
Scalable and Precise Refinement Types for
Imperative Languages

Florian Lanzinger?1, Joshua Bachmeier2, Mattias Ulbrich1, and Werner Dietl??3

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
2 FZI Research Center for Information Technology, Karlsruhe, Germany

3 University of Waterloo, Waterloo, Canada
lanzinger@kit.edu

Abstract. In formal verification, there is a dichotomy between tools
which are scalable and easy to use but imprecise, like most pluggable type
systems, and tools which are expressive and precise but badly scalable and
difficult to use, like deductive verification. Our previous research to create
a formal link between refinement types and deductive verification allows
programmers to use a scalable type system for most of the program, while
automatically generating specifications for a deductive verifier for the
difficult-to-prove parts. However, this is currently limited to immutable
objects. In this work, we thus present an approach which combines
uniqueness and refinement type systems in an imperative language. Unlike
existing similar approaches, which limit refinements such that they cannot
contain any reference-typed program variables, our approach allows more
general refinements, because even if a type constraint is not provable in
the type system itself, it can be translated and proven by a deductive
verifier.
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1 Introduction

There are many ways to prove a program’s correctness, each with their own
strengths and weaknesses. In deductive verification, a formal specification de-
scribing the expected behavior needs to be written and then proven using some
partially interactive tool. Both the specification languages and the proof tools are
often difficult to use for non-experts. In addition, the approach is time-consuming
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and scales badly with program size and complexity. Pluggable type systems [2],
which annotate variables and sub-programs with types that describe their ex-
pected values and behavior, offer a light-weight alternative. However, most of
these type systems only check for a conservative approximation of the formal
guarantee they are designed for.

In our previous research [8], we presented a bridge between the two methods to
combine the advantages of both: The developer first uses pluggable type systems
to establish formal guarantees. If the type checker cannot show the well-typedness
of the complete program, it emits a translated program in which all unproven
typing constraints are turned into formal specifications for a deductive verifier,
while all proven constraints are turned into auxiliary assumptions. Unlike existing
refinement type systems, this combined approach allows us to state and prove
refinements beyond the capabilities of a type checker or SMT solver while still
retaining the benefits of scalable type checking where possible.

However, this is so far limited to immutable objects. Here, we present an
extension of the approach to mutable objects by leveraging a uniqueness type sys-
tem to deal with aliasing. In addition to uniqueness types, we use a packing type
system based on an approach by Leino and Müller [11] to allow consistent updates
in the presence of dependent types. We have formalized the approach and are
currently working on a proof and implementation. Similar combinations of own-
ership/uniqueness and refinement types in imperative languages exist [10,12,15],
but they limit refinements such that they cannot contain any reference-typed
program variables. We can allow more general dependent refinements, because
even if a type constraint cannot be shown to hold by the syntactic type rules, it
can still be translated into a specification for the deductive verifier.

2 Combining Refinement Type Systems and Deductive
Verification

boolean is_leq(@NonNull VarInfo v1, @NonNull VarInfo v2) {
@Nullable Invariant inv = null; @Nullable Slice slice = null;
slice = findSlice(v1, v2);
if (slice != null) {

inv = instantiate(slice);
}
if (inv != null) {

boolean found = slice.is_inv_true(inv);
return found;

}
return false;

}

Fig. 1. A false positive in the Nullness Checker.
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//@ requires v1 != null && v2 != null;
boolean is_leq(VarInfo v1, VarInfo v2) {

//@ assume v1 != null && v2 != null;
Invariant inv = null; Slice slice = null;
slice = findSlice(v1, v2);
if (slice != null) {

//@ assume slice != null;
inv = instantiate(slice);

}
if (inv != null) {

//@ assume inv != null;
//@ assert slice != null;
boolean found = slice.is_inv_true(inv);
return found;

}
return false;

