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Abstract. Concerns about protecting private user data grow as au-
tomated data processing by software becomes more ubiquitous in our
society. One important principle is data minimisation, which requires
that all collected personal data must be limited to what is necessary
for the respective declared purpose. For existing software systems, it
can be difficult to determine which input data are indeed necessary to
compute the result and which data can (in certain cases) be left out. We
present a new approach that can be used to adapt an existing program
to data minimisation requirements. In this framework a user transmits a
set of facts about their data instead of the full data. We formally define
the approach and introduce a variety of minimisation notions for it. We
have implemented the approach and demonstrate its feasibility on a few
selected examples.

1 Introduction

tax_rate(age, income) {

if (age<18) return 0.0;

if (age<25 && !(income>1000))

return 0.1;

if (income<=1000)

return 0.2;

return 0.3; }

Fig. 1. A simple program computes the
tax rate based on age and income.

Motivation. In 2016, the European Union
enacted the General Data Protection Reg-
ulation (GDPR) [3] to restrict the storage
and use of personal data. Among other reg-
ulations, it defines the principle of data
minimisation, which states that collected
“[p]ersonal data shall be adequate, relevant
and limited to what is necessary in rela-
tion to the purposes for which they are
processed” [3, §5(1)(c)].

When one has to retrofit an existing piece of software to follow this principle,
it may be difficult to determine what information from the personal data is
necessary to compute the result and what can and should be left out.

Consider the example program in Figure 1, taken from [9], which is run on a
tax agency’s server. The server receives an applicant’s age and income as input
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d ∈ D d ∈ D r = P (d) ∈ R
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d ∈ D F ⊆ F r = P (d∗) ∈ R

Fig. 2. Sketch of the scenario. In (a), the applicants transmit their individual personal
data directly to the server of the agency. Using our approach in (b), the applicants can
disguise their personal data d by transmitting a set of facts F .

and computes their tax rate. However, it would never be necessary to submit the
exact age to determine the rate: it suffices to know if the age is below 18, between
18 and 24, or above 24. For the income, all that can be relevant is if it surpasses
1000 units. Moreover, if the applicant’s age is below 18, it is not necessary to
submit any information about the income, as the tax rate is always 0 below the
age of 18. Thus, which data is needed to compute the result not only depends on
the computed function, but also on the individual applicant’s data themselves.
With our approach, we enable applicants to selectively disclose their personal
data. Instead of transmitting the full personal data, the applicant selects and
transmits a set of true facts about their data which are sufficient to infer the
result to be computed. These facts are predicates over the input variables of
the program, and describe a set of data points in which the actual data point
must lie. In our example, a 20-year-old applicant with an income of 2000 can
transmit {age ≥ 18, income ≥ 1001} and hence needs not disclose their exact
age nor income. The server at the tax agency must then reconstruct an input
value from the received facts and use it to compute the tax rate. We will show
when and how this is possible.

Contribution. The definition of the minimisation problem which we use and a
sketch for a heuristic solution were first introduced by Lanzinger and Weigl [9]. In
this paper, we present a detailed formalisation of the problem and of the solution
that we propose. We examine three different formal notions of minimisation,
namely model-theoretic minimisation, information-theoretic minimisation and
vulnerability minimisation based on different notions of entropy. We then present
and compare several ways of algorithmically obtaining such (approximate) minimi-
sations and show how they fit into the formal framework. We have implemented
the approach based on existing formal analysis tools to obtain new software
components to be added to the sending and receiving end of a distributed process
without the original software needing to be changed.

Figure 2 shows how the presented approach adapts an existing pipeline.
Figure 2(a) shows how the result (the tax rate in the example) is originally
computed: The applicant uses a front end – like a web form – to submit a data
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point d ∈ D (D denotes the set of personal data) containing their personal data to
the back end server of the agency, which then runs a program P on d to compute
the result r. Our data-minimisation approach is shown in Figure 2(b): Instead of
transmitting the data point d directly, the front end applies a data-minimising
routine DM projecting d onto a fact set F ⊆ F that intuitively can be seen as a
set of statements (logical formulas over the input variables of D) taken from a
fact base of possible statements F . This minimises the transmitted information
in the sense that the agency gains less information about the applicant from F
than it would gain by receiving d. The agency then uses the second component
in our approach, the data restoration unit DR, to construct an arbitrary, but
representative data point d∗ which satisfies all facts in F . The data points d∗ and
d can, but need not be, the same. If F was well-chosen, the agency can compute
the original result r = P (d∗) = P (d) without having to modify their program
and without knowing the exact value of d.

2 Background on Quantitative Information Flow

We will use some notions from quantitative information flow [14] (QIF) to quantify
the amount of personal data sent to the agency. QIF is based on Shannon’s
information theory and different notions of entropy and conditional entropy,
which we will briefly introduce here. QIF is used to measure the information flow
from the inputs of a program to its outputs. Often, one quantifies the information
that a system leaks, i.e., the amount of confidential information an attacker can
learn by observing the output.

Let D and O be random variables that stand for the confidential input data (D)
and the output (O) of a program that is observed by an adversary. The a-priori
probability Pr(O = o | D = i) describes the probability that the observable
output value o will be produced for a given input i. If the analysed program is
deterministic, this is either 1 or 0. The a-posteriori probability Pr(D = i | O =

o) = Pr(D=i)
Pr(O=o) · Pr(O = o | D = i) describes the probability of the input having

been i under the observation of o. This can be used to talk about the amount of
information that the adversary learns about the input by observing the output.

The gain of information by an adversarial attacker upon inspecting the output
can be measured using different metrics. Two of them are the Shannon entropy
and the min-entropy.

