
Pseudo-Random Number Generator Verification:
A Case Study

Felix Dörre and Vladimir Klebanov

Karlsruhe Institute of Technology (KIT)
Am Fasanengarten 5, 76131 Karlsruhe, Germany

felix.doerre@student.kit.edu
klebanov@kit.edu

Abstract. In 2013, a monetarily moderate but widely noted bitcoin
theft drew attention to a flaw in Android’s pseudo random number gen-
erator (PRNG). A programming error affecting the information flow in
the seeding code of the generator has weakened the security of the cryp-
tographic protocol behind bitcoin transactions.
We demonstrate that logic-based verification can be efficiently applied to
safeguard against this particular class of vulnerabilities, which are very
difficult to detect otherwise. As a technological vehicle, we use the KeY
verification system for Java. We show how to specify PRNG seeding
with information flow contracts from the KeY’s extension to the Java
Modeling Language (JML) and report our experiences in verifying the
actual implementation.

1 Introduction

In 2013 a security incident [3] resulting in theft of bitcoin gained significant pub-
lic attention. While the total monetary damage was at $5700 relatively modest,
the ease and low risk of attack were notable. The perpetrators were never iden-
tified, and the exact circumstances of the attack remain to a degree speculation.
Yet, the attack promptly raised public awareness of a vulnerability in the im-
plementation of the pseudo-random number generator (PRNG) in Android [13].
Soon thereafter, Google replaced the Android PRNG.

The vulnerability in question is an instance of the “squandered entropy” prob-
lem, where entropy (i.e., information difficult to guess for an attacker) flows from
a source to a destination, and some or all of it is lost (i.e., replaced by a constant
or predictable value) underway due to a programming error. Concretely, out of
20 byte of entropy requested from the OS kernel to seed the PRNG, 12 did not
reach the generator’s internal state, significantly diminishing the quality of the
PRNG output. This kind of problem is difficult to detect (as explained later on)
and reoccurs periodically. Other notable instances include the Debian weak key
disaster [5] (PRNG broken for two years), or the recent FreeBSD-current PRNG
incident [7] (PRNG broken for four months), but there are also many others.

So far, entropy squandering is typically detected by manual code inspection,
as, e.g., in [13]. With this paper, we present the first, to our knowledge, case

study on formally verifying the implementation of a real-world PRNG.1 We
show that absence of entropy squandering can be efficiently specified (in terms
of information flow) and practically verified with current deductive verification
technology. In fact, we argue that formal verification is the tool of choice for
addressing the problem.

We have chosen the above-mentioned Android PRNG as the subject of the
case study as it allows us to illustrate how code verification can protect against
bugs that have indeed occurred in the wild. On the technical side, the PRNG is
implemented in Java, while we have experience in verification of Java programs.

The bitcoin theft incident. The presumed genesis of the attack is as fol-
lows. Bitcoin operates a public database of all transactions, the block chain.
Each transaction is cryptographically signed by its initiator using the ECDSA
scheme [8]. Creating ECDSA signatures requires a per-transaction nonce. Partial
predictability of nonces allows for attacks like [14], but using the same nonce for
two transactions signed by the same key—which is what probably happened—
constitutes a catastrophic security failure. Anyone can easily identify this case
from the information recorded in the block chain, reconstruct the victim’s pri-
vate key, and divert their money to a bitcoin address of choice. No intrusion into
the victim’s system is necessary. A loss of seed entropy in the PRNG used for
generating nonces increases the probability of the breach.

2 Inner Workings of the Android PRNG

The origin of the Android PRNG lies in the Apache Harmony project, a clean
room reimplementation of the Java Core Libraries under the Apache License. The
PRNG was part of the Android platform up to and including Android 4.1. The
PRNG consists of the main class org.apache.harmony.security.provider.
crypto.SHA1PRNG_SecureRandomImpl and the auxiliary class SHA1Impl.

Overall size of the PRNG is slightly over 300 LOC, though not all function-
ality was exercised in this case study. The code is monolithic, dense, and hard
to follow. The are many comments, but these use jittering terminology, are not
always clear, and are at times inconsistent with the code. The description in [13]
was instrumental in facilitating our understanding of the implementation.

