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Abstract. Relational program reasoning is concerned with formally
comparing pairs of executions of programs. Prominent examples of rela-
tional reasoning are program equivalence checking (which considers ex-
ecutions from different programs) and detecting illicit information flow
(which considers two executions of the same program).
The abstract logical foundations of relational reasoning are, in the mean-
time, sufficiently well understood. In this paper, we address some of the
challenges that remain to make the reasoning practicable. Two major
ones are dealing with the feature richness of programming languages such
as C and with the weakly structured control flow that many real-world
programs exhibit.
A popular approach to control this complexity is to define the analyses
on the level of an intermediate program representation (IR) such as one
generated by modern compilers. In this paper we describe the ideas and
insights behind IR-based relational verification. We present a program
equivalence checker for C programs operating on LLVM IR and demon-
strate its effectiveness by automatically verifying equivalence of functions
from different implementations of the standard C library.

1 Introduction

Relational program reasoning. Over the last years, there has been a growing
interest in relational verification of programs, which reasons about the relation
between the behavior of two programs or program executions – instead of com-
paring a single program or program execution to a more abstract specification.
The main advantage of relational verification over standard functional verifi-
cation is that there is no need to write and maintain complex specifications.
Furthermore, one can exploit the fact that changes are often local and only af-
fect a small portion of a program. The effort for relational verification often only
depends on the difference between the programs respectively program executions
and not on the overall size and complexity of the program(s).

Relational verification can be used for various purposes. An example is regres-
sion verification resp. equivalence checking, where the behavior of two different
versions of a program is compared under identical input. Another example is



checking for absence of illicit information flow, a security property, in which
executions of the same program are compared for different inputs. For concrete-
ness’ sake, we focus in this paper on regression verification/equivalence checking
of C programs, though the presented techniques readily apply to other instances
of relational reasoning.

Regression verification. Regression verification is a formal verification ap-
proach intended to complement regression testing. The goal is to establish a
formal proof of equivalence of two program versions (e.g., consecutive revisions
during program evolution, or a program and a re-implementation). In its basic
form, we are trying to prove that the two versions produce the same output for
all inputs. In more sophisticated scenarios, we want to verify that the two ver-
sions are equivalent only on some inputs (conditional equivalence) or differ in a
formally specified way (relational equivalence). Regression verification is not in-
tended to replace testing, but when it is successful, it offers guaranteed coverage
without requiring additional expenses to develop and maintain a test suite.

Challenges in making regression verification practicable. The abstract
logical foundations of relational reasoning are, in the meantime, sufficiently well
understood. For instance, in [8], we presented a method for regression verification
that reduces the equivalence of two related C programs to Horn constraints over
uninterpreted predicates. The reduction is automatic, just as the solvers (e.g.,
Z3 [15, 18] or Eldarica [23]) used to solve the constraints. Our current work
follows the same principles.

Yet, the calculus in [8] only defined rules for the basic, well-structured pro-
gramming language constructs: assignment, if statement, while loop and func-
tion call. The Rêve tool implemented the calculus together with a simple self-
developed program parser.

While the tool could automatically prove equivalence of many intricate arith-
metic-intensive programs, its limited programming language coverage hampered
its practical application. The underlying calculus could not deal with break,
continue, or return statements in a loop body, loop conditions with side ef-
fects, for or do-while loops, let alone arbitrary goto statements.

Contributions. The main contribution of this paper is a method for auto-
mated relational program reasoning that is significantly more practical than [8]
or other state-of-the-art approaches. In particular, the method supports pro-
grams with arbitrary unstructured control flow without losing automation. The
gained versatility is due to a completely redesigned reduction calculus together
with the use of the LLVM compiler framework [17] and its intermediate program
representation (IR).

Furthermore, the calculus we present in this paper is fine-tuned for the in-
ference of relational predicates and deviates from straightforward encodings in
crucial points: (a) Loops are not always reduced to tail recursion (see Sect. 4.6),
(b) mutual function summaries are separated into two predicates for pre- and



postcondition (see Sect. 4.5), and (c) control flow synchronization points can be
placed by the user manually to enable more flexible synchronization schemes.

We developed a tool implementing the approach, which can be tested on-
line at http://formal.iti.kit.edu/improve/reve/. We have evaluated the
tool by automatically proving equivalence of a number of string-manipulating
functions from different implementations of the C standard library.