The Shannon entropy is usually understood as the uncertainty about an
information source from which the observation comes, measured as the expected
number of bits required to encode the data under an ideal encoding. The condi-
tional Shannon entropy H(D | O) describes the number of bits required to encode
information in D under the observation of O:

H(D | O) =
∑
o

Pr(O = o) ·H(D | O = o)

=
∑
o

Pr(O = o) ·

(∑
i

Pr(D = i | O = o) · log2

1

Pr(D = i | O = o)

)
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Alternatively, the vulnerability of a random variable X can be defined as
the maximum probability V (X) = max

x
Pr(X = x) among the possible values

of X. The idea is that a high vulnerability indicates that the correct data
point can be guessed easily: The min-entropy of a random variable X is defined
using the vulnerability as H∞(X) = − log2 V (X). Additionally, the conditional
vulnerability V (D | O = o) = max

i
Pr(D = i | O = o) measures the success rate

when the attacker tries to guess the secret under a given observation o.
In the context of QIF, we are interested in the conditional entropy H∞(D | O)

that describes the expected amount of information about the input that one
receives upon observing the output. Formally, it is defined as follows.

H∞(D | O) =
∑
o

Pr(O = o) · V (D | O = o)

= − log2

(∑
o

Pr(O = o) · (max
i

Pr(D = i | O = o))

)

3 Formalisation

This section formalises the notions of facts and information-theoretic minimality.
We will see how we can apply this formalisation to implement our approach in
the following sections.

3.1 Programs and Fact Bases

We consider a fixed domain D of possible personal data points and R the set
of possible results. In the introductory example in Figure 1, D = N × N and
R = [0.0, 1.0] ⊆ R. We consider the program to be data-minimised as a total
and deterministic function P : D → R that maps a user’s data point d ∈ D to a
result r = P (d) ∈ R.

A fact is a predicate f ∈ 2D on the set of data points D, characterised
by those points that satisfy the predicate. Usually a predicate is syntactically
represented as a constraint on the variables standing for the individual values
within the data point. For example, we use the constraint age > 18 to denote
the set of data points {(age, income) ∈ D = N× N | age > 18}. We denote the
set of all conceivable facts on the domain as F = 2D. We write d |= f to indicate
that the data point d satisfies the predicate f ∈ F and d |= F to indicate that
d satisfies all predicates in F ⊆ F. In the following, we will generally not draw
facts from F. Instead, we assume that facts are taken from a fact base, a subset
of predicates F ⊆ F. Not every set is suited as a fact base. For a given program
P , we demand that for all possible data points d, we have a set of facts that
uniquely identifies the result P (d).

Definition 1 (honest fact sets and projections). Given a point d ∈ D, we
call a fact set F honest about d if d |= F . We call a projection π : D → 2F

honest if d |= π(d) for every d ∈ D.
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Definition 2 (sufficiently precise fact sets and fact bases). Let P : D → R
be a program.

A fact base F ⊆ F is called sufficiently precise for P if for all d ∈ D there
exists a sufficiently precise and honest set F ⊆ F .

A fact set F ⊆ F is called sufficiently precise if there exists an r ∈ R such
that for all d ∈ D with d |= F , we have P (d) = r.

This property will be useful for the following decomposition of the computation
of P . With reference to Figure 2b, we can define two functions π0 and ω that take
the roles of the data minimisation DM and data restoration DR in the sketch.
The canonical projection π0 : D → 2F maps points d ∈ D from the domain to all
facts that are satisfied by d, i.e., π0(d) := {f ∈ F | d |= f}. The partial witness
function ω : 2F 7→ D produces for a fact set F ⊆ F a witness ω(F ) ∈ D with
ω(F ) |= F iff such a value exists.

Observation 1 Let F be a sufficiently precise fact base, then: P = P ◦ ω ◦ π0.
The following diagram commutes:

D R

2F D

π0

P

ω

P

This follows from the following observation: If F is sufficiently precise, then the
projection π0(d) is an honest, sufficiently precise fact set for every d ∈ D. This
implies that d′ = ω(π0(d)) returns a value with P (d) = P (d′).

Thus, it is possible on the front end to encode a point d in form of a set
of predicates π0(d) and transmit that instead of d. On the back end, a witness
ω(π0(d)) can be chosen to complete the computation by running the original
program P (ω(π0(d))) on the witness yielding P (d). Note that it is not necessary
that ω(π0(d)) = d, i.e., the back end need not be able to reconstruct the input
data, but the witness will have the same result under P as d1.

Where does the data minimisation happen here? It is in the function π0 that
maps to the facts that we lose information on the input data. In general, a set of
constraints can have many satisfying assignments (models), π0 is not an injection
such that information is reduced here. At the same time, while the information
is reduced, all transmitted facts must be valid statements on d.

In case there is doubt about the applicant having submitted an honest fact
set, certificates proving the facts can be requested. For this, we assume that a set
of certifiable facts C ⊆ F is given. Intuitively, a certificate c ∈ C is a fact which
trusted third parties can attest (e.g., by inspecting legal documents), and this
attestation can be audited (e.g., by digital signature). Of course, a certificate has
to be honest, i.e., d |= c. For example, the applicant’s electronic passport might
can certify that age > 18. We say that c is a certificate for a fact f ∈ F if c→ f .

1 d will be in the same equivalence class in the kernel of P .
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A large part of the remainder of the paper will address the challenges of
designing suitable precise fact bases and identifying clever projection functions
that can be used instead of the canonical projection π0 while maintaining the
property of Observation 1. Any honest projection π must obey π(d) ⊆ π0(d).

