presentation and implemen-
tations so far obscured their commonalities. We make explicit the common
structure, both theoretically (Proposition 2.3) and by implementing an instance
of each class by a mere variation in component 1, while the other components
remain essentially the same.

In the following, Section 2 provides formalizes information flow in programs,
while Section 3 gives an overview of components that we combine for QIF.

2 At this point it is instructive to point out the parallels and differences between our ap-
proach and [4]. Similarities are the overall component structure of the analysis, the use of
self-composition in Component 1 (optional in our case), and the use of Barvinok’s counting
algorithm in Component 3. The difference is that [4] uses leak enumeration in all components.
In particular, it combines the basic Barvinok’s algorithm with equivalence class enumeration
for counting. We use the more powerful symbolic variant of the algorithm for counting, and,
altogether, non-enumerating implementations of all components.



Section 4 presents the actual QIF analyses. How to incorporate program speci-
fications is shown in Section 5. Section 6 reports on experiments. Extensions are
presented in Section 7. Section 8 surveys related work, and Section 9 concludes.

2. Background on Information Flow in Programs

2.1. Programs and states

We assume a deterministic, imperative programming language with bounded
integer variables. For succinctness, we will denote several related program vari-
ables or terms as ¥, ¢, etc. and assume that all operations happen component-
wise. Unless noted otherwise, we assume for concreteness’ sake that the integer
data type covers the range [—23! 231 —1].

A program state is a logical structure assigning values to program vari-
ables. We refer to the set of all possible states for a given program as S.
Every syntactically valid program p describes a transition relation on program
states p, C S x S. If the program p started in state s terminates in state ',
then (and only then) (s,s’) € p,. We call pairs of such initial and final states a
run of p. The correspondence between p and p,, is fixed by the definition of the
programming language, and we will show later in the paper how to compute p,,
using verification technology.

We only consider deterministic programs. This means that all transition
relations p, are actually partial functions: for every initial state, there is at
most one final state. We will use the functional or the relational notation as
convenient. For modeling reasons, one may sometimes wish to restrict the set
of initial states of a program to SP"* C S. Then p, C 57" x S.

2.2. Formalizing Information Flow

The security lattice. To define information flow, we classify parts of program
states according to a simple security lattice: a program variable can be marked
either as a secret alias high input (initial value is confidential) or as a public
alias low input (initial value is chosen by the attacker). Independent from
that, a variable can be marked as a public alias low output (final value visible
to the attacker). This labeling induces the respective projection functions -,
-1i and -, on states and sets of states. We assume, for every state s, that the
high and low input components are disjoint (sp; N s; = @) and that together
they completely determine every outgoing program run®.

We will use the syntactical convention that the variables h, 1, o are the high
input, the low input, and the low output respectively. Furthermore, whenever

3In case that every variable in the program is either a high or a low input (i.e., S =
Shi X Si;), the assumption of a deterministic programming language above suffices. If there
are variables that are not part of the program input (e.g., local or auxiliary variables), they
must be ruled out as sources of nondeterminism. A simple syntactical analysis can ensure
that they have a fixed initial value or that every read from them is preceded by a write. The
Java compiler, for instance, enforces the latter property for local variables.



we say “input” in the following, we may mean either an input variable or its
initial value, which in its turn means the valuation provided by an initial state
of an implied program run. An analogous situation holds for an output and its
final value. The exact meaning should be clear from the context.

The attacker. The attacker model is as follows. For a single run of a program p
with an initial state s € SP™ and the final state s’, the attacker knows p,
SPTC, Siiy Shut, and nothing else. The goal of the attacker is to learn something
about sp;. Beyond that, we assume that the attacker observes a set of runs,
or experiments, in terminology of [4]. The secret input remains the same in all
experiments, but the attacker gets to choose the low input, i.e., the low input
component sy, of each run’s initial state. The amount of information leaked
by the program (and thus the success of the attacker) depends on the number
of experiments that the attacker can study. We refer to the totality of the low
input state components chosen by the attacker as E. This set appears as a
parameter in the QIF analysis presented below.

To treat low inputs, we consider a modified transition relation p; C Sp; X
Sout, which, for a given e € Sj;, is obtained from p,, by fixing the initial low input
state component to e and considering only the attacker-visible component of the
final state, i.e., (s, hy;) € pj iff ((€,5ni),5") € pp. For a set of experiments E,
we generalize this construction to a natural join

py = X o - (1)
ecE

The relation pf C Sy xS ‘EJ‘/ relates each secret initial state component to an

ou

E-indexed tuple of public final state components.

Describing information leaks: the indistinguishability relation. Information flow
in a program p can be identified with a particular equivalence relation zf, the
indistinguishability relation of p. This view has appeared at least as early as [15];
the development that we make below is closest in spirit to [16]. At the center
is the well-known fact that every function induces an equivalence relation (its
equivalence kernel) on its domain [17].

Definition 2.1 (Indistinguishability relation %f ). The indistinguishability re-
lation %5 C Spi X Sy is the equivalence kernel of the (functional) relation pf,
ie.:

S1hi %5 sap, iff for all e € B2 pf(s1:) = pp(S2n:) - (2)

This equivalence relation relates any two secret inputs that are indistin-
guishable to the attacker in any experiment from E. The definition assumes
that programs always terminate; we will consider the case that programs might
not terminate in Section 7.2.

In the following sections, we will use a particular representation of %f , that
of an indistinguishability partition Hf .



Definition 2.2 (Indistinguishability partition Hf ). The %f—induced indistin-
guishability partition 1Y is the quotient set Sy;/ =)= {C | C = =[] o sy, for
some Sp; € Sy}

Hf partitions Sy; into equivalence classes of %f . The partition is accompa-
nied by the natural projection (Figure 1).

Definition 2.3 (Natural projection 7). The function 7: Sp; — Hf, Shi —
zf o sp; is the so-called natural projection, mapping each secret input to its
~L-equivalence class.

Furthermore, each member of Hf is a subset of Sp; corresponding to some
E-indexed tuple of low outputs of the program and containing exactly the secret
inputs leading to this tuple of outputs under the experiment set E:

Proposition 2.1. IT¥ = {C | C = (p])) " (sout) for some sour € pf 0 Spi}, and
furthermore, [ILY| = | ran pf|.