The main PRNG method engineNextBytes(byte[] bytes), shown sche-
matically in Listing 1.1, fills the caller-supplied array bytes with pseudo-random
bytes. The PRNG operates in cycles, each cycle generating 20 pseudo-random
bytes. If the caller requests more bytes, several cycles are performed; if the caller
requests fewer bytes, the surplus generated bytes are stored for later usage.

The main component of the PRNG state is an int[] array of length 87,
somewhat inappropriately named seed (Figure 1). The front part of this array
is populated with the externally-provided entropy (i.e., the actual seed). The
PRNG can either be seeded manually by calling setSeed() or automatically. In

1 Artifacts available at http://formal.iti.kit.edu/~klebanov/pubs/vstte2015/.

2

0 4 5 6 7 8 15 16 79 80 81 82 86

seed 0 . . . 00
computation

space # 0 space for
SHA1 result︸ ︷︷ ︸

20 byte
↑

counter
↑
0x80000000

0 4 5 6 7 8

seed counter 0x80000000 . . .

(a) Intended operation

0 1 2 3 4 5 6 7 8

counter 0x80000000 seed (rest) 0 . . . 00 . . .︸ ︷︷ ︸
8 byte

(b) Effect of the bug

Fig. 1: Structure of the Android PRNG’s main array (1 word = 1 int = 4 bytes)

the latter case, the PRNG is seeded with 20 byte of entropy requested from the
OS kernel on first invocation of engineNextBytes() (Listing 1.1, line 6). This so-
called self-seeding mode was typically considered preferable as less error-prone,
and it is indeed the scenario we are considering here.2

In cycle k, the pseudo-random bytes are computed as the pseudo-SHA-1 hash
of the seed (words 0–4 in Figure 1a) concatenated with the cycle counter k (as
a 64-bit integer in words 5–6). The computation (Listing 1.1, line 17) makes use
of the scratch space in words 16–79, and its result is stored in words 82–86. The
latter are subsequently unpacked into bytes that form the output of the cycle.
The computed hash is not quite the standard SHA-1 hash, as only in cycle zero,
the initialization vector defined in the SHA-1 standard is used. In a cycle k > 0,
the initialization vector is formed by the 20 pseudo-random bytes generated in
cycle k − 1.

To compute the hash, the seed and the cycle counter have to be suffixed by
a standard-defined SHA-1 padding. Now, the PRNG keeps track of the length
of the seed in word 80. The essence of the vulnerability is that a stale value of
this length (i.e., zero) is used after initializing the seed in the self-seeding mode.3
As a consequence, the cycle counter and the SHA-1 padding constant overwrite
words 0–2, leaving only two words of the original seed (Figure 1b). The effective
inflow of entropy into the PRNG amounts thus to 8 instead of 20 bytes.4

2 Google changed its stance on this matter several times, as the PRNG implementation
was updated. As far as we are aware, self-seeding is the recommended mode again.

3 There are more irregularities in the padding code, but they are irrelevant here.
4 The PRNG also contains a native backup component in case the kernel does not
provide an entropy source. Incidentally, this component contained two more instances
of entropy squandering, though these were much simpler technically.

3

〈contract〉 ::= determines 〈determinandum〉 \by 〈determinans〉 ;
〈determinandum〉 ::= 〈expr_seq〉 | \pre(〈expr_seq〉) | \post(〈expr_seq〉)
〈determinans〉 ::= 〈expr_seq〉 | \pre(〈expr_seq〉) | \post(〈expr_seq〉)
〈expr_seq〉 ::= \nothing | 〈expression〉 | 〈expression〉 , 〈expr_seq〉

where 〈expression〉 is an arbitrary JML expression (i.e., term or formula)

Fig. 2: Concrete grammar for information flow contracts in JML*

3 Information Flow Verification with the KeY System

The KeY verification system. The case study has been carried out using
the KeY deductive verification system for Java [1, 9]. The reasons for choosing
KeY are our familiarity with it due to our involvement with its development,
good programming language support (KeY supports, for instance, 100% of the
Java Card standard), as well as a frontend for specifying information flow in
programs. On the other hand, the approach that we apply is not tool-specific
and could be reenacted with another deductive verification system.

The frontend of KeY takes as input a Java program annotated in the Java
Modeling Language (JML) [12]. The backend is a theorem prover for Dynamic
Logic (DL), which can be seen as a generalization of Hoare logic. Reasoning
about programs is based on symbolic execution. Proof construction is guided by
the user via program annotations and/or interacting with the prover GUI. All
proof steps are recorded and can be inspected via an explicit proof object.