However, two corner-case fact bases are worth mentioning here (
∼
= meaning

that two sets are isomorphic):

FD = {{d} | d ∈ D} ∼= D FR = {{d | P (d) = r} | r ∈ R} ∼= P (D) ⊆ R

In the trivial fact base FD, every data point is captured by precisely one predicate
(like income = 1234∧ age = 37). The canonical projection only wraps the concrete
data in a unique predicate and the witness function unwraps them. This fact
base covers the comparison ‘base line’ without data minimisation. On the other
extreme, the fact base FR loses as much information as possible on the front end
and effectively transmits to the back end only the result of the computation P .
This is the other end of the spectrum: It minimises the data most (according
to any minimisation definition). In Section 4.1, we see an algorithm using the
weakest precondition transformer that can compute FR.

Although this seems like an obvious solution to our data minimisation problem,
it is also impractical. While we want to minimise the personal data that are
initially transmitted, we also want to be able to certify the facts later. Using
FR as the fact base, all relevant knowledge about the applicant’s data point d is
encoded into a single fact, which is determined solely by the result r = P (d). For
certification by a third party, the applicant needs to fully disclose d to the third
party that verifies that the result r = P (d) was correctly computed. Using a fact
base other than FR, the applicant may release more information initially, but
less information later when certificates are requested.

3.2 Data Minimisation

After having set up the formal framework describing our approach, we can
now focus on the actual question of data minimisation within the approach: A
data point d ∈ D is projected onto a set π(d) ⊆ F of facts. But since there
are many possible fact bases and different possible projections that preserve
data reconstructability, we need means to differentiate. The interesting question
remains to be able to compare different sets of facts with respect to the information
they divulge to the agency. We will discuss three notions in the following: (1) mo-
del-theoretic, (2) information-theoretic based on Shannon entropy and (3) vulner-
ability-driven based on min-entropy. For each notion, we define a different partial
order �: 2F × 2F. We write F � F ′ if a fact set F ⊆ F carries less information
(as defined by the picked notion) than another fact set F ′ ⊆ F.

Model-theoretic Minimisation The first notion uses the sets of satisfying
instances as a basis for an order on fact sets. For a fact set F ⊆ F, the set of
models (i.e., satisfying instances) models(F ) := {d ∈ D | d |= F} is the set of
data points that satisfy all facts in F . A fact set with more satisfying data points
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in the model set sends less information about the actual value within this set
to the agency. Intuitively, if there are more satisfying data points, the agency
has a lower chance of guessing the correct one. Since, at least for now, we do not
incorporate probability distributions over the data points, we will only compare
sets by their model sets if one is a subset of the other. The more information a
fact set conveys, the fewer models it has.

Definition 3 (Model-theoretic minimisation �mt). Given two fact sets
F, F ′ ⊆ F, we say F carries model-theoretically at most as much information
as F ′ and write F �mt F ′ if all instances satisfying F ′ also satisfy F , i.e., if
models(F ′) ⊆ models(F ).

With this model-theoretic notion of ‘more models implies less information’ at hand,
we can derive a syntactic notion which allows us to judge syntactic representations
w.r.t. minimality.

Observation 2 (Syntactic minimisation) Given two fact sets F, F ′ ⊆ F that
are represented syntactically by two sets of constraints C, C ′ respectively, if
C ⊆ C ′, then F �mt F ′.

The opposite direction needs not hold, since the same fact may be expressed by
syntactically incomparable constraints. Moreover, even if C ⊂ C ′ is a strict subset,
the conveyed information may remain the same if the constraints in C ′ \ C are
implied by C. For example, the fact set {age > 18} contains less information than
{age > 18, income > 1000} but as much information as {age > 18, age > 17}.

For instance, if a fact set has only one model, it identifies the corresponding
confidential data directly. If it has two models (and all data points are equally
likely), then there is a 50 : 50 chance to guess the correct confidential data point.

Minimisation by Shannon-Entropy Model-theoretic minimisation is a good
measurement if the compared fact sets are in a subset relationship. Another
approach allows us to assign a number to fact sets and thus make the comparison
a total relation.

We achieve this by applying the notions of quantified information flow
(QIF) [14] (introduced in Section 2) to our problem. In the scenario of data
minimisation, the attacker is the agency that learns information about the confi-
dential applicant data d by observing the transmitted facts F = π(d) ⊆ F . In
terms of Section 2, the input variable D takes values in D and the observation
(the data transmitted to the agency) O takes values in 2F .

A fact set F partitions the domain D into those data points that satisfy
F and those that do not. We assume a given a-priori probability distribution2

Pr(D = d) on the input D that models how likely a particular data point d ∈ D
occurs amongst all applicants.

2 We assume that D is finite and discrete, although we are confident that this can be
generalised.
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One way to measure the (information-theoretic) amount of information that
the agency receives is via the probability mass of those data points which are
consistent with the made observation, i.e., PrF(F ) :=

∑
d∈D
d|=F

Pr(D = d). Intuitively,

this is the probability for a randomly chosen applicant that F applies to them.
The more applicants are consistent with F , the less information it leaks. PrF is
in general not a distribution over 2F. We define an information-theoretic notion
of minimality:

Definition 4 (Information-theoretic minimisation �it). Given two fact
sets F, F ′ ⊆ F, we say F carries information-theoretically less information than
F ′ and write F �it F ′ if PrF(F ) ≥ PrF(F ′).

The important difference between Definitions 3 and 4 is that the former does
not take probabilities into account and thus allows for a comparison only if one
fact set is a subset of the other. Since the latter notion is based on probabilities,
it can express more cases.

