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Type systems and modern type checkers can be used very successfully to obtain formal correctness guarantees
with little specification overhead. However, type systems in practical scenarios have to trade precision for
decidability and scalability. Tools for deductive verification, on the other hand, can prove general properties in
more cases than a typical type checker can, but they do not scale well. We present a method to complement the
scalability of expressive type systems with the precision of deductive program verification approaches. This is
achieved by translating the type uses whose correctness the type checker cannot prove into assertions in a
specification language, which can be dealt with by a deductive verification tool. Type uses whose correctness
the type checker can prove are instead turned into assumptions to aid the verification tool in finding a proof.
Our novel approach is introduced both conceptually for a simple imperative language, and practically by a
concrete implementation for the Java programming language. The usefulness and power of our approach has
been evaluated by discharging known false positives from a real-world program and by a small case study.
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1 INTRODUCTION

Type systems are used very successfully to obtain formal correctness guarantees with little specifi-
cation overhead. Type systems together with highly engineered type checkers scale well. In recent
years, type systems and checkers have been devised for a number of program properties and for a
number of programming languages. Recent examples include nullness type systems in C♯, Kotlin,
and Scala, ownership types in Rust, and the optional type systems in Python and TypeScript.
However, part of many success stories of type systems in practical scenarios is that they trade

precision for decidability and scalability. In order to scale well, they only check for a conservative,
decidable approximation of the formal guarantee they are designed for. For example, a sound type
system designed to guarantee that no null pointers are dereferenced at run time can often show that
large parts of a program are free of null-pointer dereferences. In many cases, however, there remain
places in the program where the non-nullness of variables depends on application-specific, more
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Fig. 1. Property-type-checking pipeline.

sophisticated conditions which are beyond the capabilities of a type checker. While type systems
can help developers reduce these misses (so-called false positives), they cannot entirely remove
them. Tools for deductive verification, on the other hand, can prove the properties behind a type
system (non-nullness in the example) more often than a typical type checker can. Unfortunately,
this increase in completeness comes at a price and they do not scale as well as type systems. In
particular, they may require a significant specification and verification overhead from the developer.
This work presents a bridge between the two formal methods by combining the precision of

deductive verification with the scalability of type systems. The idea is that the developer uses
advanced type systems in their program to establish formal guarantees. The thus type-enriched
program can then be checked by an automatic, well-scaling type checker. Only those remaining
few false positives that could not be discharged by the type checker are then presented to a
program verification tool which can use its full reasoning power to discharge the remaining formal
obligations using deductive reasoning.
The combination of the two techniques is achieved by having the type checkers emit a trans-

formed program in which all those typing constraints which they could not automatically prove
to hold are transformed into formal specifications in the program (in the form of assert clauses)
which are then to be proved by a deductive verifier. Moreover, those annotations that have been
successfully checked by the type checkers are used as additional assumptions by the program
verification tool to enhance its reach.

The workflow of the approach is sketched in Figure 1: The type checker may be able to confirm
all property types (✓), but it may also terminate reporting typing errors (✗). The reported errors
are passed on to the program translator, which encodes them as specification clauses and presents
the thus instrumented program to the deductive verifier. Here, the remaining cases can either all be
closed (✓) thus ensuring type safety. If a proof obligation remains unproven (✗), this may indicate
an actual problem in the program or may still be a spurious type error due to lack of reasoning
power of the prover, or due to too weak formal specifications. Interactive theorem provers can be
used to inspect and analyze unclosed proofs.

Property type systems. The type system used in the approach can be any property type system,
a term we use to designate a kind of pluggable type system, i.e., a type system which enriches
a language’s existing base type system without changing the run-time semantics [Bracha 2004].
The pluggable type systems we consider work by providing a set of qualifiers, which can be used
to annotate a base type and restrict the set of valid instances. For example, String is the type of
all strings, while @Length(5) String with the qualifier @Length(5) might be defined as the type
containing only those strings of length 5. We define property qualifiers to be qualifiers which are
defined by logical formulas or Boolean expressions over the typed variable. For example, the qualifier
@NonNull in a nullness type system can be defined by the Boolean expression subject != null.