Proof. This is a consequence of [17, Theorem 19], which states the existence of
a unique bijective function g: Hf — ran p;,': with p;;: = gom. This function can
be taken as homomorphic extension of pf to equivalence classes of %f , as pf is
by definition of ’f:tf constant on all elements of an equivalence class. O

Accordingly, one also speaks of members of Hf (alias equivalence classes
of zf) as preimages of program outputs resp. output tuples.

Example 2.1. Consider the program if (h==1) o=1 else 0=0;. If the set
of experiments F = {17,42}, then the indistinguishability partition Hf =
{{—231,...,16,18,...,41,43,...,230 —1},{17},{42}}. The program leaks very
little in each individual experiment, but expanding the set E will ultimately
make the program leak the full secret.

Intuitively, an attacker can discern secret inputs from different classes in Hf
but not within one class. Secure programs have a coarse Hf, while insecure a
fine one. If %f is identity, then all classes are singleton sets (Hf is very fine),
and each output corresponds uniquely to a secret input: the attacker has perfect
knowledge. Conversely, the coarsest indistinguishability relation zf = Shi X Sk
with only one class in Hf means that the attacker learns nothing about the secret
inputs by observing program outputs (a scenario known as “non-interference”).

Proposition 2.2 ([17, Theorem 18]). The equivalence kernel of w: Sp; — Hf

is the same as the one of pf, i.€e., mf,

Since 7 talks about both states and sets of states, expressing it logically is
complicated. Instead, it is easier to consider a slightly different function.

Definition 2.4 (Representative map 7). The representative map ' : Sp; — Sh;
maps each secret input to a canonical representative of its %f-equivalence class.
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Figure 1: The indistinguishability relation %f is the equivalence kernel of the
transition relation p{ﬂ the natural projection m, or the representative map 7’.
The diagram commutes.

The function 7’ is not unique — it depends on how the canonical representa-
tive is chosen. Yet, for any such function, the following holds:

Proposition 2.3. The equivalence kernel of ©': Sj; — Sy; is the same as the
one ofpf, i.e., %f.

Proof. We show that kernels of m and 7’ coincide. For this, we show that both
functions have the same indistinguishability, i.e., w(s1) = 7w(s2) iff 7'(s1) =
7'(s2). The forward direction is obvious, in particular as 7’ is the canonical
representative of its class. The reverse direction follows from the fact that
7'(s) € m(s) (by definition of 7') and that all equivalence classes are disjoint [17,
Corollary of Theorem 18]. O

2.8. Security Metrics

For assessing security of a program p, it is customary to summarize the
structure of %f resp. Hf in a single real number signifying the information flow
(leakage) of p. The leaked information is the difference between the attacker’s
initial uncertainty about the secret inputs and the residual uncertainty after
observing the output of the program [18]. In the following, we concentrate
on the residual uncertainty, which is obtained by applying one of the available
security metrics to Hf.

Some metrics, such as residual min-entropy [18], depend only on the number
of classes in Hf ; some, such as minimal guessing entropy [19], are only concerned
with the smallest class, and some, such as residual Shannon entropy [19], average
over the class sizes. Our analyses can calculate both class number and sizes, and
we use two popular metrics—conditional min-entropy and conditional Shannon
entropy—as respective illustrations. It should be noted that different metrics
have significantly different properties and are appropriate for different scenarios.
None of the known metrics are superior to others in all situations. It may indeed
be necessary to consider several metrics—or devise new metrics—in order to give
dependable operational guarantees. We refer to [18] for a discussion.



To express the metrics, we associate the secret inputs with a random vari-
able H ranging over Sy;, and the public outputs with a random variable O
ranging over S Lﬂ The program p and the set of experiments E restrict the val-
ues of H and O that can occur simultaneously. By default, we assume that H
follows a uniform distribution, i.e., that all secret inputs are equally likely. We
will consider the case of non-uniform distribution in Section 7.1.

Under these assumptions, we can compute [18, 19] the conditional Shannon
entropy H(H|O) and the conditional min-entropy H..(H|O) as follows:

1 Shi
HHO) = o 3 (CllolC] and  Ha(HIO) =lomy e (3)
*lcenr P

The former is a lower bound in bit on the expected message length needed to
communicate the remaining secret about H after observing O. The latter is a
measure in bit reflecting the probability of correctly determining #H in a single
guess after observing O.

We note that if [TLY| = |Sp| (i.e., =7 is an identity relation), then H(H|O) =
Ho(H|O) = 0 and the attacker has perfect knowledge. The case [IIF| = 1

corresponds to H(H|O) = Hy (H|O) = logy|Shil.

3. Components for QIF: Symbolic Computing with Programs, Sets,
and Relations

8.1. Program Analysis: Verification Condition Generation

When we later describe how to transform programs into logical descriptions
of their transition or indistinguishability relations, we will do so in terms of
verification condition generation. In particular, we will use an abstract opera-
tor weg(+) that takes a program-containing formula in the input language given
below and returns an equivalent formula in first-order logic with arithmetic but
without programs.

VCG Input Syntax. We use an input language for veg(+) inspired by Dynamic
Logic [20]. The language extends standard first-order logic with arithmetic
with two predicate transformers. For every program p and every formula ¢,
(p)¢ (“diamond”) and [p]¢ (“box”) are formulas. We note that the language is
closed under subformula relation; in particular box and diamond operators can
appear nested.

The diamond is a weakest precondition predicate transformer (also known as
wp(p, @)). The diamond formula (p)¢ is true in a state s € S, if the program p
started in s terminates and the formula ¢ is true in the state p,(s) reached upon
termination.

The box is a weakest liberal precondition predicate transformer (also known
as wlp(p,#)). A box formula is a relaxation of the corresponding diamond
formula in that termination is not required: [p]¢ is true in s € S, if either p
does not terminate when started in s, or (p)¢ is true in s. The formula ¢ — [p]é
has the same intuitive meaning as the triple {¢)}p{¢} in Hoare Logic.