}

Fig. 2. JML translation of Figure 1

This section summarizes our previous work [8]. Figure 1 is an example taken from
that paper; it shows a slightly modified code snippet from the Daikon Invariant
Generator [5], which uses the Nullness Checker of the Checker Framework [3],
a framework for pluggable Java type systems. The checker detects a possible
null-pointer exception for the method invocation on slice. This is a false positive
because the implementation ensures that if inv is non-null, slice is also non-null.
Our approach allows us to use a deductive verifier to avoid the false positive being
reported: We associate each type qualifier with a refinement, a logical formula
expressing its semantics. Here, NonNull’s refinement is subject 6= null, where
subject stands for the typed variable, and Nullable’s refinement is true. Since
the former formula implies the latter, we are allowed to define the subtyping
hierarchy NonNull � Nullable. We then translate the type constraints into
specifications in the Java Modeling Language (JML) [9], as seen in Figure 2.
There, instead of working with the type qualifiers and their predefined hierarchy,
we work directly with the underlying formulas. The type constraint that the
checker was unable to show is turned into an assertion, while the other constraints
are turned into assumptions. This JML translation can be given to a deductive
verification tool like KeY [1]. If all assertions in the translated program are valid,
then we know that the putative type error is indeed a false positive.

Using our approach, only the parts of a program’s central logic which establish
and change the type properties in complex ways have to be considered for
deductive verification, while the high-level parts which mostly just preserve the
properties or rely on lower-level methods can be discharged by the type checker,
which significantly lowers the verification overhead [7,8].
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3 Refinement Types for Mutable Objects

This section summarizes our current work on extending what was presented in
Section 2 to work with mutable objects. The two main issues we must consider
are aliasing, for which we introduce a uniqueness type system in Section 3.1, and
consistent updates in the presence of dependent types, for which we introduce a
packing type system in Section 3.2. In Section 3.3, we then state the basic ideas
needed to formalize and prove our approach.

3.1 Combining Uniqueness and Refinement Types

@MinLength(5) List a; @MaxLength(5) List b;
@MinLength(b.length) List c;
void foo() { a.insert(42); }

Fig. 3. Aliasing issue with refinement types.

To be able to apply refinement types to mutable objects, we need some
way to restrict reference aliasing. Consider the example in Figure 3. It con-
tains the type qualifiers MinLength(n) and MaxLength(n) with the refinements
subject.length ≥ n and subject.length ≤ n respectively. The method call
a.insert(42) seems to be well-typed if we only consider a’s type; but if a and b
are aliases, it violates b’s type. In addition, it may violate c’s dependent type.

There are many type systems we could use to alleviate this problem. We
settled on a simple system with the hierarchy Unique � MaybeAliased �
ReadOnly, where MaybeAliased references may have other MaybeAliased aliases,
but Unique references can only have ReadOnly aliases, which can never be used
to mutate the object and may never occur in a refinement. Our system also
supports ownership transfer mechanisms such as borrowing: A method argument
has both an input and an output type, so for example a method with the sig-
nature foo(@Unique -> @Unique List arg) receives a unique reference, but must
preserve the uniqueness so it can later be returned to the caller.

This system is quite restrictive. For example, it is impossible to have a well-
typed mutable cyclic list. However, this restrictiveness has one major advantage
that will be explained in Section 3.2. In the future, we may investigate using
a more powerful type system like Universe Types [4]. Another possible avenue
is to do with uniqueness types what we did with refinement types, i.e., define
a translation into a specification language for deductive verifiers, such that
ownership structures too complex to be proven by the type system can still
be verified. The RustBelt project [6] already does something similar for Rust’s
ownership types.

In any case, our uniqueness types solve the aliasing problem with refinement
types, as long as we abide by the following restrictions: Refinements may only
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appear on unique references. A refinement may only depend on other unique
references in the current scope. A reference may only be mutated or transferred
if doing so cannot violate any refinement dependent on it. E.g., if we make every
reference in Figure 3 unique, the method call becomes well-typed: We know that
a is unique and that no refinement in the current scope depends on it4; thus no
other reference’s type is violated.