For loop- and recursion-free programs, symbolic execution is performed in a
fully automated manner. Loops can either be unrolled or abstracted by a user-
provided loop invariant. Similarly, method calls can be handled either by inlining
the method body or by abstracting with a user-provided method specification.
All user-provided abstractions are machine-checked for soundness.

Going beyond functional properties, KeY supports a language for specifying
information flow in programs as part of its JML* extension of JML. The language
was originally published in [16] though we refer the interested reader to the more
up-to-date information source [15] for details.

Specifying information flow with JML*. The main instrument for specify-
ing information flow in JML* is an information flow contract. The contract can
be attached—among other things—to method declarations, and its grammar is
shown in Figure 2.

Definition 1 (Semantics of information flow contracts). Let m be a ter-
minating sequential method with an attached information flow contract. Let (dsi)
and (dmj) be the expression sequences of the determinans and the determinan-
dum of the contract respectively. Let (sapre , s

a
post) and (sbpre , s

b
post) be a pair of

runs of the method m, where sapre and sbpre are the initial (or pre) states and
sapost and sbpost are the final (or post) states respectively. The method m satisfies

4

the attached information flow contract, iff for each such pair of runs, the coincid-
ing evaluation of the determinans in both runs implies the coinciding evaluation
of the determinandum:∧

i

(
(dsi in sax) = (dsi in sbx)

)
→
∧

j

(
(dmj in say) = (dmj in sby)

)
,

where x, y ∈ {pre, post} according to the state designators wrapping the determi-
nans and determinandum respectively. In absence of explicit state designators,
the defaults x = pre and y = post are used.

For example, the specification
//@ determines \result \by l1 , l2;
int f(int h, int l1, int l2) { ... }

says that the return value of the method f is completely determined by the
method parameters l1 and l2. This means that no information flows from the
method parameter h (or other data on the heap) to the return value of f. Note
that since it is not stated otherwise, the determinans l1, l2 is evaluated in the ini-
tial state, while the determinandum is evaluated in the final state. This conven-
tion follows the original design goal of JML* in specifying absence of undesired
information flow in programs.

More interesting for our purposes is the specification
//@ determines \pre(h) \by \post(\ result); (∗)
int f(int h) { ... }

describing, in a sense, the opposite situation. It is fulfilled when knowing the
result of f is sufficient to reconstruct the (initial) value of the parameter h.
Mathematically, this case amounts to injectivity of f and means intuitively that
the complete information contained in h flows to the return value. Contrary
to the JML* defaults, the explicit state designators \pre() and \post() force
the determinans to be evaluated in the final state and the determinandum in
the initial state. We have extended JML* with these designators specifically on
occasion of this case study.

In case one needs to speak about array content in contracts, the finite se-
quence comprehensions of JML* allow this easily. For example, the JML* com-
prehension expression (\seq_def int i; 0; a.length; a[i]) is essentially a
shorthand for the expression sequence a[0],. . .,a[a.length-1] (for presenta-
tion in this paper, we also use the notation a[*] for this particular sequence).

Proof obligations for information flow. To prove information flow contracts,
KeY formalizes the condition of Definition 1 in Dynamic Logic. The formaliza-
tion follows self-composition style and is straight-forward. The (schematic) proof
obligation for a contract like (∗) is

∀ha, hb. f(ha) = f(hb)→ ha = hb .

We refer the interested reader to [15, 17] for details of the formalization in Dy-
namic Logic. The important fact is that information flow contracts of the callee
method can be used—just like functional contracts—when verifying the caller
method.

5

Listing 1.1: The main PRNG
method (schematic)
1 void
2 engineNextBytes(byte[] bytes) {
3 ...
4 if (state == UNDEFINED) {
5 // entropy source
6 updateSeed(
7 RandomBitsSupplier
8 .getRandomBits(20));
9 ...