Terms and formulas without box or diamond operators have the meaning as
usual in first-order logic. A formula is logically valid if it is true in every state.*

Implementing VCG. In general, numerous systems exist that offer suitable VCG
functionality. In our experiments (cf. Section 6), we have used the KeY verifi-
cation system for this purpose. The KeY system [13] is a deductive verification
system (i.e., a theorem prover) for Java based on symbolic execution in Java
Dynamic Logic. It includes the box and diamond operators as part of the input
syntax, so the program logic formulas shown in this paper can be supplied to
the system virtually verbatim. The approach, though, can be easily transferred
to systems using, e.g., Hoare Logic.

VCG for unbounded loops. To deal with unbounded loops, the vcg(-) operator
is typically parametrized by a user-supplied (or synthesized) loop invariant.
For the purposes of precise QIF, special admissibility requirements apply to
loop invariants and similar specifications. As this issue is transparent in the
approaches that we describe below, we defer handling it to Section 5.

3.2. Manipulation of Polyhedral Sets and Relations

To manipulate the relations obtained during program analysis we propose
to use the ISL/BARVINOK framework [21, 22]. The framework implements a
portfolio of algorithms on polyhedral sets and relations. The ones relevant for
our purposes are surveyed below. The included definitions are adapted from [23].
The advantage of the framework are its versatility and the symbolic nature of
computation.

Definition 3.1 (Polyhedral sets and relations). A (parametric) polyhedral set
is a finite union of basic parametric sets S = U;S;, each of which can be
represented using quasi-affine constraints

S;=Xp{z €23z Z°: ATz + Bp+ Dz > ¢}

where § is a parameter vector, and A € Z™*?¢ B € Z™*" D € Z"™* ¢, and
C e 2™, for some m,n > 0.

A (parametric) polyhedral relation is a finite union of basic parametric rela-
tions R = U;R;, each of which can be represented using quasi-affine constraints

Ri = M\p{(Z1,%2) € Zh x 2% | 3z € Z° : A1T) + ATy + Bp+ DZ > ¢}

where p is a parameter vector, and A; € Z™*% B € Z™*", D € Z™*¢, and
C e z™, for some m,n > 0.

The parameter domain of a parametric polyhedral set or relation is the non-
parametric polyhedral set containing exactly those parameter values p € Z",
for which the parametric set or relation are not empty. A non-parametric set
or relation is a special case with n = 0.

4Thus, there is implicit universal quantification over program variables.



On the concrete level, polyhedral sets and relations are described as com-
prehensions with constraints in first-order logic with linear arithmetic and con-
verted to a disjoint union of basic sets/relations internally. The operations that
ISL/BARVINOK provides are, among many others, the following.

Operation: Lexicographic optimization. The lexmin operator on parametric
polyhedral sets computes the lexicographical minimum of the set as a function
of the parameters—or detects that the set is empty. If R is a polyhedral rela-
tion, then lexmin R = {(a,b) € R | b = lexmin{Z | (a,Z) € R}}, i.e., only the
smallest element remains in each domain element’s image after lexicographical
minimization of R. The technique behind lexmin is parametric integer pro-
gramming (PIP) [24]. PIP’s runtime is exponential in the worst case, though
it is known to behave well on many inputs in practice. There is also a dual
operator lexmazx.

Operation: Projection. Projection means handling the existentially quan-
tified variables in set and relation constraints. It is implemented as a cascade
of a number of efficient quantifier elimination procedures for common special
cases and lexicographical optimization [25]. The ran operator computes a re-
lation’s range (i.e., image). It is equivalent to projecting out (i.e., existentially
quantifying) the domain of the relation.

Operation: Computing the inverse of a relation.

Operation: Computing cardinality. The || operator returns the cardinality
of a parametric polyhedral set expressed as a piecewise quasi-polynomial in the
parameters of the set.

Definition 3.2 (Quasi-polynomials). A quasi-polynomial is a polynomial ex-
pression that may involve greatest integer parts (i.e., floors) of affine expres-
sions of parameters and variables. A piecewise quasi-polynomial is a subdi-
vision of a given parameter domain into disjoint polyhedral chambers with a
quasi-polynomial associated to each chamber. The value of the piecewise quasi-
polynomial at a given point is the value of the quasi-polynomial associated to
the chamber that contains the point. Outside of the union of chambers, the
value is assumed to be zero.

For relations, the cardinality operator computes not the number of tuples in
the relation, but the number of elements in the image of each domain element:
|R| = Ap.{s | (p,s) € R}|.

Example 3.1. The result of computing cardinality of the following relation

In/3| ifn>3

[{(n,m) | Ja: m=3aA1l<m<n} = i
0 otherwise

is a piecewise quasi-polynomial with only one chamber (though we show the
implicit “otherwise” case for clarity here).

Counting of integer points in parametric polyhedral sets begins with chamber
decomposition, i.e., splitting the parameter domain into regions where the set

10



has the same geometrical “shape”. The number of chambers is polynomial in
the size of the description of the set (in bit) when the dimension is fixed [14,
Lemma 3]. In each chamber, Barvinok’s counting algorithm [14, 26] based on
a compact representation of the generating function of the set is applied. The
algorithm is polynomial in the size of the set’s description when the dimension
is fixed [14, Proposition 2].

4. Two Novel QIF Analyses

In this section, we present two novel instances in the two popular classes of
QIF analyses. We call the first class SPECGEN as it uses the program analysis to
compute a formula (i.e., a specification) describing the transition relation pp- We
call the second class SELFCOMP as it uses the program analysis to compute an
explicit representation of zf using the technique of self-composition [5, 27, 28].
Both classes follow up with projection and counting.

The novelty of our instances is in the symbolic computation of both indis-
tinguishability class number [IIY| and class size {|C] | C € IIF}. Tt is also
satisfying to see that the formulation of the analyses (as actual input to the
reasoner) is very close to the mathematical formulations of Section 2.2. Fur-
thermore, the formulation makes explicit the very similar abstract structure of
the two analysis classes. Nonetheless, there are also subtle differences between
the two.