Main idea of our method. First, we employ the LLVM compiler framework
to compile the C source code to LLVM IR. This step reduces all control flow
in a program to branches (jumps) and function calls. Next, we divide the (po-
tentially cyclic) control flow graph of the program into linear segments. For
the points at which these segments are connected, we introduce relational ab-
stractions represented by uninterpreted predicate symbols (instead of concrete
formulas). The same applies for pairs of corresponding function calls. Finally,
we generate constraints over these predicate symbols linking the linear segments
with the corresponding state abstractions. The produced constraints are in Horn
normal form.

The generation of constraints is automatic; the user does not have to sup-
ply coupling predicates, loop invariants, or function summaries. The constraints
are passed to a constraint solver for Horn clauses (such as Z3 [15, 18] or Eldar-
ica [23]). The solver tries to find an instantiation of the uninterpreted abstraction
predicates that would make the constraints true. If the solver succeeds in finding
a solution, the programs are equivalent. Alternatively, the solver may show that
no solution exists (i.e., disprove equivalence) or time out.

Advantages of using LLVM IR. There are several advantages to working
on LLVM IR instead of on the source code level. The translation to LLVM
IR takes care of preprocessing (resolving typedefs, expanding macros, etc.) and
also eliminates many ambiguities in the C language such as the size of types
(which is important when reasoning about pointers). Building an analysis for
IR programs is much simpler as the IR language has fewer instruction types
and only two control flow constructs, namely branches (jumps) and function
calls. Furthermore, LLVM provides a constantly growing number of simplifying
and canonicalizing transformations (passes) on the IR level. If the differences in
the two programs are merely of a syntactical nature, these simplifications can
often eliminate them completely. Also, it was easy to incorporate our own passes
specifically geared towards our use case.

Challenges still remaining. Of course, using a compiler IR does not solve
all challenges. Some of them, such as interpreting integers as unbounded or the
inability to deal with general bit operations or floating-point arithmetic remain
due to the limitations of the underlying solvers. Furthermore, we, as is common,
assume that all considered programs are terminating. Verifying this property is
delegated to the existing termination checking technology, such as [7, 9].



Listing 1: memchr(), dietlibc

1 #include <stddef.h>
2 extern int __mark(int);
3

4 void* memchr(const void *s,
5 int c,
6 size_t n) {
7 const unsigned char *pc =
8 (unsigned char *) s;
9 for (;n--;pc++) {

10 __mark (42);
11 if (*pc == c)
12 return ((void *) pc);
13 }
14 return 0;
15 }

Listing 2: memchr(), OpenBSD libc

1 #include <stddef.h>
2 extern int __mark(int);
3

4 void * memchr(const void *s,
5 int c,
6 size_t n) {
7 if (n != 0) {
8 const unsigned char *p = s;
9 do {

10 __mark (42);
11 if (*p++ == (unsigned char)c)
12 return ((void *)(p - 1));
13 } while (--n != 0);
14 }
15 return (NULL);
16 }

2 Illustration

We tested our approach on examples from the C standard library (or libc). The
interfaces and semantics of the library functions are defined in the language stan-
dard, while several implementations exist. GNU libc [10] and OpenBSD libc [21]
are two mature implementations of the library. The diet libc (or dietlibc) [27] is
an implementation that is optimized for small size of the resulting binaries.

Consider the two implementations of the memchr() function shown in List-
ings 1 and 2. The function scans the initial n bytes of the memory area pointed to
by s for the first instance of c. Both c and the bytes of the memory area pointed
to by s are interpreted as unsigned char. The function returns a pointer to the
matching byte or NULL if the character does not occur in the given memory area.

In contrast to full functional verification, we are not asking whether each
implementation conforms with this (yet to be formalized) specification. Instead,
we are interested to find out whether the two implementations behave the same.
Whether this is the case is not immediately obvious due to the terse programming
style, subtle pointer manipulation, and the different control flow constructs used.

While the dietlibc implementation on the left is relatively straightforward,
the OpenBSD one on the right is more involved. The for loop on the left is
replaced by a do-while loop wrapped in an if conditional on the right. This
transformation known as loop inversion reduces the overall number of jumps by
two (both in the branch where the loop is executed). The reduction increases
performance by eliminating CPU pipeline stalls associated with jumps. The price
of the transformation is the duplicate condition check increasing the size of the
code. On the other hand, loop inversion makes further optimizations possible,
such as eliminating the if statement if the value of the guard is known at compile
time.