Property types are thus a kind of refinement type. Refinement types were introduced by Freeman
and Pfenning [1991]. A refinement type is a refinement of some base type whose instances fulfill
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some property. This notion is very similar to dependent types, i.e., types which depend on program
values. The term łrefinement typesž is also used for dependent type systems whose types are
restricted in a way that makes the type system decidable [Vazou et al. 2014, 2.1]. The term łtype
refinementsž is also used in imperative languages to refer to type systems in which base types are
extended by subtypes whose instances fulfill some property [Mandelbaum et al. 2003] [Chin et al.
2005].
Chin et al. [2005] introduce a system for semantic type qualifiers which allows users to define

such type refinements along with typing rules in a domain-specific language. Markstrum et al.
[2010] introduce the JavaCOP framework, which applies this idea to Java. Our work is implemented
using the Checker Framework [Dietl et al. 2011a; Papi et al. 2008], another framework for pluggable
Java type systems based on type qualifiers.

Java Implementation. We introduce our novel approach thoroughly on a conceptual level, but
also by means of a concrete implementation for the Java programming language. The approach has
been implemented on top of two well-established formal techniques for Java: The considered type
systems and checkers are based on the Checker Framework. In the Checker Framework, pluggable
types are implemented bymeans of type qualifiers that can be used to annotate Java types. Most type
qualifiers can be turned into property qualifiers by providing an appropriate Boolean expression (e.g.
subject != null for @NonNull). To make them accessible to deductive verification tools, property
qualifiers are translated to specification clauses in the formal specification language Java Modeling

Language (JML) [Leavens et al. 2013] which is the de facto standard for formal Java specifications.
For the deductive verification, we use KeY [Ahrendt et al. 2016], a powerful deductive verification
engine for JML-annotated Java code which supports both automatic and interactive verification,
and the extended static checking facility of OpenJML [Cok 2011], a tool suite for verifying and
run-time checking JML-annotated Java programs.

Contributions. The main contributions of this paper are:

• A general definition and formalization of a property type system for imperative languages.
This comprises the outlines of typing rules for property types that make use of assume and
assert statements in the language.

• A novel and sound approach to combine type checking and deductive verification by letting
the type checker emit a program with some additional assertions. The deductive checker
can close the correctness gaps that the type checker had to leave open by verifying these
assertions. By using the deductive checker in addition to the type checker, we thus avoid
false positives and are able to prove properties for more programs.

• A realization of the approach for Java using the Checker Framework for pluggable property
types, and KeY and OpenJML for deductive verification.
This realization includes a domain-specific language to define property types using Java
expressions and a generic property type checker, again using the Checker Framework, to
enforce these property types.
The user can use this to define multiple pluggable property type systems. After the generic
type checker has run once for each type system, the remaining properties of all type systems
are compiled into a single JML specification.

• We demonstrate the usefulness and power of our approach in an evaluation in two parts:
First, we extract some (simplified) code snippets from the Daikon Invariant Generator [Ernst
et al. 2007] and discharge some false positives emitted by the Checker Framework’s Nullness
Checker. Second, we implement, specify, and verify a small case study.
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boolean is_less_equal(@NonNull VarInfo v1, @NonNull VarInfo v2) {

@Nullable Invariant inv = null; @Nullable PptSlice slice = null;

slice = findSlice(v1, v2);

if (slice != null) {

inv = instantiate(slice);

}

if (inv != null) {

@SuppressWarnings("nullness")

boolean found = slice.is_inv_true(inv);

return found;

}

return false;

}

Fig. 2. Example of a false positive of the Checker Framework’s Nullness Checker, which does not occur with

our approach1.

Overview. We start with a motivating example in Section 2, before Section 3 gives the theoretical
definitions and theorems of property types and the translation of a property-typed program in a
simple imperative language into a program with assertions and assumptions. Section 4 explains
how this theoretical framework can be put into practice by explaining the realization of the
pipeline consisting of a generic property type checker, a translation from property types to JML
specifications, and the JML verification tools. We evaluate this framework in Section 5. In Section 6,
we present related work on verification and types, and how it relates to our approach. Section 7
concludes the paper.