Observation 3 For all fact sets F, F ′ ⊆ F:

– F �mt F ′ =⇒ F �it F ′
– F �mt F ′ ⇔ F �it F ′ if F ⊆ F ′ or F ′ ⊆ F
– F �it F ′ ⇔ |models(F )| ≤ |models(F ′)| (i.e., F has fewer models than F ′)

if D is finite and Pr(D = d) is uniformly distributed.

In information theory, the information content of random variables is usually
computed in bits by taking its logarithm. We get the Shannon entropy if we
compute the expectation value of the information of the input data. Since we can
use the observations to learn about the data point, we are actually interested
in the conditional Shannon-entropy H(D | O) (as defined in Section 2). This, in
turn, allows us to compare different projection functions w.r.t. the transmitted
information.

Observation 4 Consider two different projection functions π1, π2 : D → 2F

inducing the random observation variables O1, O2 respectively with H(D | O1) ≥
H(D | O2). In the long run, the agency will learn less3 about the applicants if the
projection π1 is used by all applicants (in comparison to when π2 would be used).

Example 1. Let us revisit the trivial fact bases FD and FR from Section 3.1. For
a data point d, the single-element fact {d} is the maximum w.r.t. model- and
information-theoretic minimisation. Nothing more can be said than the full data
if the fact set is to remain honest. The fact {d′|P (d) = P (d′)} characterising all
data points with the same result of P , on the other hand, is the minimum w.r.t.
both notions. There is no way to convey less information about the data point if
the fact set is to remain sufficiently precise:

{d} �mt/it F �mt/it {d′ | P (d) = P (d′)}

for any sufficiently precise and honest fact set F for d.
3 i.e., will gather less information in the sense of Shannon information-theory
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Fig. 3. The input space of the introductory example Figure 1 partitioned by the
different program outputs R = {0, . . . , 0.3}. F1, F2 and F3 are the regions of different
fact sets. The probabilities for age and income are given on the margin.

Minimisation by Min-Entropy In Section 2, we also introduce the (condi-
tional) min-entropy H∞(D | O). In contrast to the Shannon entropy, the min-
entropy is driven by an attacker model. It captures the success of an attacker to
guess the data point in one try [14]. This guessing is modelled by the vulnerabili-
ties V (D) and V (D | O).

Observation 5 An applicant with the data point d ∈ D should use a fact set F
for which d is unlikely among all other models.

The attacker observes the transmitted facts F , and tries to guess the data point
i. After the definition of vulnerability V (D | O = F ), the attacker selects the data
point i that has the highest probability Pr(D = i | O = F ). As a consequence, if
the applicant can choose between two fact sets F and F ′, they should select F
iff Pr(D = d | O = F ) ≤ Pr(D = d | O = F ′), for their individual data point d. As

Pr(D = d | O = F ) = Pr(D=d,O=F )
Pr(O=F ) , we can also observe that the applicants can

achieve this by selecting likely (often selected) set of facts or unlikely combinations
of their data points and the transmitted facts.

Definition 5 (Vulnerability minimisation �V ). Given two fact sets F, F ′ ⊆
F, we say F is less vulnerable than F ′, and write F �V F ′ if V (D | O = F ) ≥
V (D | O = F ′).

Example 2. Let us consider our introductory example with (age, income) ∈
D, where 0 ≤ age ≤ 50 , 0 ≤ income ≤ 3000 . Figure 3 shows the input space,
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the partitioning based on the output of Figure 1, and the assumed margin
probability Pr(age) and Pr(income). We assume that Pr(age) and Pr(income)
are independent, hence Pr(age, income) = Pr(age) ·Pr(income). Hence, the data
point with the maximum overall probability is j = (30, 1500) as the combination
of the maximum probability of age and income. For convenience, we keep the
probabilities discrete, sparsely populated with a small support domain. Let us
consider the following fact sets:

F1 = {age > 18, income ≥ 2000}
F2 = {age > 25, income > 1000, income ≤ 2000}
F3 = {15 < age ≤ 23, income ≥ 750, income ≤ 1500}

Their corresponding subsets in the input space are also drawn in Figure 3.
First, we attest that F1, F2, and F3 are not in a subset relationship to each

other (cf. Observation 2). None of them is a subset of the other. Moreover, F1

and F2 are sufficiently precise to guarantee the result r = 0.3. On the other
hand, F3 is not precise enough to guarantee a single result because its region
overlaps with multiple output partitions. Hence, let us concentrate on F1 and
F2. The fact sets are also incomparable using subset relations on their models,
e.g., models(F1) 6⊂ models(F2) and vice versa. Using the number of models, we
see that F1 allows more data points: |models(F1)| > |models(F2)|. But both are
smaller than the outer output partition for r = 0.3.

The sum of the probabilities results into the following probabilities for the
fact sets: PrF(F1) = 0.36 and PrF(F2) = 0.40. We see that F2 �it F1 as F2 is
more probable. Using the vulnerabilities for V (F1) = 0.06 and V (F2) = 0.09, we
would rather select F1. For the data point i = (30, 2000), which lies in F1 and F2,
we would use F2 as P (D = i | O = F1) = 0.17 against Pr(D = i | O = F2) = 0.15.
Note, data point j also lies in F2, hence it makes F2 interesting to select for all
data points besides j.

3.3 Limitations

In order to check if a fact set is sufficiently precise, the applicant needs access to
the program. Otherwise, it is impossible for the applicant to know if a fact set
has a unique result value or not. Naturally, this restriction limits the application
scenarios for our approach since not all agencies are willing to disclose in all detail
how they come to their decisions. A bank, for instance, need not fully disclose
their algorithm to decide the interest rate for a loan to an applicant. However,
there are cases where the availability of the computed function is a sensible
assumption: The introductory example of the income tax rate computation is
such a situation. It is definitely reasonable to assume that the tax law is publicly
known. The same applies to other calculations described by law and regulations.