With one exception, the code shown is the original source code and can
indeed be fed like that into our implementation LLRêve, which without further
user interaction establishes the equivalence of the two implementations. The
exception is the inclusion of the __mark() calls in the loop bodies. The calls



identify synchronization points in the execution of two programs where the states
of the two are most similar. The numerical arguments only serve to identify
matching pairs of points. The user has to provide enough synchronization points
to break all cycles in the control flow, otherwise the tool will abort with an error
message. In [8], we used a simple heuristic to put default synchronization points
automatically into loop bodies in their order of appearance, though this is not
yet implemented in LLRêve.

Suppose that we are running the two implementations to look for the same
character c in the same 100 byte chunk of memory. If we examine the values
of variables at points in time when control flow reaches the __mark(42) calls
for the first time, we obtain: for dietlibc n = 99,pc = s, and for OpenBSD
n = 100,p = s. The second time: for dietlibc n = 98,pc = s+1, and for OpenBSD
n = 99,p = s + 1. The values of c, s, and the whole heap remain the same. At
this point, one could suspect that the following formula is an invariant relating
the executions of the two implementations at the above-mentioned points:1

(n2 = n1 + 1) ∧ (p2 = pc1) ∧ (c2 = c1) ∧ ∀i. heap1[i] = heap2[i] . (∗)

That our suspicion is correct can be established by a simple inductive argument.
Once we have done that, we can immediately derive that both programs produce
the same return value upon termination.

We call an invariant like (∗) for two loops a coupling (loop) invariant. A
similar construct relating two function calls is called a mutual (function) sum-
mary [13, 14]. Together, they fall into the class of coupling predicates, inductive
assertions allowing us to deduce the desired relation upon program termination.
In [8], we have shown that coupling predicates witnessing equivalence of pro-
grams with while loops can be often automatically inferred by methods such as
counterexample-guided abstraction refinement or property-directed reachability.
In this paper, we present a method for doing this for programs with unstructured
control flow.

3 Related Work

Our own previous work on relational verification of C programs [8] has already
been discussed in the introduction.

Many code analysis and formal verification tools operate on LLVM IR, though
none of them, to our knowledge, perform relational reasoning. Examples of non-
relational verification tools building on LLVM IR are LLBMC [19] and Sea-
Horn [12]. The SeaHorn tool is related to our efforts in particular, since it pro-
cesses safety properties of LLVM IR programs into Horn clauses over integers.
An interesting recent development is the SMACK [22] framework for rapid pro-
totyping of verifiers, a translator from the LLVM IR into the Boogie intermediate
verification language (IVL) [2].

1 To distinguish identifiers from the two programs, we add subscripts indicating the
program to which they belong. We may also concurrently use the original identifiers
without a subscript as long as the relation is clear from the context.



The term regression verification for equivalence checking of similar programs
was coined by Godlin and Strichman [11]. In their approach, matching recur-
sive calls are abstracted by the same uninterpreted function. The equivalence
of functions (that no longer contain recursion) is then checked by the CBMC
model checker. The technique is implemented in the RVT tool and supports a
subset of ANSI C.

Verdoolaege et al. [26, 25] have developed an automatic approach to prove
equivalence of static affine programs. The approach focuses on programs with
array-manipulating for loops and can automatically deal with complex loop
transformations such as loop interchange, reversal, skewing, tiling, and others.
It is implemented in the isa tool for the static affine subset of ANSI C.

Mutual function summaries have been prominently put forth by Hawblitzel
et al. in [13] and later developed in [14]. The concept is implemented in the
equivalence checker SymDiff [16], where the user supplies the mutual sum-
mary. Loops are encoded as recursion. The tool uses Boogie as the intermediate
language, and the verification conditions are discharged by the Boogie tool. A
frontend for C programs is available.

The BCVerifier tool for proving backwards compatibility of Java class
libraries by Welsch and Poetzsch-Heffter [28] has a similar pragmatics as Sym-
Diff. The tool prominently features a language for defining synchronization
points.

Balliu et al. [1] present a relational calculus and reasoning toolchain target-
ing information flow properties of unstructured machine code. Coupling loop
invariants are supplied by the user.