2 MOTIVATING EXAMPLE

Let us consider the source code excerpt in Figure 2 from the Daikon Invariant Generator [Ernst
et al. 2007]. Daikon uses the Nullness Checker of the Checker Framework to ensure that null-pointer
exceptions (NPEs) cannot be thrown at run time. We simplified the excerpt and made all relevant
type qualifiers explicit. The @Nullable qualifier on a variable expresses that this variable might be
null, while the @NonNull qualifier excludes null as a possible value. Whenever no explicit qualifier
is given for a variable declaration, @NonNull is implicitly assumed by default for fields, parameters,
and return types, and @Nullable for local variables.
Daikon contains approximately 60,000 lines of annotated Java code, excluding comments. Of

those, 1129 contain explicit nullness annotations and there are 198 @SuppressWarnings annotations
or castNonNull method calls to suppress false positive warnings from the Nullness Checker.

For this particular excerpt, the Nullness Checker detects a possible NPE for the method invocation
on the slice variable. This is a false positive, because the implementation ensures that if the variable
inv is non-null, the variable slice is also non-null. Therefore, the guarding if-statement of the
first return statement prevents an NPE from being raised by the method invocation. While the
Nullness Checker does have some flow-sensitive type refinement rules that allow it to refine static
types in a flow-sensitive fashion, in this case, this refinement only affects the variable inv, which is
refined from @Nullable to @NonNull inside the scope of the if (inv != null) statement.

1See the original file at https://github.com/codespecs/daikon/blob/a62c452bf4a5818271f87bd0d2ba322a18e197ee/java/daikon/
PptTopLevel.java#L2087
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//@ requires v1 != null && v2 != null;

boolean is_less_equal(VarInfo v1, VarInfo v2) {

//@ assume v1 != null && v2 != null;

Invariant inv = null; PptSlice slice = null;

slice = findSlice(v1, v2);

if (slice != null) {

//@ assume slice != null;

inv = instantiate(slice);

}

if (inv != null) {

//@ assume inv != null;

//@ assert slice != null;

boolean found = slice.is_inv_true(inv);

return found;

}

return false;

}

Fig. 3. (Simplified) translation of the example.

Our approach allows us to use a deductive verification tool to avoid reporting the false positive.
To achieve this, we associate each type qualifier 𝐴 with a property Prop𝐴 (subject), in which subject

is a placeholder for the typed value. This property connects the intention of the type qualifier
to its semantic meaning to be used in the verification process. For example, the property for
@NonNull is PropNonNull = subject != null and for @Nullable, it is PropNullable = true. Moreover,
since PropNonNull implies PropNullable, any value of the former type is also a value of the latter type
and any type qualified with @NonNull is a subtype of that type qualified with @Nullable. In general,
@A T can only be a subtype of @B T if Prop𝐴 implies Prop𝐵 .

Following the approach sketched in Figure 1, the next step is the translation of the program and
the information of the type checker into a formal specification that can be read by the verification
engine. The translation of our example is seen in Figure 3. It is similar to the code in Figure 2, but
instead of the type qualifiers it contains JML specification clauses (in lines beginning with //@).
The requires clause states a method precondition, which must hold whenever the method is

called. In our example, the precondition expresses the fact that both parameters are @NonNull. The
assert statements state properties which must hold whenever that point in the program is reached,
while the assume statements state properties which are assumed to hold without proof whenever
the statement is reached. The assume statements are added to exploit the type information already
established by the type checker.

Hence, all of the facts that the type checker was able to show are translated into assume statements,
while only the one fact it could not show Ð that slice is not null before the method call Ð is
translated into an assert statement. If the program satisfies all assertions, we have proven that
all type errors are indeed false positives. If the assertions cannot be proven, the program and/or
specification are likely incorrect, though it may be that the deductive checker is simply not powerful
enough.
In our case, the specification in Figure 3 can be shown to be correct by OpenJML or by KeY’s

automatic mode.
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program ::= function+

function ::= 𝑇0 𝑓 (𝑇1 𝑥1, . . . ,𝑇𝑛 𝑥𝑛) { s }

s ::= 𝑥 = 𝑙 literal assignment

| 𝑥0 = 𝑥1 variable assignment

| 𝑥0 = 𝑓 (𝑥1, . . . , 𝑥𝑛) function call

| s ; s composition

| assert 𝑝 assertion

| assume 𝑝 assumption

Fig. 4. Program syntax of TSimp and its variants, where 𝑇 is either a base type or a property type, 𝑥𝑖 are

variable identifiers, 𝑙 is a literal, and 𝑝 is a formula over the signature Σ as defined in Section 3.2.