When implementing SPECGEN in the polyhedral framework, the transition
relation must be polyhedral, while SELFCOMP only requires that the indistin-
guishability relation is polyhedral, which is a much weaker requirement. In the
latter case, the program may use complicated data structures (arrays, objects,
etc.), as long as they are created from the inputs internally and the program
analysis supports them. Of course, every finite relation is polyhedral, so we are
primarily targeting relations that are “naturally” polyhedral.” Unfortunately,
this property cannot be effectively determined from the program syntax. It only
becomes apparent after the program analysis stage.

4.1. Precise QIF from Transition Relations (SPECGEN)

This approach is based on specification generation. A verification condition
generator is used to generate, for a given program p, a first-order logic formula ©
describing the same transition relation on states (which is then analyzed fur-
ther).

5For efficiency reasons, we would not consider the relation {(z,y,2) |z =2 -y A0 < x,y <
100} “naturally” polyhedral, even though the problematic multiplication of two variables could
be replaced by a big disjunction.

11



4.1.1. Component 1: Program Analysis
Proposition 4.1. A specification of a program p can be computed as the veri-
fication conditions of the formula:

U =FEI)APren(p)o=20 (4)

where 0’ is a fresh constant serving as a place holder for program output. The
predicate E describes the set of experiments. The optional precondition Pre over
the high vocabulary of p allows restricting the set of initial states. The resulting
specification © := veg(V) is a program-free constraint relating the output &' to
the inputs 1 and h.

Proof. By construction. If p contains unbounded loops, then specifications for
these (loop invariants) need to be supplied to veg(). This issue will be discussed
in Section 5. Already here, we would like to note that the generated specification
is the strongest one, unless the supplied invariants are not the strongest for their
respective code pieces.

4.1.2. Components 2+3: Projection and Counting

Proposition 4.2. Given ©(1,h,0’) as the specification of p, a set of experiment
values {é1, €s,...,er} with E(e;) holding, the size of the equivalence classes
of %f can be computed as a closed expression using the operations of Section 3.2
as follows:

{iIcl1 ¢ ety =)~ (5)

and the number of equivalence classes can be computed as
1| = [ran p;| | (6)

where pf in this context is an abbreviation for

{(n,(8},...,0%)) | O(E1,h,07) A... AO(Ey,h,0,)} . (7)

Proof. Tt is easy to see that (7) indeed describes pf (1), as the notation suggests.
The claims (6) and (5) follow from Proposition 2.1. In context of (5), we recall
that the cardinality operation on relations gives us a function mapping each
element in the domain to the number of elements in its image. O

It is clear that SPECGEN is not appropriate when the set of experiments E
is large, since these need to be enumerated when constructing the description
of pf' in (7). SELFCOMP does not have this limitation.

4.2. Precise QIF from Indistinguishability Relation (SELFCOMP)

4.2.1. Component 1: Program Analysis

This component employs a program analysis to compute a logical description
of R:E. This is accomplished with self-composition [5, 27, 28], i.e., we employ two
copies of the program p(h,1,0) with renamed variables: p; := p(hy,11,01) and

12



po := p(ha,13,02). The goal is to determine a program-free formula ®(hj,hs)
such that

EBE . = =y - .
S1hi N Sap; iff (hy,hy) is true in a state (s15; © S2p4, 51)

where s;; is some low state component and s1j,; @ S2; is a high state component
where the values of h; are the same as the values of h in s1,; and the values
of hy are the same as the values of h in sop;.

Transcribing the characterization of indistinguishability (2) in program logic
we obtain:

\I/EE(:_Ll)/\(:_Ll :I_Lg)/\Pre/\<p1><p2>(61 262) . (8)

As in SPECGEN, the predicate E describes the set of experiments. The set
of initial states can be restricted by including Pre, which in SELFCOMP is a
(symmetric) precondition over the high vocabulary of p; and py. The described
indistinguishability relation then only covers the high state components satisfy-
ing Pre.

The desired logical description of ~ is immediately ®(hi,hs) = veg(¥).
Compared to SPECGEN, SELFCOMP is less efficient in the program analysis
stage, since the program in (8) has to be duplicated, which is not the case
in (4).

4.2.2. Components 2+3: Projection and Counting
Proposition 4.3. Using the operations of Section 3.2, the size of the equiva-

lence classes of zf, can be computed as a closed expression as follows:
E L E\—1
{ICl] € eIl)} = |(lexmin ~,7) | (9)
and the number of equivalence classes can be computed as
|Hf| = |ran lexmin %5 |, (10)
where %5 in this context is an abbreviation for

{(h1,h2) | @(h1,ho)} . (11)

Proof. We note that (11) is per construction a description of %5.

We now consider the relation lexmin %f . We claim that lexmin %f is
nothing else than a particular choice of function 7’ from Figure 1.6 By definition
of lexmin (cf. Section 3.2), lexmin zf is the filtrate of %f, such that each
element in the relation’s domain is no longer mapped to all elements in its
equivalence class but merely to the unique lexicographically minimal element in
that class. This minimal element serves as the representative of the class.

The claims (10) and (9) then follow from Propositions 2.1 and 2.3. In context
of (9), we recall that the cardinality operation on relations gives us a function

mapping each element in the domain to the number of elements in its image. [

6In this sense, the lexmin operator belongs to Component 1. It is instead included here
due to the underlying technology it shares with Components 2 and 3.
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Figure 2: Computing the representative mapping 7’ of %f with lexicographical
minimization

Example 4.1. Consider the program o = h % 2; with 0 < h < 6. The pro-
gram leaks the parity of the secret input. The are no low inputs, and the
indistinguishability relation ~¥ can be described by the formula:

P
q)(]?ll,}_lg) = (51%2252%2)A0 <1_11 S 6A0 gl_lg <6 .

Figure 2a shows %f graphically. Please note that we have chosen a small modulo

and small domains for illustration purposes only. Figure 2b shows the result of

lexicographically minimizing %f , which essentially computes a representative
system for %f . The representative is taken to be the smallest member in the

class (0 and 1 for even and odd secrets, in this case).