3.2 Consistent Updates with Packing Types

class List {
@NonNegative int length;
@Unique @Length(this.length) Node head;
public void insert(@Unique -> @Unique List this,

int newDatum) {
head = new Node(newDatum , head); ++length; }

Fig. 4. Keeping the fields consistent is impossible.

However, Figure 4 shows a problem with our approach so far. No matter
in what order we execute the two statements in the insert method, we will
temporarily violate head’s type!

To alleviate this, we use a variant of the approach by Leino and Müller [11]:
For an object o that is packed up to the class τ , all fields defined in τ and
its superclasses must respect their declared types. In addition, these fields are
unassignable and immutable. Fields defined in subclasses of τ in contrast can be
reassigned and mutated and need not respect their declared types. An object’s
packing state can be changed via statements of the form pack o as τ and unpack
o from τ . Packing an object is only allowed if all involved fields respect their
declared types. Unlike Leino and Müller, who use special run-time fields to
remember an object’s packing state, we use a pluggable type system, i.e., a
reference is packed up to τ if it has the type qualifier Packed(τ). To ensure that
every non-read-only reference to the same object has the same packing type (a
read-only reference’s packing type is irrelevant, as it cannot be mutated or appear
in refinements anyway), we only allow (un-)packing unique references. This means
that the packing type system now serves double duty as an immutability type
system: Since maybe-aliased references cannot be (un-)packed, such references
with type Packed(τ) are immutable up to τ ; thus we can use their state up to τ
in refinements.

The problem in our example can be solved by inserting unpack this from
List at the beginning and pack this as List at the end of the insert method.
That pack statement is well-typed if the type checker can show that every field
4 Actually, we cannot know whether this is true in the presence of subclassing, but

this is dealt with in the following section.
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respects its declared type at that point in the program. If it cannot, then, as
usual, an assertion to that effect can be inserted into the program to be shown
by a deductive verifier.

But suppose that our list has additional fields (e.g., tail, cache, etc.). Then
to show the well-typedness of the pack statement, we would have to prove that
every single field respects its declared type, even though we have only changed
two. This is where our restrictive uniqueness type system comes in useful: A
unique reference that has not been transferred cannot have been mutated; thus
it is still in the same state it was in when the receiver was unpacked.

This packing type system allows us to relax the restrictions on refinements
from the preceding subsection. Now, the refinement of a field or local variable in
a class τ is allowed to depend on the abstract state A(this, τ), which includes:
1. Every field declared in τ or a superclass.
2. For every Unique or MaybeAliased field f declared with type Packed(τf ) in

τ or a superclass: A(this.f, τf ).

3.3 Formalization and Proof Idea
For the proof, we are considering an approach similar to the one by Timany
et al. [14] who differentiate between syntactically well-typed and semantically
well-typed statements: The former holds if the statement respects the syntactic
typing rules. The latter holds if the statement preserves well-typed states (in
our case, that it preserves all refinement formulas, as well as the uniqueness and
packing properties), even if this cannot be shown by the syntactic type checker.
This formal framework fits nicely with our approach of encoding properties that
cannot be shown by the type checker as assertions.

4 Conclusion and Outlook
We presented an approach which combines the scalability of type systems with
the precision of deductive verification by translating those type constraints which
a type checker was unable to show into specifications for a deductive verifier.
By leveraging additional guarantees given by a uniqueness and a packing type
system, we can apply this approach to languages with mutable objects.

We have formalized the approach and are working on an implementation
and proof. We will build on the implementation of our previous work [8], which
used the Checker Framework [3] and KeY [1]. For the proof, we are considering
either using the Iris framework by Timany et al. [14], or Steinhöfel’s work on
extending KeY with abstract programs [13], which has the advantage that KeY
already contains a complete formalization of our target language Java, but the
disadvantage that KeY’s dynamic frames are much more cumbersome than Iris’s
separation logic to reason about ownership and framing properties. We also plan
to evaluate the approach by using it to verify a piece of software that uses the
Checker Framework: Using our approach, we should be able to discharge any
suppressed warnings using KeY; also, our combined approach should be easier
and faster than using KeY alone.
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