𝑙 ∈ literals(𝑇 ) 𝑇 ⪯ Γ(𝑥)
wt-assign-lit

Γ ⊢ 𝑥 = 𝑙

Γ(𝑥1) ⪯ Γ(𝑥0)
wt-assign-var

Γ ⊢ 𝑥0 = 𝑥1

Γ ⊢ s2

Γ ⊢ s1

wt-compose
Γ ⊢ s1 ; s2

𝑇0 ⪯ Γ(𝑥) ∀𝑖 ∈ [1..𝑛] . Γ(𝑥𝑖 ) ⪯ 𝑇𝑖

sig(𝑓 ) = (𝑇0,𝑇1 𝑦1, . . . ,𝑇𝑛 𝑦𝑛)

wt-call
Γ ⊢ 𝑥 = 𝑓 (𝑥1, . . . , 𝑥𝑛)

Fig. 5. Base type rules.

3 PROPERTY TYPE SYSTEMS

In this section we explain the concepts behind the combination of property types and deduc-
tive verification. Property types in this context refine the existing type system of an underlying
programming language with additional property qualifiers.
In Section 3.1, we introduce the simple imperative language TSimp. In Section 3.2, we extend

TSimp’s basic type system by introducing property types, yielding the new language PTSimp. In
Section 3.3, we define a translation injecting assertions into PTSimp programs, yielding TSimpAssert
programs. Validity of these assertions ensures that every property-typed variable respects its
property. This translation can be optimized by using the results of existing type checkers. In
Section 3.4, we show how the translation can be modified such that only those type properties
whose validity cannot be established by a type checker have to be translated as assertions. Properties
already established by the checker are instead translated as assumptions. Section 3.5 concludes this
section by giving a short overview of what kinds of type checkers this approach can be applied to
and how.

3.1 TSimp: A Simple Typed Programming Language

We formalize our notion of property type systems using the simple imperative programming
language TSimp given by the grammar in Figure 4, the typing rules in Figure 5, and the big-step
operational semantics in Figure 6. The basic statements in TSimp are assignments and function calls.
Explicit assertions and assumptions are not used in this section. They are introduced in Section 3.3.

Notably, there are no control flow structures like if and while. We use TSimp (and later PTSimp)
to illustrate how we can insert assertions into a program with property types and how the validity
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sem-assign-lit
𝜎, 𝑥 = 𝑙 { 𝜎 [𝑥 ↦→ 𝐼 (𝑙)]

sem-assign-var
𝜎, 𝑥0 = 𝑥1 { 𝜎 [𝑥0 ↦→ 𝜎 (𝑥1)]

𝜎 ′, s2 { 𝜎 ′′
𝜎, s1 { 𝜎 ′

sem-compose
𝜎, s1 ; s2 { 𝜎 ′′

𝜎0 [𝑦1 ↦→ 𝜎 (𝑥1), . . . , 𝑦𝑛 ↦→ 𝜎 (𝑥𝑛)], 𝑠 { 𝜎 ′

sig(𝑓 ) = (𝑇0,𝑇1 𝑦1, . . . ,𝑇𝑛 𝑦𝑛) body(𝑓 ) = 𝑠

sem-call
𝜎, 𝑥 = 𝑓 (𝑥1, . . . , 𝑥𝑛) { 𝜎 [𝑥 ↦→ 𝜎 ′(result)]

Fig. 6. Operational semantics.

of those assertions allows us to conclude the correctness of the program. We only add assertions
before and after assignments and function calls. Thus, control flow structures could be inserted
into the language without significantly changing any of the material presented hereafter. To keep
TSimp as simple as possible, we leave them out.