The number of classes is the size of the range of the lexicographically mini-
mized relation: [ITI¥| = |ran lexmin ~F | = 2. To obtain the size of the classes,
it is necessary to invert the relation lexmin %E and calculate the number of
elements in the image of each point, which the cardinality operation on relations
does: {|C| | C e I} = [(lexmin ~])~'| = {4 —hy | 0 < hy < 1}.

4.3. Component 4: Computing Security Metrics

In order to compute security metrics, the counting results must be com-
bined with the appropriate formula(s), such as the ones presented in Section 2.3.
The averaging class-size metrics (e.g., residual Shannon entropy) are more de-
manding in this regards, as they require computing sums of functions of quasi-
polynomials. In the examples that we considered, it was always easy to compute
residual Shannon entropy by applying elementary algebraic simplification laws
(replacing repeated addition by multiplication, etc.). In the following, we sketch
a general approach to efficient symbolic computation of averaging metrics using
residual Shannon entropy as an example.

The approach is largely inspired by summation of quasi-polynomials over
polyhedral domains, as studied in [29, 30] and implemented in ISL/BARVINOK.
At the heart of the approach is the Euler-Maclaurin summation formula (EMF).
The classical EMF [31] computes Zl;:a f(z), i.e., the sum of the function f(x)
over the one-dimensional polyhedral set [a;b]. EMF expresses the sum in terms
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of an integral of f and a series of k£ terms based on higher-order derivatives
of f, as well as a remainder term. The formula gives very exact approximations
even without the remainder term and for low values of k. The advantage of
the formula is that all terms above can be computed analytically. It is merely
demanded that f has a continuous kth derivative.

Before applying EMF, a series of reductions [30] on the function describing
the class size must be performed. The first reduction is from the piecewise quasi-
polynomial to the quasi-polynomial case. This is achieved by splitting the sum-
mation domain into the (disjoint) chambers of the piecewise quasi-polynomial
and combining the individual sums. We have not observed the number of cham-
bers exceed a few in any of the examples we considered.

The second reduction is from the quasi-polynomial to the polynomial case.
There are three different ways to achieve this goal. The first way is to “splinter”
the summation domain. For example, the sum Zi:o f(l5],;z) can be decom-
posed as follows

k L) L54) [ =g ]

S SUGhe) = 3 fd) + 32 it ot 3D f(tde+d=1)

=0 t=0 t=0

alx

yet this may be inefficient when the “period” determined by the denominators
of the quasi-polynomial (d in the above case) is large.
The second way is to introduce a new variable for each unique floor expres-

sion, as in
k

S rGhe) =Y i)

=0 0<z<k
dt<z<dt+d—1
and then use EMF over higher-dimensional polyhedral sets. So far, EMF in
higher dimensions have only been studied for polynomials [29, 30]. An extension
to the case of general functions remains to be investigated.

The third way is by polynomial approximation. ISL/BARVINOK provides
lpoly and upoly operations for point-wise under- and over-approximation re-
spectively. The quality of approximations may vary, but the user obtains an
error estimate. Since conditional Shannon entropy is monotonic in every point
of the summation domain, the real value lies between the two approximations.

After the reductions, we are left with the sum of the function f(z) =
p(z)logyp(x), where p(x) is a polynomial. In the one-dimensional case, we
know that the derivatives of f of order k > 1 are continuous except for a pole
at every root of p(x). While we also do know that p(x) > 0 in all integer points
of the parameter domain (as the preimages are always non-empty), p(x) could
have non-integer roots. If x( is such a root, we propose to splinter the sum
over the interval [a;b] into two sums over intervals [a;ag] and [ag + 1;b] with
ap < g < ag + 1. The roots of p(x) can be efficiently determined with one of
the various numerical root-finding algorithms, in particular as the summation
domain is bounded, and the required precision is low.
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5. Using Specifications for QIF

A powerful technique to reason about complex programs is to use specifica-
tions. Specifications are typically provided by the user (though sometimes also
synthesized by a tool [32, 33]) and checked for correctness before they can be
used. Two major uses of specifications are (i) replacing an unbounded loop by
the loop invariant, and (ii) replacing multiple invocations of a procedure by the
procedure contract.

For precise QIF, specifications must be sufficiently strong. Depending on
the program, this may mean specifications that are either stronger (harder to
find and prove) or weaker (easier to find and prove) in comparison to the ones
typically used for verifying safety. In the following, we state two admissibility
criteria for a specification: (i) that it is the strongest possible one for the given
piece of code (and thus strong enough for precise QIF), and a more relaxed
criterion (ii) that a specification is sufficiently strong for precise QIF w.r.t. the
larger program where it is used.

5.1. Strength of Specifications

As described in Section 2.1, each program p induces a partial function p, on
states. The function pp(s) is defined exactly when p terminates if started in s.
The value of p,(s) is then the final state of p.

Definition 5.1 (Specification of a program). Every formula I(%,z’) with pro-
gram variables X appearing in p and constants T’ describes a relation on states Ry
as follows: (s1,s2) € Ry iff I(x,Z’) holds in s; given that Z’ has the same value
there as X in so. I(%,Z’) is a specification of a program p, if p, C R;.

Note that specifications are allowed to overapproximate the behavior of the
specified code. This is a standard definition of specifications. To show that
I(z,7’) is a specification of p, we have to show

(px=7") > I1(z7) . (12)

If p contains a loop, showing (12) for some I(%,z’) is as difficult as reasoning
about p in the first place, so we demand specifications with more structure.

Proposition 5.1. Let p be a loop of the form” while (cond) { body }. If
inv(x, &) is a formula satisfying
x=17 — inv(x,7) (13)
cond' A inv(%, ') A (x =7 — [body|x = z") — inv(x,z") (14)

then inv(%,Z') A =cond’ is a specification of p. Such a formula inv (called loop
invariant) always ezists.

"Here, cond is a side effect-free expression of type boolean. Every loop can be easily
reduced to this normal form. Also, if there is a program part « preceding the loop, (13)
becomes (a)(x = ' — inw(%,7')).
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Proof. Consequence of [20, Theorem 3.2]. O

Condition (13) states that the invariant holds before the loop is entered,
while condition (14) states that the invariant is preserved by the loop body. To
show termination, loop specifications are typically accompanied by variants.