Barthe et al. [3] present a calculus for reasoning about relations between
programs that is based on pure program transformation. The calculus offers
rules to merge two programs into a single product program. The merging process
is guided by the user and facilitates proving relational properties with the help
of any existing safety verification tool. We are not aware of an implementation
of the transformation.

Beringer [4] defines a technique for deriving soundness arguments for rela-
tional program calculi from arguments for non-relational ones. In particular, one
of the presented relational calculi contains a loop rule similar to ours. The rule
targets so-called dissonant loops, i.e., loops not proceeding in lockstep.

Ulbrich [24] introduces a framework and implementation for relational verifi-
cation on an unstructured intermediate verification language (similar to Boogie),
mainly targeted at conducting refinement proofs. Synchronization points are de-
fined and used similar to this work. However, the approach is limited to fully
synchronized programs and requires user-provided coupling predicates.

4 The Method

4.1 From Source Code to LLVM IR

LLVM’s intermediate representation is an abstract, RISC-like assembler lan-
guage for a register machine with an unbounded number of registers. A program



in LLVM-IR consists of type definitions, global variable declarations, and the
program itself, which is represented as a set of functions, each consisting of a
graph of basic blocks. Each basic block in turn is a list of instructions with
acyclic control flow and a single exit point.

The branch instructions between basic blocks induce a graph on the basic
blocks, called the control flow graph (CFG), in which edges are annotated with
the condition under which the transition between the two basic blocks is taken.
Programs in LLVM IR are in static single assignment (SSA) form, i.e., each
(scalar) variable is assigned exactly once in the static program. Assignments to
scalar variables can thus be treated as logical equivalences.

To obtain LLVM IR programs from C source code, we first compile the two
programs separately using the Clang compiler. Next, we apply a number of
standard and custom-built transformation passes that:

– eliminate load and store instructions (generated by LLVM) for stack-allo-
cated variables in favor of register operations. While we do support the
general load and store instructions, they increase deduction complexity.

– propagate constants and eliminate unreachable code.
– eliminate conditional branching between blocks in favor of conditional assign-

ments (similar to the ternary operator ? in C). This step reduces the number
of distinct paths through the program. As we are considering a product of
all paths, this step is important.

– inline function calls where desired by the user.

4.2 Synchronization Points and Breaking Control Flow Cycles

If the compiled program contained loops or iteration formulated using goto
statements, the resulting CFG is cyclic. Cycles are a challenge for deductive
verification because the number of required iterations is, in general, not known
beforehand.

We break up cycles in the control flow by defining synchronization points, at
which we will abstract from the program state by means of predicates. The paths
between synchronization points are then cycle-free and can be handled easily.
Synchronization points are defined by labeling basic blocks of the CFG with
unique numbers n ∈ N. Additionally, the entry and the exit of a function are
considered special synchronization points labeled with B and E. If every cycle in
the CFG contains at least one synchronization point, the CFG can be considered
as the set of all linear paths leading from one synchronization point directly to
another. A linear path is a sequence of basic blocks together with the transition
conditions between them. Formally, it is a triple 〈n, π,m〉 in which n and m
denote the beginning and end synchronization point of the segment and π(x, x′)
is the two-state transition predicate between the synchronization points in which
x are the variables before and x′ after the transition. Since basic blocks are in
SSA form, the transition predicate defined by a path is the conjunction of all
traversed assignments (as equalities) and transition conditions. The treatment
of function invocation is explained in Sect. 4.5.
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Fig. 1: Illustration of coupled control flow of two fully synchronized programs

4.3 Coupling and Coupling Predicates

Let in the following the two compared functions be called P and Q, and let xp
(resp. xq) denote the local variables of P (resp. Q). Primed variables refer to
post-states.

We assume that P and Q are related to each other, in particular that the
control and data flow through the functions is similar. This means that we expect
that there exist practicable coupling predicates describing the relation between
corresponding states of P and Q. The synchronization points mark where the
states are expected to be coupled. If a function were compared against itself, for
instance, the coupling between two executions would be equality ranging over
all variables and all heap locations. For the analysis of two different programs,
more involved coupling predicates are, of course, necessary.