There are no variable declarations either. The only variables that can be used inside a function
are the function’s parameters and the variable result. In addition, there is a temporary variable
temp𝑇 for every type 𝑇 . These temporary variables may not be used by TSimp programs; they are
used later for the translation.
We assume a non-empty set BT of base types with a partial order ⪯ that defines the subtype

relation on BT. For every base type 𝑇 ∈ BT the set literals(𝑇 ) of literals of 𝑇 is disjoint from the set
of literals of all other base types.
We define a domain 𝐷 to be some non-empty set. We also define the interpretation 𝐼 to be a

function which maps every literal to a value in𝐷 and every type to a subset of𝐷 such that (1)𝑇1 ⪯ 𝑇2
implies 𝐼 (𝑇1) ⊆ 𝐼 (𝑇2) for any types 𝑇1,𝑇2, and (2) 𝑙 ∈ literals(𝑇1) implies 𝐼 (𝑙) ∈ 𝐼 (𝑇1) for any literal
𝑙 .

A TSimp program is a set of program functions according to Figure 4. The program function
𝑇0 𝑓 (𝑇1 𝑥1, . . . ,𝑇𝑛 𝑥𝑛) { 𝑠 } has the signature sig(𝑓 ) = (𝑇0,𝑇1 𝑥1, . . . ,𝑇𝑛 𝑥𝑛) with return type 𝑇0 and
parameter types 𝑇1, . . . ,𝑇𝑛 , and a body body(𝑓 ) = 𝑠 .

Type contexts and program states are used in the typing rules and semantics for TSimp, respec-
tively. In the following, the placeholders 𝑥 and 𝑓 stand for arbitrary identifiers. For a partial function
𝐹 we define the updated function 𝐹 [𝑥0 ↦→ 𝑦] (𝑥) = if 𝑥 = 𝑥0 then 𝑦 else 𝐹 (𝑥), as the function which
maps 𝑥0 to 𝑦 and agrees with 𝐹 on all other arguments.

Definition 3.1 (Type contexts). A type context Γ is a partial function which maps variable names to
types in BT. We further define Γ0 as the context {temp𝑇 ↦→ 𝑇 | 𝑇 ∈ BT}, i.e., we have a variable temp𝑇
for every type 𝑇 . These temporary variables must not be used in the program itself. They are only
used by the translation defined in Section 3.3. Given a program function 𝑇0 𝑓 (𝑇1 𝑥1, . . . ,𝑇𝑛 𝑥𝑛){ 𝑠 },
we define Γ𝑓 := Γ0 [result ↦→ 𝑇0, 𝑥1 ↦→ 𝑇1, . . . , 𝑥𝑛 ↦→ 𝑇𝑛], the type context for 𝑓 .

Definition 3.2 (Program states). A program state 𝜎 is a partial function which maps variable
names to 𝐷 . 𝜎0 is the program state whose domain is empty.

Figure 5 shows the typing rules for statements. A judgment of the form Γ ⊢ 𝑠 means that 𝑠 is
well-typed in the context Γ. This allows us to define when a program function is well-typed.

Definition 3.3 (Well-typed functions). A program function𝑇0 𝑓 (𝑇1 𝑥1, . . . ,𝑇𝑛 𝑥𝑛){ 𝑠 } is well-typed
if (1) Γ𝑓 ⊢ 𝑠 , (2) 𝑓 does not call itself, not even indirectly.

Lastly, we define a conformant state as a state in which every initialized variable points to a value
of the correct type. We define the notion of valid starting states for program functions.

Definition 3.4 (Conformant states and valid starting states). We say that a state 𝜎 conforms to Γ if
(1) dom(𝜎) ⊆ dom(Γ), and (2) ∀𝑥 ∈ dom(𝜎). 𝜎 (𝑥) ∈ 𝐼 (Γ(𝑥)).
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We call 𝜎 a valid starting state for 𝑓 if it conforms to Γ𝑓 , dom(𝜎) = {result, 𝑥1, . . . , 𝑥𝑛}, and
𝜎 (result) = default where the 𝑥𝑖 are 𝑓 ’s parameters and default ∈ 𝐷 is some object in the domain
which is the same for every program function.

The semantics of a well-typed program function 𝑇0 𝑓 (𝑇1 𝑥1, . . . ,𝑇𝑛 𝑥𝑛){ 𝑠 } is defined as the
function whose domain is the set of all valid starting states, and which maps every such state 𝜎 to
the state 𝜎 ′ where 𝜎, 𝑠 { 𝜎 ′ according to the big-step operational semantics in Figure 6.