Definition 5.2 (Strongest specification). I(%,Z’) is the strongest specification
of a program p, if it is a specification of p, and in addition p, = R;.

The strongest specification of a program does not overapproximate its be-
havior, but captures it exactly. The strongest specification of a program (in the
form compatible with Proposition 5.1) always exists [20].

Example 5.1. I(%x,Z') = ' > % is a specification of the program x=x+1;
(assuming unbounded integers), while I(%,7') = ' = % + 1 is its strongest
specification.

5.2. Admissibility of Specification for Precise QIF

Replacing a program p by a specifications I is problematic for the purposes
of precise QIF whenever the specification overapproximates program behavior.
Depending on the chosen metric, unguarded use of specifications may cause
either loss of precision or unsoundness. In the following we state two QIF-
admissibility criteria for specifications, while a discussion of what happens when
these criteria are not fulfilled follows after that.

Proposition 5.2. A specification I of p satisfying
Va, o, w. I(a, ) A (i, ) = 0 = @ (15)
s exactly the strongest specification. It is admissible for precise QIF.

Proof. Immediately by Definitions 5.1 and 5.2, since (15) means that R; relates
every state in its domain to at most one state. O

An obvious relaxation of (15) is to limit the low inputs to the values in E,
if the specification is used at the beginning of a program. Furthermore, when-
ever only a part of the program is replaced by a specification, it is actually
sufficient to use a specification that does not overapproximate behavior w.r.t.
the whole program. At the same time, it is sufficient that the specification is
strong enough to precisely determine merely the public behavior of the whole
program. For example, the loop invariant ¢rue is in this sense sufficiently strong
for the program while (1>h1) {1--; h2--;} 1=0;. It is admissible to omit 1
from the invariant as 1 is always erased after the loop, and it is admissible to
omit hl1 and h2 from the invariant as they are neither visible to the attacker
nor used to control public behavior after the loop. This notion of admissibility
is formalized in the following.
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Proposition 5.3. Let the program p have the form «; 8 and I be a specification
of a. Then, I is sufficiently strong w.r.t. p, if

In this case, I is admissible for precise QIF.

Proof. By (16) pg o Ry is a partial function with po, C R;. Thus pgo Ry =
Pa;pB- O

5.3. What Happens when an Inadmissible Specification is Used

It is natural to ask what happens when a part of the program is replaced by
an inadmissible specification. This question is studied in detail in [6], though
not in the context of specifications but of approximative QIF. There, abstract
interpretation—an automatic approximative program analysis that has the same
general effect as using weak specifications—is used to derive leakage bounds.

Using an inadmissible specification increases the number of possible out-
puts (reachable final states), and thus [IIF]. Conditional min-entropy (3) is
anti-monotonic in |II7|, yielding a (conservative) lower bound on the residual
uncertainty of the secret.

On the other hand, using an inadmissible specification also increases the
preimage size as the preimages are no longer disjoint. For the conditional Shan-
non entropy (3), this implies an upper bound on the residual uncertainty of the
secret. In other words, the analysis is unsound. It is possible to derive a lower
bound for the residual Shannon entropy, but for this an under-approximation
of the class sizes is needed. [6] uses, for instance, concolic testing—a program
analysis that is exact but only considers a selected set of program paths—to
generate such under-approximations.

5.4. Comparison with Direct Use of Abstract Interpretation

Specification synthesis is often based on abstract interpretation. On the
other hand, QIF approaches like [6] apply a different abstract interpretation
flavor to synthesize an approximation of the set of reachable final states of the
program. In general, we advocate pragmatism in choosing the tool that works
best for the given application scenario (e.g., w.r.t. performance, language cov-
erage, expertise available on site, etc.). Yet, the following advantages to writing
or synthesizing specifications as opposed to synthesizing the set of reachable
states directly are worth mentioning.

(i) Admissibility of specifications can be proved. This provides a guarantee
that no precision has been lost and that, e.g., the measured min-entropy leak
is indeed real. (ii) If needed, specifications can be manually strengthened by
domain experts (and then machine-checked) to achieve the necessary precision.
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Table 1: Variations of the sum benchmark (projection and counting)

# summands each (bit) [IIF] time {|C]|C eIIF} time (m:s)
3 32 232 0 264 each 0

10 1 11 0 between 1-252 0:21

10 32 220 2288 ~ 4.9 x 10% ca.  4:22

32 1 33 0 t/o t/o

Intel Core i7 860 2.80GHz CPU, time 0 = <50ms, t/o=time-out at 1h

(iii) Specifications can be used to precisely compute security metrics that in-
volve class sizes (e.g., residual Shannon entropy). (iv) Specifications can be
shared with many other verification tools for proving functional correctness of
implementations.

6. Experiments

We evaluated our analyses on the 11 synthetic benchmarks collected in [10].
These benchmarks are quite diverse but often not challenging enough for our
analyses, so we also considered more difficult versions. We describe selected
benchmarks in detail to demonstrate interesting properties of our analyses.

Unless noted otherwise, all experiments were carried out on a system with
an Intel Core i7 860 2.80GHz CPU. For program analysis we used the KeY
system v1.6 [13, 34]. For projection and counting we used the iscc interactive
shell of ISL/BARVINOK v0.35 [21, 22]. Both tools are publicly available. We
did not implement any gluing code between KeY and ISL/BARVINOK, but since
both systems use virtually identical formula syntax, it was easy to cut and paste
between the two.

Projection and counting when determining |Hf | were instantaneous except
in one case (“binary search”, discussed below). We could also instantaneously
determine class size (something that [10] is not concerned with) in base versions
of all but the “population count” and “mix and duplicate” benchmarks. To-
gether with the “illustrative example”, these are the benchmarks that are not
naturally polyhedral. We reencoded them manually on the individual bit level.

Sum of three numbers. The goal of this benchmark is to determine how much
information is leaked by publishing the sum of three secret bounded integers:
o = hl + h2 + h3;. This example has appeared in [4, 7, 10] with the limitation
0 < h; < 9. We establish precise class number and sizes in more challenging
variations of this benchmark (Table 1).