10 } else { ... }
11
12 ...
13
14 for (;;) {
15 ...
16 // entropy target
17 SHA1Impl.computeHash(seed);
18 ...
19 }
20 }

Listing 1.2: Modified source with top-
level requirement specification (excerpt)
1 /*@
2 requires counter == 0;
3 requires state == UNDEFINED;
4
5 requires bytes.length == 20;
6 requires extSource.length == 20;
7
8 determines \pre (extSource [*])
9 \by \post(bytes [*]);

10 */
11 void
12 engineNextBytes(byte[] bytes ,
13 byte[] extSource) {
14 ...
15 if (state == UNDEFINED) {
16 updateSeed(extSource);
17 ...
18 } else ...
19 ...
20 }

Listing 1.3: Specification of the pseudo-SHA1 method
1 /*@ public normal_behavior
2 requires arrW.length ==87;
3 assignable arrW [16..79] , arrW [82..86];
4 determines \pre ((\ seq_def int i; 0; 5; arrW[i]))
5 \by \post ((\ seq_def int i; 82; 87; arrW[i]));
6 */
7 static void computeHash(int[] arrW) {...}

4 PRNG Specification and Correctness Proof

4.1 The Specification and Problems Attaching It

To show full flow of entropy (i.e., absence of squandering), we are instantiating
the specification pattern (∗) for the main PRNG method shown in Listing 1.1.

Our original intent was to show that the entropy returned by the call to the
RandomBitsSupplier.getRandomBits() method in line 7 of Listing 1.1 (the
source) is preserved at least until the call to the SHA1Impl.computeHash()
method in line 17 (the target). The problem is that the source is nested within
another method call expression that is itself nested within an if-statement, while
the target occurs in the middle of a loop body. Specification languages like
JML are, in contrast, designed to specify programs in a mostly block-structured
way, i.e., pre- and postconditions can only be attached to complete blocks, loops,
method declarations, etc. Facilities for point-to-point specification are less devel-
oped. To overcome this obstacle, we resorted to a minor source code modification
as well as to extending the verified property as outlined in the following.

The source. We removed the call to RandomBitsSupplier.getRandomBits()
in line 7 and replaced it by an extra parameter extSource, which allows us to

6

speak about the inflowing entropy in the method specification. The modified
source is shown in Listing 1.2. The precondition state == UNDEFINED states
that the PRNG is indeed in self-seeding mode. For the sake of clarity, we are
not showing a few more trivial preconditions stating that the PRNG object is
initially in a consistent state (fields are initialized with default values, etc.). These
preconditions stem from (separate) symbolic execution of the object constructor.

The target. We solve the problem with the inaccessible entropy target by
stating a postcondition on the whole method. In other words, we are specifying
not only that the 20 byte of entropy in extSource are safely transferred into the
internal state of the PRNG but that they are contained in the 20 byte of output
returned to the caller, which is a stronger property.

The hash. The above strengthening also causes a complication: the call to
SHA1Impl.computeHash() is now in the code path. Due to the (intended) com-
putational complexity of SHA-1, it is not practicable to reason about this method
either by inlining its code or stating a faithful functional specification. In con-
trast, it is possible to give an information flow specification, which can be used
for the proof of engineNextBytes().

We assume (but do not prove) the specification of SHA1Impl.computeHash()
shown in Listing 1.3, stating that the method transfers all information (i.e., is
injective) from the first five words of the main array into the last five words.
While we do not know if this assumption is true (as disproving it would amount
to finding a collision in SHA-1), it constitutes a fundamental proviso for the
security of the PRNG. Unsurprisingly, proof inspection showed that it was indeed
not disproved. A similar, if more obviously justifiable, contract was used for the
sole standard library method used by the PRNG, System.arraycopy().

4.2 The Proof

The vulnerability is unmissable when attempting the proof, so the following
remarks apply to the fixed implementation incorporating the official patch.

The main proof consists of 21 882 proof steps, of which 95 were interac-
tive. The majority of the latter are carrying out case distinctions, splitting the
equality of sequences into five equalities over words and 20 over bytes. The
rest are for weakening the proof goal to eliminate irrelevant information and
reduce the search space, as well as applications of rules for byte packing and
unpacking (see below). The automated proof search took altogether 45 min-
utes to complete the proof. All loops in the main code were unrolled (thus
also establishing termination), no invariants or auxiliary annotations were nec-
essary. Trivial invariants were used to prove termination and assignable clause
of SHA1Impl.computeHash().