Because of the simplicity of the semantics rules, we do not prove the preservation and progress
properties for TSimp.

3.2 Property Types

The type system of TSimp will now be refined by introducing the possibility to annotate types with
type qualifiers.

Definition 3.5 (Property qualifiers). A property qualifier is a name 𝐴 associated with a subject
base type 𝑇𝐴 ∈ BT, and a property Prop𝐴.

A property qualifier 𝐴 can be used to annotate a base type 𝑇 ∈ BT yielding a property type @A T .
The intention of this property type is that a typed element is both known to be of type 𝑇 and to
satisfy property Prop𝐴 of 𝐴. The property Prop𝐴 is a formula with only one free variable, which we
call subject. When a property qualifier occurs in a program, subject is bound to the typed variable.
We write Prop𝐴 (𝑣) for the formula which results from substituting 𝑣 for subject in Prop𝐴.

Thus, the original types BT are still the skeleton for the type system, but the additional property
qualifiers introduce a more fine-grained subtype hierarchy. In this property type framework, the
properties do not occur in the type designators (and, thus, not in the program) themselves, but
appear in the definition of the qualifiers only and are then referred to by name from the program.
We assume that properties are specified in first-order predicate logic using a fixed structure

(Σ, 𝐷, 𝐼 ). Here, Σ is a signature, which for every type𝑇 ∈ BT includes every literal 𝑙 ∈ literals(𝑇 ) as
a constant symbol and every valid variable name as a variable symbol. 𝐷 is the same domain and 𝐼
the same interpretation used in the preceding section. We assume that for every value 𝑣 ∈ 𝐷 , there
exists a constant symbol 𝑐 ∈ Σ such that 𝐼 (𝑐) = 𝑣 . In the following, we use 𝑐 and 𝑣 interchangeably.

To allow for more flexible type systems, property qualifiers may also take arguments.

Definition 3.6 (Parametrizable property qualifiers). A parametrizable property qualifier additionally
has a tuple (𝑝1, . . . , 𝑝𝑛) of formal parameter names, a tuple (𝑇1, . . . ,𝑇𝑛) of parameter types, and a
well-formedness conditionWf𝐴 on the formal parameters.

To be used as a property qualifier, a parametrizable qualifier requires a tuple of actual parameters
(𝑣1, . . . , 𝑣𝑛) that instantiate its formal parameters. Every actual parameter must be a literal of the
correct type, i.e., ∀𝑖 ∈ [1..𝑛] . ∃𝑇 ∈ BT. 𝑣𝑖 ∈ literals(𝑇 ) ∧𝑇 ⪯ 𝑇𝑖 . The property of a parametrizable
qualifiermay contain the parameters as free variables in addition to the subject. Thewell-formedness
condition may contain the parameters as free variables, but not the subject. We write 𝐴(𝑣1, . . . , 𝑣𝑛),
or 𝐴(𝑣𝑠) for short, to denote the instantiation. We also write Prop𝐴 (𝑣, 𝑣𝑠) for the formula which
results from substituting 𝑣 for subject and 𝑣𝑖 for 𝑝𝑖 in Prop𝐴. Analogously, we write Wf𝐴 (𝑣𝑠) for
the formula which results from substituting 𝑣𝑖 for 𝑝𝑖 in Wf𝐴. From now on, we consider non-
parametrizable qualifiers 𝐴 to be parametrizable qualifiers with 𝑛 = 0 andWf𝐴 = true.

Not every construct @A(vs) T makes an admissible property type in programs. The following
conditions must be met:

(1) The target type 𝑇 must be a subtype of 𝐴’s subject type, i.e., 𝑇 ⪯ 𝑇𝐴 must hold.
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(2) The well-formedness conditionWf𝐴 (𝑣𝑠) must hold. SinceWf𝐴 (𝑣𝑠) contains no free variables,
the evaluation only depends on the structure (Σ, 𝐷, 𝐼 ). In particular, it does not depend on
the program state.