We note that between row 2 and 3 the runtime increased roughly 13-fold,
while the size of the secret increased by a factor of 2310, The data in the table
supports the theoretical result that the runtime of polyhedral manipulation is
dictated by the shape of the relation and less so by the size of the domain (which
is in general not true for, e.g., SAT/#SAT-based methods). The last table row
is essentially the “population count” benchmark.
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FElectronic wallet. o = 0; while (h >=1) { h=h-1; o=0+1; } is
a program that receives a secret input h with the balance of a bank account and
debits a fixed amount 1 from this account until the balance is insufficient for
another debit transaction. The number of successful debit transactions (stored
in o upon termination) reveals partial information about the initial balance of
the account.

The standard version of this benchmark assumes 0 < h < 20. In contrast,
we merely assume 0 < h < 2147483647. Like others, we do assume a single
concrete experiment 1 = 5. A concrete value is necessary to satisfy the poly-
hedral relation requirement. The loop invariant is easy to find and check for
admissibility: (h; = A} +50}) A0 < h} < 2147483647 A AFPIFCOMP . The primed
and unprimed symbols are as in Definition 5.1.

When using SELFCOMP, the appropriately indexed invariant instance (i =
1,2) must be used for each loop copy. The subformula A$**FCOMF must encode
the fact that each loop copy does not affect the other’s variables (i.e., it is of the
form v5_, = v3_; for each program variable v). This formula can be generated
automatically, or eliminated altogether if the verification condition generator
supports framed invariants (KeY, for instance, does). When using SPECGEN,
this formula as well as the variable indices are not used. The rest of the analysis
is straightforward.

The electronic wallet is the only example with non-negligible program anal-
ysis running time reported in [4]. It took the model checker 24 seconds to
compute zf for 0 < h < 20 (on unidentified hardware). We have repeated the
experiment with KeY in exhaustive mode, treating the loop purely by unwind-
ing. On a mobile system with a 1.60GHz Intel Core2 Duo CPU, computing %f
took around 3.5 seconds with KeY. Computing pf took around 0.5 seconds.
We conjecture that the deductive analysis was faster, as it can compute the
indistinguishability relation completely in one symbolic execution run. A model
checker, in contrast, explores the full program repeatedly as the indistinguisha-
bility relation is refined with each new leak. In any case, unwinding is not a
feasible option in the unrestricted version of this benchmark.

Binary search. This benchmark leaks b most significant bits of h (which is as-
sumed to be an unsigned integer) to o: 0 = 0; for (i = 0; i < b; i++) {
if (h >= o + 27(31-1)) o += 27(31-i);}. The base version assumes b =
16, and following [10] we initially attempted to unwind the loop. Since all
decisions are independent, the program has 2° paths.

Due to this fact, we could not compute pf in KeY by unwinding, as KeY
is not optimized for a high number of paths. Feeding a more efficient manual
encoding of pf to SPECGEN, projection took just under two seconds, while
counting timed out. Inspection showed that the image of p{f computed by pro-
jection was actually a point enumeration of the 65536 outputs—a case for which
ISL/BARVINOK is not optimized. In [10], approximative projection computation
takes about 6.4 seconds on unidentified hardware.

The reason for the pathological projection result in our case is the combina-
tion of loop unwinding with 1SL/BARVINOK’s disjoint basic relation decomposi-
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tion. Replacing unwinding with a compact description of loop behavior—loop
invariant—made the following analysis instantaneous for any b. With unwind-
ing, the runtime increases steeply in this parameter, as [10] reports.

7. Extensions

7.1. Non-uniform secret distributions

Section 2.3 assumes that the secret inputs follow a uniform distribution. For
the case of a non-uniform distribution, [35] gives a reduction to the uniform
case. The reduction is based on a “pre-processing” program, which transforms
the uniform distribution into the desired one. The approach is agnostic of the
particular QIF analysis and is thus compatible with our proposal. At the same
time, we show how non-uniform distributions can be naturally integrated with
symbolic model counting in an alternative way, based on a weight function.

We model the non-uniform secret input distribution by means of the func-
tion w: Sp; — Np. The function assigns each secret input (i.e., high state
component) sp; a non-negative integer weight w(sp;) denoting its frequency of
occurrence in the input distribution. The weight function can be seen as an
“inverse” of the pre-processing program of [35]. The program describes which
elements of the fictitious uniform distribution are conflated in reality, while the
function gives the multiplicity of each real input in the fictitious uniform dis-
tribution. In a given application, one of the approaches may be more natural.
The weight function, for instance, makes it easier to specify that certain secret
inputs never appear.

Proposition 7.1. For a non-uniform secret input distribution given by a weight
function w and the indistinguishability partition HE as in Proposition 2.1:

HH|O) = (Z Clu logs [l — 3 w(shmogzww)) an)

|Shi|w CEHS,‘ Shi€Shi
S .
HOO(Hl(Q) _ l092 | hz‘w ) (18)
g o)
Cell?

p

where |Cly = Y .ccw(c) is the weighted sum over all elements in C.

Proof. Proof of (17) proceeds along the lines of the proof of Theorem 1 in [35],
while (18) follows from the derivation Ho, (H|O) = logzm with the vulner-

ability V(H|O) = > cepe mazg P[H = sp;] as shown in [18, p. 297]. O
P oShi€

The weighted sum operation |- |,, over polyhedral sets is an extension of the
basic cardinality operation | - | and is directly available in the ISL/BARVINOK
framework. It accepts a weight function given as a piecewise quasi-polynomial
and computes the weighted sum over its domain. The result is as well a piecewise
quasi-polynomial.
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The case of the conditional min-entropy is more involved. We have to assume
that w is a polyhedral relation—mnot a quasi-polynomial. Then, the denominator
in (18) can be computed as | lexmaz wo ((lexmin ~F)~1)|x;.., where Az.z is a
quasi-polynomial analog of an identity function. The term lexmin %f
the representative mapping 7’ as in Section 4.2.

encodes

7.2. Treating Leaks by Termination

We can extend the SELFCOMP characterization of indistinguishability (8) to
measure leaks via termination (as done for proving insecurity in [5]):

E(11)A (13 =12) A PreA (<p1><p2>(61 = 09) \/ ([p1]false A [pg}false)> . (19)

This way, we demand that either any two runs of the program do not terminate
([pi]false holds) or that their low outputs are indistinguishable.