Our approach can be adapted if the sources are not available, but naturally
becomes less transparent. A solution that does not require access to the source
code is for the applicant to always submit the set of all facts which hold for
their data point (i.e., they apply π0). Alternatively, the company can build a
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projection function into their front ends. In that case, the applicant can neither
check if their transmitted data is sufficiently precise nor can they know anything
about the minimality of the data provided. The design and analysis of the fact
base and projection can then only happen inside the agency: The base must be
sufficiently precise and statements about its minimising effects can only be made
within the agency. It would be possible to have the minimisation design audited
by a third party to increase trust by applicants into the scheme.

Our approach can identify minimal fact sets needed to compute a result,
thus identifying the minimal set of ‘adequate, relevant, and limited to what is
necessary’ [3] facts for the given computation. However the method can only
judge the transmitted facts based on their being needed in the program, it cannot
judge the adequacy of the program’s purpose in the first place. For example, if an
insurance company chooses to discriminate against green-eyed people by marking
up all prices for them, our approach will consider a person’s eye colour to be a
relevant fact. Moreover, different parameters within a data point can be correlated
and the agency may still gain knowledge even if problematic parameters are
excluded from facts (e.g., the address might be correlated with the income, and
facts on address may leak information on income even if the income is not in the
fact set).

4 Data Minimisation Using Formal Verification

In this section, we refine the approach formally defined in the last section towards
an implementation that makes use of existing functionalities in formal verification
approaches and tools. Figure 4 refines the sketched pipeline from Figure 2 by
listing the tasks that are needed in the data minimisation (which corresponds
to projection π) layer in the front end and the data restoration layer (which
corresponds to witness function ω) in the back end.

On the client side, the applicant submits their data point d ∈ D which is
then subject to a projection onto facts from the fact base F . In general, each
applicant may select a different fact set for d or even submit a different fact set
every time they run the algorithm. The approach solely relies on two properties
that F = π(d) must have: (1) F must be honest and (2) F must be sufficiently
precise. F is then transmitted to the back end (say, via a network connection).
The back end receives a fact set F and tries to compute P (d) from that. First, it
should check if the received fact set is indeed sufficiently precise – there is no
need to trust the client on that point. Checking the honesty of the set on the
other hand is not possible, unless the agency requires that facts be certified (e.g.,
signed by trusted parties); but this is outside the scope of this paper. Then, the
back end reconstructs a witness d∗ := ω(F ) that satisfies all constraints of F .
The result is then computed as P (d∗) and guaranteed to be equal to P (d). In
the following, we will outline

1. how a sufficiently precise fact base can be extracted fully automatically from
the source code of P ,
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Applicant

Front end:
select honest,

precise (w.r.t. P )
fact set F for d

Back end:
check consistency
and preciseness;

find rep. d∗ = ω(F )
with d∗ |= F

Program P

Data minimisation π
Data restoration ω

d ∈ D d π(d) = F ⊆ F d∗ P (d∗)

Fig. 4. Refined sketch of the pipeline, showing the tasks in the front and back end.

2. how a model-theoretically minimal, yet sufficiently precise fact set F consistent
with d can be automatically computed,

3. how a witness d∗ can be obtained from F that computes P (d), and
4. how it can be verified that there is no witness for another result value (i.e.,

that F is sufficiently precise).

4.1 Front End: Finding Facts

In earlier considerations, we did not make any assumptions about the fact base
F . In general, a fact base could be handcrafted specifically for its target program
by an expert because of the knowledge they have about the domain and its
data minimality principles. For an automatic data minimisation refactoring of a
process, it is helpful to have a possibility to fully automatically extract a fact
base from the code. Luckily, as we will see, a sufficiently precise fact set can be
extracted automatically from the program code.

The program determines the outcome, and hence partitions the input space
into regions of equal output. The conditions that describe these regions can be
found in control and data flow expressions of the program, and a fact base can
be derived by a static analysis.

The first candidate is the weakest precondition calculus (wp-calculus) [4], in
which the formula wp(P, c) represents the weakest precondition s.t. the post-
condition c holds after the execution of the program P . If we assume that P
is loop-free, the formula WP(d) := wp(P, o = P (d)) exactly describes all data
points with the same output as d ∈ D. The facts resulting from the wp-calculus
thus produce the fact base FR introduced in Section 3.1.

Example 3. Consider our introductory example in Figure 1. The wp-calculus
returns the following facts to achieve the outcome of 0.1.

wp(tax rate, o = 0.1) = {¬(age < 18) ∧ age < 25 ∧ ¬(income > 1000)}

A drawback of the wp-calculus is the need for specification. In particular, to
preserve minimality, all unbounded loops must be specified with a sufficiently
strong loop invariant. However, there are no unbounded loops in the examples
and case study in this paper. The wp-calculus thus finds a fact set F under the
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fact base FR (see Section 3.1). Even though the wp-calculus does not explicitly
model any probabilities, its use of FR guarantees that F is minimal under all
three notions of minimality discussed in Section 3.2 because FR

∼
= P (D) ⊆ R.

A more practical idea is to capture the path conditions during the execution
of P (d). In addition to the normal evaluation of each expression to a concrete
value, we store each path condition symbolically, using concrete values for non-
input variables. When we capture these symbolic expressions, we obtain a set
of (path) expressions over the input variables. These only capture the control
flow of the program, but not the data flow. To capture the data flow, we add a
fact for each output variable o that asserts equality between the symbolic value
of o and its concrete at the end of the execution of P (d). Formally, we add the
fact seval(o) = eval(o) where seval(o) returns a (symbolic) expression that
describes the computation of o by using the input variables, and eval(o) which
evaluates to the concrete value of o.