Formally, we introduce a coupling predicate Cn(xp, xq) for every synchro-
nization point index n. Note that these predicates have the variables of both
programs as free variables. Two functions are considered coupled, if they yield
coupled traces when fed with the same input values; coupled in the sense that
the executions pass the same sequence of synchronization points in the CFG
and that at each synchronization point, the corresponding coupling predicate is
satisfied. See Fig. 1 for an illustration.

The coupling predicates CB and CE for the function entry and exit are special
in that they form the relational specification for the equivalence between P and
Q. For pure equivalence, CB encodes equality of the input values and state, and
CE of the result value and output state. Variations like conditional or relational
equivalence can be realized by choosing different formulas for CB and CE .

4.4 Coupling Predicates for Cyclic Control Flow

In the following, we outline the set of constraints that we generate for programs
with loops. If this set possesses a model, i.e., if there are formulas making the
constraint true when substituted for the coupling predicate placeholders Ci, then
the programs fulfill their relational specification.

The first constraint encodes that every path leading from a synchronization
point to the next satisfies the coupling predicate at the target point. Let 〈n, π,m〉
be a linear path in the CFG of P and 〈n, ρ,m〉 one for the same synchronization
points for Q. For each such pair of paths, we emit the constraint:

Cn(xp, xq) ∧ π(xp, x
′
p) ∧ ρ(xq, x

′
q)→ Cm(x′p, x

′
q) . (1)



The above constraint only covers the case of strictly synchronized loops which
are iterated equally often. Yet, often the number of loop iterations differs between
revisions, e.g., if one loop iteration has been peeled in one of the programs. To
accommodate that, we allow one program, say P , to loop at a synchronization
point n more often than the other program.2 Thus, P proceeds iterating the
loop, while Q stutters in its present state. For each looping path 〈n, π, n〉 in P ,
we emit the constraint:

Cn(xp, xq) ∧ π(xp, x
′
p) ∧

(∧
〈n,ρ,n〉
in Q

∀x′q.¬ρ(xq, x
′
q)
)
→ Cn(x′p, xq) . (2)

The second conjunct in the premiss of the implication encodes that P iterates
from n to n, while the third captures that no linear path leads from n to n
in Q from initial value xq. The coupling predicate in the conclusion employs the
initial values xq, since we assume that the state of Q stutters.

Emitting (2) to accommodate loops that are not strictly synchronized adds to
the complexity of the overall constraint and may in practice prevent the solver
from finding a solution. We thus provide the user with the option to disable
emitting (2), if they are confident that strict synchronization is sufficient.

Finally, we have to encode that the control flow of P and Q remains syn-
chronized in the sense that it must not be possible that P and Q reach different
synchronization points m and k when started from a coupled state at n.3 For
each path 〈n, π,m〉 in P and 〈n, ρ, k〉 in Q with m 6= k, n 6= m, n 6= k, we emit
the constraint:

Cn(xp, xq) ∧ π(xp, x
′
p) ∧ ρ(xq, x

′
q)→ false . (3)

4.5 Coupling Predicates for Function Calls

Besides at synchronization points that abstract loops or iteration in general,
coupling predicates are also employed to describe the effects of corresponding
function invocations in the two programs. To this end, matching pairs of function
calls in the two CFGs are abstracted using mutual function summaries [13]. A
heuristic used to match calls will be described later.

Mutual function summaries. Let fp be a function called from the function
P , xp denote the formal parameters of fp, and rp stand for the (optional) result
returned when calling fp. Assume that there is an equally named function fq
defined in the program of Q. A mutual summary for fp and fq is a predicate
Sumf (xp, xq, rp, rq) that relationally couples the result values to the function
arguments. If the function accesses the heap, the heap appears as an additional
argument and return value of the function.

2 The situation is symmetric with the case for Q omitted here.
3 This restriction is of minor practical importance but releases us from the need to

create coupling predicates for arbitrary combinations of synchronization points.



In our experiments, we found that it is beneficiary to additionally model an
explicit relational precondition Pref (xp, xq) of f . Although it does not increase
expressiveness, the solvers found more solutions with precondition predicates
present. We conjecture that the positive effect is related to the fact that mutual
summary solutions are usually of the shape φ(xp, xq) → ψ(rp, rq), and that
making the precondition explicit allows the solver to infer φ and ψ separately
without the need to infer the implication.