The rest of SELFCOMP (i.e., projection and counting) can remain unchanged.
It is only necessary that the program analysis supports reasoning about non-
terminating programs (like, e.g., most deductive verification systems) and is
applied in a way that is admissible for QIF in the sense of Section 5.

8. Related Work

There is a large body of work dedicated to both defining and demonstrating
absence of information flow in programs. We refer to [36] for a survey.

A seminal work reasoning about information flow in program logic is [5],
showing different approaches to formalize and prove both program security (ab-
sence of leaks) and insecurity (presence of leaks) in a general-purpose program
logic. The self-composition technique was first presented in a workshop version
of [5] and received further theoretical treatment and its name in [27]; it was also
studied from the point of view of verification in [28].

A sound theory of information-theoretic quantification of information flow in
imperative programs was originally developed in a series of works culminating
in [3].

The theoretical hardness of QIF (under popular complexity-theoretical as-
sumptions) has been shown by Terauchi et al. in [37]. As with other hard
problems (e.g., SAT or SMT), such results merely show that hard instances can
be constructed. They do not preclude the existence of efficient and practically
relevant analyses for individual instances or subclasses of the problem.

A survey of QIF models and techniques is available in [1] and in [3]. In the
following, we concentrate on QIF analyses for imperative programs, grouping
them by the major QIF components.

In a SPECGEN-style analysis, the transition relation resp. its approximation
can be computed using bounded program unwinding (e.g., in model checker
CBMC) [8, 11] or unwinding along selected program paths only (in [6] using
a concolic testing tool, and in [9] using a binary code analyzer). In [10], the
relations for the benchmarks are created manually. As the only non-enumerative
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program analysis, [6] combines approximate transition relation computation and
projection as abstract interpretation of a program.

SELFCOMP-style analyses, using self-composition to compute the indistin-
guishability relation, are not as common. [4] uses an iterative procedure that
successively refines mf with counterexamples to indistinguishability generated
by the model checker ARMC. [7] uses self-composition in a bounded model
checker, but essentially only computes the transition relation. [38] composes
n copies of the program to check whether \Hf| < n, i.e., establish an upper
bound on the leak. In the last case, QIF is formulated as a pure model checking
problem.

Projection resp. its approximation can be computed using propositional
model enumeration with a SAT solver [7, 8], model enumeration with the Omega
Calculator (a tool for reasoning in quantified linear arithmetic) [4], binary search
for models in a model checker [11], refinement with entailment queries along “2-
bit patterns” [10], refinement with SMT entailment queries along intervals [9],
and compilation of propositional formulas to d-DNNF [8].

Precise resp. approximative counting can be performed using basic (i.e., non-
parametric) Barvinok’s algorithm implemented in the LattE framework [4, 6],
point enumeration (typically part of enumerative projection) [7, 8, 11], #SAT
(counting solutions of propositional formulas [39]) [7, 8, 10], and in [9]: proba-
bilistic approximate #SAT, sampling, and sum of interval sizes.

In certain applications, it may be also appropriate to design dedicated count-
ing procedures. For instance, a procedure for counting concretizations of ab-
stract cache-states is described in [40], where the authors are concerned with
quantifying information flow in cache attacks.

We would like to note that enumerative techniques have both advantages
and disadvantages. On the plus side, the procedures used for generating a
single model are typically simpler and often extensively optimized. Furthermore,
enumeration can be interrupted at any time, trading off computation time for
approximation quality. On the minus side, enumeration is only feasible up to a
certain number of models: enumerating 232 models at 1000 models per second
requires about fifty days. An interesting hybrid between symbolic reasoning and
enumeration are the refinement methods, where a whole family of models (e.g.,
an interval) are included or ruled out at a time.

Among the above approaches, only [4, 6-8] are concerned with indistin-
guishability class sizes. [6] proposes efficient probabilistic derivation of residual
Shannon entropy using randomized sampling. The result is probably correct up
to the user-chosen confidence level.

We are also aware of the following QIF analyses that do not immediately fit
the component model. An extension of a security type system for an imperative
language (including loops) with information flow bound calculation is proposed
in [3]. An extension of a dynamic bitwise taint analysis for C programs is pro-
posed in [2]. The latter technique has been applied to large programs used in
practice. On the other hand, it only measures leakage along one or a few se-
lected program paths, leaving it to the user to supply “representative” inputs.
Another QIF tool based on dynamic analysis is reported in [41]. The tool auto-
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matically derives bounds of information leakage in terms of mutual information
and capacity from trial runs of the system, which is treated as a black box.

[42] extends the entropy-based model of information flow by incorporating
the attacker’s beliefs about the secret distribution (which may also be wrong).
A mechanization of the belief-based model is not reported.

The interplay of specifications and implementations for non-interference is
studied in [43]. The defined “Shadow Semantics” enables secure refinement of
programs by demanding that nondeterminism is preserved at critical points.
We, on the other hand, are concerned with preserving determinism.

9. Conclusion

We have extend the scope of precise QIF using symbolic polyhedral reasoning
and a deductive program analysis that can use program specifications. The
combination of symbolic components avoids the enumeration bottleneck and
enables precise analysis for programs where it has not been possible before.
The analyses we propose measure both number and size of indistinguishability
classes with an improved tolerance to large values of both, as well as the size of
the input domain.

In particular, program specifications enable precise QIF for programs with
a large number of paths. While such analysis requires user input and takes
time, this time is dependent on program complexity and not on the number of
loop iterations or the size of involved data domains. The effort can be further
amortized when QIF is combined with functional verification.

We have demonstrated that a deductive verification system and a polyhedral
framework are a good platform for implementing a QIF analysis, and doing so
in a satisfyingly direct fashion. Correctness of the analysis follows almost im-
mediately from basic relational algebra and the soundness of the used reasoning
tools. As a side result, we could make very clear the structural similarities
between QIF analyses that utilize self-composition and those that do not.
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