We call the predicate transformer fwd(P, σ, ς) because of the forward appli-
cation (in contrast to the wp-calculus, which is applied backwards). P denotes
the program, σ the current concrete state, and ς the symbolic state over the
input variables. ∅ denotes the state with an empty variable assignment. σ[v ← e]
denotes an update of the state σ in which the variable v is assigned to the
concrete or symbolic value e. We use eval(e) to denote the concrete evaluation
of an expression e, and seval(e) for the symbolical evaluation.

fwd(v := e ; P, σ, ς) fwd(P, σ[v ← eval(e)], ς[v ← seval(e)])

fwd(if(c) b1 else b2 ; P, σ, ς) {seval(c)} ∪ fwd(P, σ, ς) if eval(c)

fwd(if(c) b1 else b2 ; P, σ, ς) {¬seval(c)} ∪ fwd(P, σ, ς) if ¬eval(c)

fwd(ε, σ, ς) 
⋃

o∈OutV ar
seval(o)=eval(o) (1)

Example 4. Re-consider Figure 1; the tax rate computation for the data point
(age = 20, income = 800) results in 0.1. A sufficiently precise fact set is

fwd(tax rate, ∅[age← 20][income← 800], ∅)
= {¬(age < 18), age < 25,¬(income > 1000)} .

This program contains only control flow, but no data flow. In every control-flow
path, the return value is a constant independent of the input. To see why the last
rule (1) is required, consider the program out = x mod 4 which returns the last
two bits of the input x. This program only consists of a data flow. For instance,
we obtain the fact x mod 4 = 1 for the data point x = 13 by (1).

Observation 6 The fwd-calculus returns a sufficiently precise and honest fact
set for a data point d ∈ D.

While the fwd-calculus can guarantee these two properties, it does not guarantee
minimality of the resulting fact set. It is also vulnerable against syntactical
manipulation in the sense that a programmer can exploit the fwd-calculus to
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ensure chosen facts are always included in the result by mentioning them in the
program code although they are not semantically required. For example, consider
the program if (x) out = 0 else out = 0, which always returns 0, but the
fwd-calculus includes the fact x.

4.2 Front End: Minimising Fact Sets

The fwd-calculus does not guarantee any notion of minimality. For example,
consider two nested if-statements ”if (a) if (b) ...“, for which the fwd-
calculus includes facts a and b, and misses the suffice and more minimal fact
a ∧ b in contrast to the wp-calculus. Nonetheless, we can use the resulting fact
set F of the fwd-calculus as a starting point to extract a set F ′ ⊆ F that is
minimal w.r.t. �mt. We introduce a technique to find such a F ′ by using minimal
unsatisfiability cores for proofs which are reported by verification tools.

If a formula set C is unsatisfiable, modern propositional satisfiability (SAT)
or satisfiability modulo theories (SMT) solvers can compute a minimal unsat-core
C ′ ⊆ C such that C ′ is unsatisfiable and there is no unsatisfiable set C ′′ ⊂ C ′. In
general, the minimal unsat-core is not unique. For a given d ∈ D, with r = P (d)
the following formula encodes a check for preciseness of a consistent fact set F :

NotSufPrec(F ) := wp(P, out 6= r) ∧
∧
F (2)

If NotSufPrec(F ) is unsatisfiable, we can obtain a minimal unsat-core F ′ from
the verification tool to obtain a fact set which implies that the result of P is r.
Using the minimal unsat-core, we minimise a set of facts F ′ minimal w.r.t. the
minimisation �mt according to Observation 2. If NotSufPrec(F ) is satisfiable,
then F is not sufficiently precise. We will exploit this in the next section for the
back end computations.

4.3 Back end: Computing the Result from a Fact Set

The back end needs to re-establish the result r = P (d) from a received fact set
F . In the formalisation in Section 3.1, we introduce a partial witness function
ω : 2F 7→D that produces a witness such that ω(F ) |= F (if F ∈ dom(ω)). We can
rely here on another feature of modern SAT and SMT solvers: They can produce
a model in case they detect that an input is satisfiable. Hence, we encode

∧
F as

an SMT input. If it is satisfiable, the solver delivers d∗ := ω(F ). The back end
can feed d∗ into P and obtain the result r = P (d∗). If

∧
F is unsatisfiable, the

fact set is inconsistent, which is the front end’s fault.

Proving Sufficient Preciseness. As mentioned, the transmitted fact set F has
to be honest and sufficiently precise. While honesty cannot be checked without
requiring certificates for the facts, we can check preciseness. We again use the
formula defined in (2). If NotSufPrec(F ) is satisfiable, then there is a data
point d! ∈ D with P (d!) 6= P (d∗) which means that there is no unique result
value. The back end can once again blame the front end.
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However, the back end need not fail at this point. Instead it could follow
a policy that if a fact set is not sufficiently precise, the back end chooses any
satisfying data point, in particular, that with the worst possible outcome (for the
applicant). In our scenario: If the applicant chooses not to disclose the income,
the tax agency assumes the highest tax rate consistent with the facts. Technically,
this can be implemented by a repeated satisfiability test. If the applicant wants
to have a low tax rate, the agency can repeatedly use the postcondition out > r
to check if there is a data point for F which has a worse tax rate.

Of course, for these ideas to work, we must have SMT formulas that solvers
can decide. For many practical applications, we can limit formula expressions
in P and in F to SMT formulas from decidable theories only, e.g., by encoding
variables as finite bit vectors.