For every pair of paths 〈n, π,m〉 ∈ P and 〈n, ρ,m〉 ∈ Q that contain a single
call to f , we emit the following additional constraint:

Cn(xp, xq) ∧ π(xp, x
′
p) ∧ ρ(xq, x

′
q)→ Pref (x∗p, x

∗
q) . (4)

in which x∗p and x∗q denote the SSA variables used as the argument for the
function calls to f . The constraint demands that the relational precondition Pref
must be met when the callsites of f are reached in P and Q.

For every such pair of paths, we can now make use of the mutual sum-
mary by assuming Sumf (x∗p, x

∗
q , rp, rq). This means that for constraints emitted

by (1)–(3), the mutual summary of the callsite can be added to the premiss. The
augmented version of constraint (1) reads, for instance,

Cn(xp, xq) ∧ π(xp, x
′
p) ∧ ρ(xq, x

′
q) ∧ Sumf (x∗p, x

∗
q , rp, rq)→ Cm(x′p, x

′
q) , (5)

with rp and rq the SSA variables that receive the result values of the calls.
The mutual summary also needs to be justified. For that purpose, constraints

are recursively generated for f , with the entry coupling predicate CB = Pref
and exit predicate CE = Sumf .

The generalization to more than one function invocation is canonical.

1 int f(int n) {
2 return g(n-1);
3 }
4 int g (int n) {
5 return n+1;
6 }

Listing 3: f() calling g()

Example. To make the above clearer, let us look at
the encoding of the program in Listing 3 when ver-
ified against itself. Let Cf

B(n1, n2) and Cf
E(r1, r2)

be the given coupling predicates that have to hold
at the entry and exit of f . When encoding the
function f , we are allowed to use Sumg at the
callsite but have to show that Preg holds. Thus
we get the following constraints:

Cf
B(n1, n2) ∧ n∗1 = n1−1 ∧ n∗2 = n2−1→ Preg(n

∗
1, n
∗
2)

Cf
B(n1, n2) ∧ n∗1 = n1−1 ∧ n∗2 = n2−1 ∧ Sum(n∗1, n

∗
2, r1, r2)→ Cf

E(r1, r2) .

To make sure that Preg and Sumg are a faithful abstraction for g, we have a
new constraint for g, which boils down to

Preg(n1, n2)→ Sumg(n1, n2, n1 + 1, n2 + 1) .

At this point, the set of constraints is complete, and we can state the main
result:



int f(int x) {
if (x > 0) {

x = g(x);
x = g(x);

}
x = h(x);
x = h(x);
x = g(x);
return x;

}

int f(int x) {
x = g(x);
x = g(x);
x = g(x);
x = h(x);
x = h(x);
return x;

}

g(int)

g(int)

h(int)

h(int)
g(int)

g(int)

g(int)

g(int)

h(int)

h(int)

h(int)

h(int)
g(int)

g(int)

g(int)

g(int)

h(int)

h(int)

Program 1 Program 2 Matching for x > 0 Matching for x ≤ 0

Fig. 2: Illustration of function call matching

Theorem 1 (Soundness). Let S be the set of constraints emitted by (1)–(5).
If the universal closure of S is satisfiable, then P and Q terminate in states

with x′p and x′q satisfying CE(x′p, x
′
q) when they are executed in states with xp

and xq satisfying CB(xp, xq) and both terminate.

Matching function calls. For treatment using mutual summaries, the function
calls need to be combined into pairs of calls from both programs. Our goal is
to match as many function calls between the two programs as possible. To this
end, we look at any pair of possible paths from the two programs that start
and end at the same synchronization points. For each path, we consider the
sequence of invoked functions. To determine the optimal matching of function
calls (i.e., covering as many calls as possible), an algorithm [20] for computing the
longest common (not necessarily continuous) subsequence among the sequences
is applied.

As an example, consider the functions in Fig. 2. There are no cycles in the
control flow, so the only two synchronization points are the function entry and
exit. In Program 1, there are two paths corresponding to x > 0 and x ≤ 0
respectively. In Program 2, there is only a single path. That gives us two pos-
sible path pairs that we need to consider. The resulting longest matchings for
the pairs are also shown in the figure. Matched calls are abstracted using mu-
tual summaries, while unmatched calls have to be abstracted using conventional
functional summaries.

An additional feature is that the user can request to inline a specific call or all
calls to a function with an inline pragma. The feature is especially important
if the callee function contains a loop that should be synchronized with a loop in
the caller function of the other program. The pragma can also be used to inline
some steps of a recursive call.