A significant portion of proof complexity stems from the code packing bytes
into words and a later converse unpacking. Figure 3 shows the code factored for
exposition purposes as synthetic methods. For the proof, we have defined two
custom rules that express the injectivity of these code fragments. The soundness

7

1 int pack(byte[] b) { return
2 ((b[0]&0 xFF)<<24) | ((b[1]&0 xFF)<<16) | ((b[2]&0 xFF)<<8) | (b[3]&0 xFF);}
3
4 byte[] unpack(int i) { return new byte[] {
5 (byte)(i>>>24), (byte)(i>>>16), (byte)(i>>>8), (byte)i };}

Fig. 3: Packing and unpacking code (illustration)

of the rules has been proven using KeY’s rule justification mechanism and the
KeY’s SMT bridge to Z3/CVC4 (the only place where an external SMT solver
was used). Each rule was applied five times, once for each word of the seed.

The KeY logic is based on the theory of integers and not bitvectors. To achieve
soundness, proof rules either generate proof obligations showing absence of over-
flow, or perform operations modulo machine integer range. The former option
was used for the majority of the code, while the latter option was necessary to
handle the packing and unpacking code.

5 Alternatives and Related Work

Functional verification and testing. Of course, it is possible to state and
verify a functional specification of the methods involved without resorting to the
concept of information flow. However, such a specification would have to closely
mimic the implementation and thus be complex and tedious to write (the same
reasoning also applies to functional testing). It would be difficult to understand
it and ascertain its adequacy; neither would it be possible to reuse it for another
PRNG. It would also be challenging to write down such a specification in existing
languages due to the structure of the code (see Section 4.1). The information
flow specification, on the other hand, directly expresses the desired property,
is compact and easy to understand, and is nearly independent of the PRNG
implementation in question.

Statistical testing. Several statistical test suites exist for assessing the quality
of random numbers. Among the most popular are DIEHARD with its open
source counterpart DIEHARDER and the NIST test suite. The suites scan a
stream of pseudo-random numbers for certain predefined distribution anomalies.
At the same time, we are not aware of recommendations on how the stream is
to be produced. In practice, it appears customary to derive the stream from
a single seed. The tests are repeated multiple times (with different seeds) to
increase the degree of confidence but the results between individual runs are
not cross-correlated. In any case, distinguishing a PRNG seeded with 8 byte of
entropy from a PRNG seeded with 20 byte of entropy would likely require a
prohibitively high number of tests.

Quantitative Information Flow analysis (QIF). Detecting entropy squan-
dering can be seen as an instance of the Quantitative Information Flow problem

8

(QIF) concerned with measuring leakage of secret information to an observer of
the program output. Several methods and tools for QIF exist, including our own
work [10,11]. Yet, the landscape of available QIF analyses is not well-suited for
the specifics of the problem we face. Some techniques are only practicable for
small leakage, or small/simple programs. Some are not implemented or do not
support real-world programming languages. Some only establish upper bounds
on the leakage, while we need lower bounds, as our observer is not an adver-
sary. Given these limitations, the prospects of using current QIF techniques for
practical PRNG verification remain unclear at best.

High-level PRNG analysis. Apart from the above-mentioned [13], “modern”
PRNGs have been studied in, e.g., [2, 4, 6]. The perspective taken in the latter
works is based on elaborate attack models, where the attacker, for instance,
can control the distribution of the inputs used to seed the PRNG, view or even
corrupt the internal PRNG state. The analysis focuses primarily on design and
high-level implementation aspects w.r.t. these models and is not mechanized. In
contrast, we do not consider attackers with advanced capabilities, but our work
closes the gap concerning low-level implementation aspects with mechanized
reasoning.

6 Conclusions

A good design document and a high-level analysis are indispensable for a correct
PRNG, but so is low-level verification. The problem of squandered entropy due to
subtle code bugs is real and relevant, yet very difficult to detect by conventional
means. At the same time, a concise and uniform specification of correctness can
be given in terms of information flow. The JML* specification language proved
its convenience in this regard.

Logic-based information flow reasoning is the tool of choice for PRNG verifi-
cation, as other techniques (e.g., type systems, PDGs, etc.) inherently incorpo-
rate overapproximations that make them unsuitable. The correctness proofs are
conceptually quite simple, and do not require ingenuity, but the complexity and
monolithic nature of the code tax the verification system to a significant degree.