Example 5. For example, let P again be the tax rate function from Figure 1,
and F the set of facts represented by the predicates {age < 18, income > 1000}
which has been computed using the fwd-calculus. The formula from (2) reads
wp(tax rate, out 6= 0.0) ∧

∧
F and is unsatisfiable. The minimum-unsat core

provided by an SMT solver presented with this input shows that the set F ′

represented by {age < 18} is a sufficiently precise subset. This is sent to the back
end which finds a witness ω(F ′) = (12, 200) and computes a tax rate of 0.0 from
this data point. The formula wp(tax rate, out 6= 0.0) ∧ age < 18 is unsatisfiable,
so the back end knows it received a sufficiently precise result.

5 Implementation and Experiments

In this section, we give an overview over the prototypical implementation and
explain its use on a more sophisticated example. Both are publicly available4.

5.1 Prototypical Implementation

For our experiments, we implemented the functionalities of the front and back end
on top of cbmc [2] and Z3 [13]. Z3 is a state-of-the-art SMT solver and cbmc is a
bounded model-checker for C programs, which is why the implementation cannot
handle unbounded loops. The implementation is written in Python and orches-
trates the underlying tools. In general, the Python script takes an augmentable pro-
gram and a YAML file containing meta-data. An augmentable program contains
markers that allow injecting program code at the marked positions in the source
code. Figure 5 shows a minimal skeleton with markers. The required meta-data
contain the name of the input and output variables of the program along with the
variable assignments of the data point d ∈ D, and the calculated output r = P (d).
In the following, we assume that all facts are Boolean expression in the C language.

4 https://github.com/wadoon/data-minimization

https://github.com/wadoon/data-minimization
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#ifndef NOHEADER

// include files

#endif

int main() {

//!INPUT

// calculation

//!OUTPUT

}

Fig. 5. Skeleton of an
augmentable program.
Marker comments for
code injection.

As cbmc provides a way to check explicit assertions in C
programs, we only have to encode our proof obligations
into assert-statements. Also we exploit cbmc for the
generation of SMT input and DIMACS (a SAT input
format) encoding of the given program and assertions.

Front end: Execution of the Program. The first step on the
client side is the execution of the program with input d.
We use the marker //!INPUT to set the values of the input
variables to the data point, and the marker //!OUTPUT to
add statements to print out the value of the output vari-
ables. The augmented program is compiled and executed.
Its output is parsed to obtain r = P (d).

Front end: Finding Facts. Despite the exact solution (wp-calculus) being known,
the extraction of facts is not sufficient solved. The main issue is scalability.
Therefore, we implemented several lightweight techniques to come up with a
fact set: First, we implemented the fwd-calculus from Section 4.1; second, we
implemented an approach with symbolic execution based on the single static
assignment (SSA) form with a similar goal. The construction of the SSA-form
scales well, but the extraction of facts does not, i.e., it is only applicable if we
expand the computed expression of the program variables only to a limited depth.
The third heuristic approach tries to find a fact set by using expressions and
constants from the program and the assignments of input variables.

Whichever technique is used to obtain the fact set; in the end, we can check
whether the fact set is consistent and sufficiently precise.

Front end: Minimising the Fact Set. To obtain a fact set F ′ ⊆ F which is
minimised w.r.t. �mt as explained in Sec. 4.2, we use cbmc and Z3. In the
skeleton, the marker //!INPUT is replaced by a list of assume(f) statements for
each fact f ∈ F . The //!OUTPUT is replaced by the assertion assert(o == r) in
which r = P (d) is the computed output and o is the variable holding the output.
cbmc is then called to produce an SMT input file to which we add annotations
and commands that request and control the generation of a minimal unsat core.
We pass it on to Z3 and parse its output. If the assumptions imply the equality,
we can read out an unsat-core of that proof.

Back end: Calculation of the Outcome. The main task on the back-end side is
to compute the final result r = P (d) from a fact set F . Once computed, r will
also be used check the consistency and preciseness of F . The computation of the
outcome requires the symbolical execution of the program under the assumption
that the (symbolic) input adheres to F . Luckily, we can exploit cbmc to achieve
this: We use the same query on cbmc as in the minimisation step above: The
//!INPUT covers the assumptions of the facts, and //!OUTPUT is replaced by
assert(false);. If cbmc proves this program correct, then F is inconsistent,
and it will be rejected. If this program is not correct, we obtain a counterexample
variable assignment d∗ whose input satisfies F and whose output is r = P (d∗).
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Back end: Checking Sufficient Preciseness. To check sufficient preciseness of
a given fact set, we use the exact same setup as for minimising the fact set
(replacement of //!INPUT and //!OUTPUT marker). But since we are not interested
in an unsat-core here, we directly ask cbmc to verify that the assumptions always
lead to the same (previously) computed output.

5.2 Example: Account Charges

int charge(int age, int income, int reward) {

if (age < 18) return 0;

if (age < 27) {

if(income <= 1500) { return 0; }

else { return 5 - 2 * reward; } }

int g = 10 - 2 * reward;

do { g = g - 1; income = income - 500; }

while(income >= 500 && g > 0);

return g; }

Fig. 6. Example program for the calculation of ac-
count administration charges.

Figure 6 shows a program
computing the monthly charges
for a bank account. As in-
put variables, it takes the age
of the account holder, their
monthly cash receipt on the
bank account, and the reward
points of the customer loy-
alty program. The program
privileges young customers,
customers with a high cash
receipt and loyal customers.
Note that the given loop is bounded, as it terminates after at most 10 iterations.