If a function’s implementation is not available. A special case arises when
there is a call from both programs to a function for which we do not have access
to the sources. If such calls can be matched, we abstract the two calls using the
canonical mutual summary Sumf : xp = xq → rp = rq stating that equal inputs
induce equal results. If a call cannot be matched, however, we have to use an



1 int f(int n) {
2 int i = 0;
3 while (i < n) {
4 i++;
5 }
6 int r = i;
7 return r;
8 }

Listing 4: Function f

∀n.rel in(n) → inv(0, n)

∀i, n.(i < n ∧ inv(i, n)) → inv(i + 1, n)

∀i, n.(¬(i < n) ∧ inv(i, n)) → relout(i)

Fig. 3: Iterative encoding of f

∀n.rel in(n) → invpre(0, n) ∧
(∀r.inv(0, n, r) → invf (n, r))

∀i, n, r.(i < n ∧ invpre(i, n) ∧ inv(i + 1, n, r)) → inv(i, n, r)

∀i, n.(¬(i < n) ∧ invpre(i, n) → inv(i, n, i)

∀n, r.(rel in(n) ∧ invf (n, r)) → relout(r)

Fig. 4: Recursive encoding of f

uninterpreted functional summary, losing all information about the return value
and the resulting heap. In most cases, this means that nothing can be proved.4

4.6 Alternative Loop Treatment as Tail Recursion

When developing our method, we explored two different approaches to deal with
iterative unstructured control flow.

The first one models a program as a collection of mutually recursive functions
such that the function themselves do not have cyclic control flow. Loops must be
translated to tail recursion. This aligns with the approach presented in [13]. It
is attractive since it is conceptually simple allowing a unified handling of cyclic
branching and function calls. However, our experiments have shown that for our
purposes the encoding did not work as well as the one presented in Sect. 4.4 which
handles loops using coupling predicates directly instead of by translation into tail
recursion. A possible explanation for this observation could be that the number
of arguments to the coupling predicates is smaller if (coupling) invariants are
used. For these predicates, it suffices to use those variables as arguments which
may be changed by the following code. The mutual summaries for tail recursion
require more variables and the return values as arguments.

To illustrate the two styles of encoding, we explain how the program in
Listing 4 is encoded. For simplicity of presentation, we encode a safety property
of a single program. The point where the invariant inv has to hold is the loop
header on Line 3. rel in is a predicate that has to hold at the beginning of f and
relout is the predicate that has to hold when f returns. In the recursive encoding

4 Alternatively, it would also be possible to trade soundness for completeness and,
e.g., assume that such a call does not change the heap.



(Fig. 4), inv has three arguments, the local variables i and n and the return
value r. In the iterative case (Fig. 3), the return value is not an argument, so inv
only has two arguments. The entry predicate invpre over the local variables i and
n has to hold at every “call” to inv . The reasoning for having such a separate
predicate has already been explained in Section 4.5.

In the end, a combination of the two encodings proved the most promising:
We apply the iterative encoding to the function whose exit and entry predicates
have been given as relational specification explained in 4.3. All other functions
are modeled using the recursive encoding. Mutual summaries depend, by design,
on the input parameters as well as the output parameters whereas the rela-
tional postcondition CE usually only depends on the output parameters. Using
an iterative encoding for the other functions would require passing the input pa-
rameters through every predicate to be able to refer to them when establishing
the mutual summary at the exit point. The advantage of an iterative encoding of
having fewer parameters in predicates is thereby less significant, and we employ
the recursive encoding. A special case arises when the toplevel function itself re-
curses. In this case, we encode it twice: first using the iterative encoding, which
then relies on the recursive encoding for the recursive calls.

4.7 Modeling the Heap

Table 1: Performance with different
solvers for the libc benchmarks

Run time w/solver,
seconds

Function Source Eldarica Z3/duality

memccpy d/o 0.733 0.499
memchr d/o 0.623 0.328
memmem d/o 1.545 3.634
memmove d/o 4.195 4.219
memrchr g/o 0.487 1.082
memset d/o 0.263 1.211
sbrk d/g 0.439 0.630
stpcpy d/o 0.203 0.241
strchr d/g 48.145 13.705
strcmp g/o 0.545 0.985
strcspn d/o 17.825 t/o
strncmp g/o 1.046 4.556
strncmp d/g 2.599 7.971
strncmp d/o 0.602 1.742
strpbrk d/o 3.419 3.237
strpbrk d/g 1.029 2.083
strpbrk g/o 1.734 3.453
swab d/o 4.032 0.709

d=dietlibc, g=glibc, o=OpenBSD libc.
t/o=timeout after 300 seconds.
2 GHz i7-4750HQ CPU, 16 GB RAM.