A large part of our effort went to understanding the details of the imple-
mentation. Besides referring to higher-level descriptions such as [4,13], we found
verification technology in general (for establishing data footprints of code seg-
ments) and symbolic execution in particular (for identifying dead code on a given
path) very helpful in this regard. While it is hard to quantify the total effort
spent on the case study due to a learning process that occurred over a longer
period of time, we conjecture that we could now verify a comparable PRNG
within one or a few days.5

5 This work was in part supported by the German National Science Foundation (DFG)
under the priority programme 1496 “Reliably Secure Software Systems – RS3.” The
authors would like to thank Christoph Scheben for help with the proof system, and
Bernhard Beckert, Mattias Ulbrich, and Sylvain Ruhault for comments on the topic.

9

References

1. W. Ahrendt, B. Beckert, D. Bruns, R. Bubel, C. Gladisch, S. Grebing, R. Hähnle,
M. Hentschel, V. Klebanov, W. Mostowski, C. Scheben, P. H. Schmitt, and M. Ul-
brich. The KeY platform for verification and analysis of Java programs. In Pro-
ceedings, 6th Working Conference on Verified Software: Theories, Tools, and Ex-
periments (VSTTE), LNCS. Springer, 2014.

2. B. Barak and S. Halevi. A model and architecture for pseudo-random generation
with applications to /dev/random. In Proceedings of the 12th ACM Conference on
Computer and Communications Security, CCS ’05, pages 203–212. ACM, 2005.

3. Bitcoin.org. Android security vulnerability. https://bitcoin.org/en/alert/
2013-08-11-android, 2013.

4. M. Cornejo and S. Ruhault. Characterization of real-life PRNGs under partial state
corruption. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’14, pages 1004–1015. ACM, 2014.

5. Debian weak key vulnerability. CVE-2008-0166. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2008-0166, 2008.

6. Y. Dodis, D. Pointcheval, S. Ruhault, D. Vergniaud, and D. Wichs. Security anal-
ysis of pseudo-random number generators with input: /dev/random is not robust.
In Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communi-
cations Security, CCS ’13, pages 647–658. ACM, 2013.

7. J.-M. Gurney. URGENT: RNG broken for last 4 months. https://lists.freebsd.
org/pipermail/freebsd-current/2015-February/054580.html, 2015.

8. D. Johnson, A. Menezes, and S. Vanstone. The elliptic curve digital signature
algorithm (ECDSA). International Journal of Information Security, 1(1):36–63,
2001.

9. The KeY tool. Website at www.key-project.org.
10. V. Klebanov. Precise quantitative information flow analysis – a symbolic approach.

Theoretical Computer Science, 538(0):124–139, 2014.
11. V. Klebanov, N. Manthey, and C. Muise. SAT-based analysis and quantification of

information flow in programs. In Proceedings, International Conference on Quan-
titative Evaluation of Systems, pages 156–171. Springer, 2013.

12. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: A behavioral
interface specification language for Java. SIGSOFT Softw. Eng. Notes, 31(3):1–38,
2006.

13. K. Michaelis, C. Meyer, and J. Schwenk. Randomly failed! the state of randomness
in current Java implementations. In Proceedings, 13th International Conference on
Topics in Cryptology, CT-RSA’13, pages 129–144. Springer-Verlag, 2013.

14. P. Q. Nguyen and I. E. Shparlinski. The insecurity of the elliptic curve digi-
tal signature algorithm with partially known nonces. Des. Codes Cryptography,
30(2):201–217, Sept. 2003.

15. C. Scheben. Program-level Specification and Deductive Verification of Security
Properties. PhD thesis, Karlsruhe Institute of Technology, 2014.

16. C. Scheben and P. H. Schmitt. Verification of information flow properties of
Java programs without approximations. In Proceedings, International Conference
on Formal Verification of Object-Oriented Software (FoVeOOS), pages 232–249.
Springer, 2011.

17. C. Scheben and P. H. Schmitt. Efficient self-composition for weakest precondition
calculi. In Proceedings, Formal Methods (FM), 19th International Symposium,
pages 579–594. Springer, 2014.

10

A Source Code of the Android PRNG (Excerpt)

Source code below has been slightly edited for presentation purposes. Comments
are removed. Constant declarations are elided or inlined. Code unreachable in
the verification scenario presented in the paper is elided.