Let’s consider an account holder with age = 35, income = 1250, and reward =
2.5 After executing the program with these inputs, it calculates the charge of 4.
By inspecting the program, the account holder might come up with the following
fact set

{age ≥ 27︸ ︷︷ ︸
f1

, 1250 ≤ income < 1400︸ ︷︷ ︸
f2

, reward = 2︸ ︷︷ ︸
f3

, income/500 = 2︸ ︷︷ ︸
f4

} .

Note that the arithmetic operations have C semantics, hence the division is
on integers. The selected facts are consistent and sufficiently precise, and the
considered data point satisfies them.

The fact minimisation step using the unsat-core method tells us that f4 can
be omitted. Indeed, f2 could also have been omitted; the minimisation is known
to be ambiguous. As f2 → f4, the account holder would select f4 to increase
the number of models. Hence, {f1, f3, f4} are transmitted to the agency. The
agency starts with testing the consistency, symbolically executes the program,
and checks for preciseness of the computed output. The verification of all proof
obligations takes a negligible run time (ca. 170-230 ms), but an additional hint
for the loop’s upper bound is required for cbmc.

6 Related Work

Predicate Abstraction. Our approach has similarities to predicate abstraction [8].
Predicate abstraction is a verification technique in which the state space over

5 See examples/run.account charges.1.sh in the linked repository.
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the program variables is projected on a state space over predicates. Each state in
the space over predicates describes a set of concrete states. The goal of predicate
abstraction is to select the smallest number of predicates such that the required
properties are provable. In our case, we are interested in facts (predicates) which
abstract the input space of the program and also result in the determined program
outcome (property).

Data Minimisation. Goldsteen et al. [6] introduce an approach for data minimi-
sation in machine learning models. They generalise the input based on certain
features, removing those features that influence the program’s result the least.
Thus, personal data are still needed for training.

Biega et al. [1] examine data minimisation in recommendation systems. They
identify two definitions for minimisation: Global data minimisation minimises the
total data collected about all users while ensuring some minimum average quality
level for all recommendations. Per-user data minimisation considers each user
individually and minimises the data collected about them while ensuring some
minimum quality level for their individual recommendations. In this dichotomy,
our approach performs per-user minimisation. The alternative without access to
the source code discussed in Section 3.3 falls back on global minimisation.

Unlike us, both of these papers consider a scenario (machine learning or
product recommendations) in which the result based on the minimised data does
not have to be exactly equal to the result based on the original data. In our
approach, this could be modelled by not requiring the fact set to identify one
unique result, but a set of results which only differ by some predefined distance.
Alternatively, we could group the possible results into equivalence classes and
require a set of facts to uniquely identify an equivalence class.

Formalisation of Privacy Properties. Mödersheim et al. [12] introduce the notion
of (α, β)-privacy: Given a first-order formula α which models the intentionally
released information and another formula β which models the information known
by the intruder, (α, β)-privacy is achieved if the intruder cannot derive a statement
from β which cannot also be derived from α. In our approach, minimality is
achieved if the amount of information that can be derived from the transmitted
data, but cannot be derived from the computation result, is minimal.

Differential privacy [5] is a notion of privacy in data sets. It is achieved
when the conclusions drawn from the data set are not affected by the presence
or absence of any individual datum. Local differential privacy is an approach
of achieving differential privacy by randomising each participant’s data before
collecting it. Hao et al. [7] apply this approach to software execution traces;
they define a way of modifying the traces to achieve differential privacy without
compromising the validity of the data. Instead of falsifying the transmitted data,
we minimise the amount of non-falsified information that is submitted. Like Hao
et al.’s approach, ours also depends on the applicant’s honesty; but in our case,
this can be somewhat mitigated by choosing facts that can be certified later.

k-anonymity [15] is a related notion of privacy in data sets: It is achieved
by replacing concrete data in a set by equivalence classes such that the data of
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any one individual becomes equivalent to that of at least k − 1 other individuals.
Since k-anonymity does not impose any restriction on the diversity within one
equivalence class, knowing what class someone belongs to might still reveal some
information about their exact data. Thus, improved versions of k-anonymity like
l-diversity [11] and t-closeness [10] were introduced. Our approach is similar in
that it partitions users into classes. However, instead of having a fixed equivalence
relation, we choose one of several possible relations induced by the fact base,
based on how much information the relation reveals about the user. Restrictions
similar to those imposed by t-closeness could be useful in judging the usefulness
of a fact base; e.g., a base which only includes facts fulfilled by most possible
users will likely force the user to reveal more information.

Ziller et al. [16] offer a definition of privacy based on information flow. Ac-
cording to them, privacy is the ability of a sender to upper-bound the amount
of information that can be computed from their message, independent of any
prior knowledge of the receiver. This definition is closely linked, but not identical,
to differential privacy. One important difference is that differential privacy is
context-independent and only considers what conclusions can be drawn from
the current data set. Our approach has a similar problem. The applicant cannot
necessarily control or even know how much prior knowledge the agency has about
them and what it does with that knowledge. They can however upper-bound
the information content of the message they send, and (by inspecting the source
code) ensure that only the information they sent is considered for the decision at
hand. In addition, the information contained in the decision’s result serves as a
lower bound for how much they have to send.

7 Conclusion

We present an approach to minimise the transmitted personal information of the
client to the agency. To achieve this, the clients send facts which describe their
personal data instead of their concrete data. These facts need to be consistent
with the original data and precise enough to guarantee the original outcome.

Our current implementations for fact extraction are very limited. Hence, we
are considering a refinement process in which precise (but maybe too strong)
fact sets are weakened, or imprecise sets of facts are strengthened by adding
new facts. Beside the technical requirements, the extracted facts should also be
comprehensible to the applicant and the agency.
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