The heap is modeled directly as an SMT ar-
ray and the LLVM load and store instruc-
tions are translated into the select and store
functions in the SMT theory of arrays. We
assume that all load and store operations
are properly aligned; we do not support
bit operations or, e.g., accessing the sec-
ond byte of a 32 bit integer. Struct accesses
are resolved into loads and stores at cor-
responding offsets. The logical handling of
constraints with arrays requires quantifier
reasoning and introduces additional com-
plexity. We handle such constraints follow-
ing the lines of [6].

5 Experiments

Our implementation of the approach con-
sists of ca. 5.5 KLOC of C++, building on
LLVM version 3.8.0.

In our experiments, we have proven
equivalence across a sample of functions
from three different libc implementations:
dietlibc [27], glibc [10], and the OpenBSD



1 void *memmove(void *dst ,
2 const void *src ,
3 size_t count) {
4 char *a = dst;
5 const char *b = src;
6

7

8

9 if (src != dst) {
10

11

12 if (src > dst) {
13 while (count --) {
14 __mark (0);
15 *a++ = *b++;
16 }
17 } else {
18 a += count - 1;
19 b += count - 1;
20 while (count --) {
21 __mark (1);
22 *a-- = *b--;
23 }
24 }
25 }
26

27

28 return dst;
29 }

(a) dietlibc

1 void *memmove(void *dst0 ,
2 const void *src0 ,
3 size_t length) {
4 char *dst = dst0;
5 const char *src = src0;
6 size_t t;
7 if (length == 0 || dst == src)
8 goto done;
9 if (( unsigned long)dst <

10 (unsigned long)src) {
11 t = length;
12 if (t) {
13 do {
14 __mark (0);
15 *dst++ = *src++;
16 } while (--t);
17 }
18 } else {
19 src += length;
20 dst += length;
21 t = length;
22 if (t) {
23 do {
24 __mark (1);
25 *--dst = *--src;
26 } while (--t);
27 }
28 }
29 done:
30 return (dst0);
31 }

(b) OpenBSD libc

Fig. 5: memmove()

libc [21]. Apart from the not yet automated placing of the synchronization marks,
the proofs happen without user interaction. The runtimes of the proofs are sum-
marized in Table 1. One of the more complex examples, the function memmove(),
is shown in Fig. 5. It demonstrates the use of nested ifs, multiple loops with
different loop structures (while/do-while) and goto statements.

Revisiting the memchr() example discussed in Section 2, the early implemen-
tation of memchr() in dietlibc is known to have contained a bug (Listing 5).
In case of a found character, the return value is one greater than expected.

1 void* memchr(const void *s,
2 int c,
3 size_t n) {
4 const char* t=s;
5 int i;
6 for (i=n; i; --i)
7 if (*t++==c)
8 return (char*)t;
9 return 0;

10 }

Listing 5: Bug in memchr()

Unsurprisingly, this implementation can-
not be proven equivalent to any of the
other two, and LLRêve produces a coun-
terexample. While counterexamples in the
presence of heap operations in the pro-
gram can be spurious (in the absence of
heap operations, counterexamples are al-
ways genuine), in this case, the counterex-
ample does demonstrate the problem.

An interesting observation we made
was that existentially quantified precon-



ditions might potentially be necessary, such as requiring the existence of a null
byte terminating a string. While techniques for solving existentially quantified
Horn clauses exist [5], most solver implementations currently only support uni-
versally quantified clauses. The libc implementations, however, were sufficiently
similar so that such preconditions were not necessary.

6 Conclusion

We have shown how the automated relational reasoning approach presented in [8]
can be taken in its applicability from a basic fragment to the full C language stan-
dard w.r.t. the control flow. In this work, LLVM played a crucial rule in reducing
the complexity of a real-world language. We have successfully evaluated our ap-
proach on code actually used in production and were able to prove automatically
that many string-manipulation functions from different implementations of libc
are equivalent.
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