1 public class SHA1PRNG_SecureRandomImpl implements SHA1_Data {
2
3 private transient int[] seed;
4 private transient byte[] nextBytes;
5 private transient int nextBIndex;
6 private transient long counter;
7 private transient int state;
8
9 public SHA1PRNG_SecureRandomImpl () { ... }

10
11 protected synchronized void engineNextBytes(byte[] bytes) {
12
13 int i, n;
14 long bits;
15 int nextByteToReturn;
16 int lastWord;
17 final int extrabytes = 7;
18
19 if (bytes == null) throw new NullPointerException("bytes␣==␣null");
20
21 lastWord = seed [81] == 0 ? 0 : (seed [81] + extrabytes) >> 3 - 1;
22
23 if (state == UNDEFINED) {
24
25 updateSeed(RandomBitsSupplier.getRandomBits (20));
26 nextBIndex = 20;
27
28 // official patch for the vulnerability
29 lastWord = seed[81] == 0 ? 0 : (seed[81] + extrabytes) » 3 - 1;
30
31 } else if (state == SET_SEED) { ... }
32 state = NEXT_BYTES;
33
34 if (bytes.length == 0) return;
35
36 nextByteToReturn = 0;
37
38 n = (20 - nextBIndex) < (bytes.length - nextByteToReturn) ?
39 20 - nextBIndex :
40 bytes.length - nextByteToReturn;
41 if (n > 0) { ... }
42
43 if (nextByteToReturn >= bytes.length) return;
44
45 n = seed [81] & 0x03;
46 for (;;) {
47 if (n == 0) {
48
49 // the problem occurs here
50 seed[lastWord] = (int) (counter >>> 32);
51 seed[lastWord + 1] = (int) (counter & 0xFFFFFFFF);
52 seed[lastWord + 2] = END_FLAGS [0];
53
54 } else { ... }
55 if (seed [81] > 48) { ... }
56
57 SHA1Impl.computeHash(seed);
58
59 if (seed [81] > 48) { ... }

11

60 counter ++;
61
62 int j = 0;
63 for (i = 0; i < 5; i++) {
64 int k = seed [82 + i];
65 nextBytes[j] = (byte) (k >>> 24);
66 nextBytes[j + 1] = (byte) (k >>> 16);
67 nextBytes[j + 2] = (byte) (k >>> 8);
68 nextBytes[j + 3] = (byte) (k);
69 j += 4;
70 }
71
72 nextBIndex = 0;
73 j = 20 < (bytes.length - nextByteToReturn) ?
74 20 : bytes.length - nextByteToReturn;
75
76 if (j > 0) {
77 System.arraycopy(nextBytes , 0, bytes , nextByteToReturn , j);
78 nextByteToReturn += j;
79 nextBIndex += j;
80 }
81
82 if (nextByteToReturn >= bytes.length) break;
83 }
84 }
85
86 private void updateSeed(byte[] bytes) {
87 SHA1Impl.updateHash(seed , bytes , 0, bytes.length - 1);
88 seedLength += bytes.length;
89 }
90 }
91
92 public class SHA1Impl implements SHA1_Data {
93
94 static void computeHash(int[] arrW) { /* elided for brevity */ }
95
96 static void updateHash(int[] intArray , byte[] byteInput , int fromByte , int toByte) {
97
98 int index = intArray [81];
99 int i = fromByte;

100 int maxWord;
101 int nBytes;
102
103 int wordIndex = index >>2;
104 int byteIndex = index & 0x03;
105
106 intArray [81] = (index + toByte - fromByte + 1) & 077 ;
107
108 if (byteIndex != 0) { ... }
109
110 maxWord = (toByte - i + 1) >> 2;
111
112 for (int k = 0; k < maxWord ; k++) {
113
114 intArray[wordIndex] = (((int) byteInput[i] & 0xFF) <<24) |
115 (((int) byteInput[i + 1] & 0xFF) <<16) |
116 (((int) byteInput[i + 2] & 0xFF) <<8) |
117 (((int) byteInput[i + 3] & 0xFF)) ;
118 i += 4;
119 wordIndex ++;
120
121 if (wordIndex >= 16) { ... }
122 }
123
124 nBytes = toByte - i +1;
125 if (nBytes != 0) { ... }
126 }
127 }

12