The introduction of property types induces a new property type hierarchy based on the existing
base type hierarchy. It is induced by the following subtyping definition for two property types
@A(as) T and @B(bs) U :

Definition 3.7 (Property subtyping). Given the relation ⪯ on base types, we define a relation ⪯ on
property types by:

@A(as) T ⪯ @B(bs) U :⇐⇒ 𝑇 ⪯ 𝑈 and 𝑇𝐴 ⪯ 𝑇𝐵 and

∀subject : 𝑇𝐴 . Prop𝐴 (subject, 𝑎𝑠) → Prop𝐵 (subject, 𝑏𝑠) is valid.

Note that since we only allow literals as qualifier parameters, we do not support dependent types.
Appendix A2 gives an overview of how we can include dependent property types by allowing
variables as qualifier parameters.

Example 3.8 (Integer intervals). Assume that there is a type int with literals 0, 1, −1, 2, −2, . . .,
and that our logic includes symbols ≥ and ≤ with the usual interpretation. The property qualifier
NonNegative has int as its subject type and the property PropNonNegative is subject ≥ 0. A further,
parametrizable, qualifier Interval also has int as its subject type, two int parameters 𝑎 and 𝑏, and
the property PropInterval is 𝑎 ≤ subject ≤ 𝑏. The well-formedness condition WfInterval could read
𝑎 ≤ 𝑏 if we want to disallow empty interval types.

We can observe that @Interval(1, 2) int is a subtype of @Interval(0, 3) int since every integer
contained in the former interval is also contained in the latter. On the other hand, @Interval(2, 1) int
is not even a valid property type, since the well-formedness condition is violated.

The programming language PTSimp is the extension of TSimp such that every type in a program
is a qualified property type. We consider type contexts Γ to map variables to property types instead
of base types. The temporary variables temp𝑇 are mapped to @true T where Proptrue = true. We
also adapt the notion of conformant states to PTSimp such that in a conformant state, not only
does every variable point to a value of the correct base type, but that value also satisfies the type
property.

Definition 3.9 (Conformant states for PTSimp). A state 𝜎 conforms to a context Γ if (1) dom(𝜎) ⊆

dom(Γ), (2) ∀𝑥 ∈ dom(𝜎). Γ(𝑥) = @A(vs) T =⇒ 𝜎 (𝑥) ∈ 𝐼 (𝑇 ), and (3) ∀𝑥 ∈ dom(𝜎). Γ(𝑥) =

@A(vs) T =⇒ Prop𝐴 (𝜎 (𝑥), 𝑣𝑠)

We do not adapt the typing rules from Figure 5 for PTSimp, however. This is because defining
subtype relations only via logical implications would require the type checker to be able to reason
about these implications. In Section 3.4, we show how we can define a practical type hierarchy
which approximates the hierarchy induced by the implications. For now, we define a PTSimp
program to be well-typed if it is well-typed as a TSimp program in the base type system and if
assertions inserted into the program hold in every reachable state. This is explained in detail in the
following section.

3.3 Checking Property Type Systems

We define the correctness of a PTSimp program by inserting assertions and calling it correct if
these assertions hold. For this purpose, we make use of the assertion and assumption statements
from Figure 4. Their typing rules and semantics are shown in Figures 7 and 8, yielding a new

2The appendices are available in the supplementary material to this paper, found at https://doi.org/10.1145/3485520.
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wt-assert
Γ ⊢ assert 𝑝

wt-assume
Γ ⊢ assume 𝑝

Fig. 7. New base type rules for TSimpAssert.

𝜎 |= 𝑝
sem-assert

𝜎, assert 𝑝 { 𝜎

𝜎 ̸ |= 𝑝
sem-assert-fail

𝜎, assert 𝑝 { assertion-failure

𝜎 |= 𝑝
sem-assume

𝜎, assume 𝑝 { 𝜎

𝜎 ̸ |= 𝑝
sem-assume-fail

𝜎, assume 𝑝 { assumption-failure

𝜎 ∈ {assertion-failure, assumption-failure}
sem-pass-failure

𝜎, 𝑠 { 𝜎

𝜎 ′ ∈ {assertion-failure, assumption-failure}

𝜎0 [𝑦1 ↦→ 𝜎 (𝑥1), . . . , 𝑦𝑛 ↦→ 𝜎 (𝑥𝑛)], 𝑠 { 𝜎 ′

sig(𝑓 ) = (𝑇0,𝑇1 𝑦1, . . . ,𝑇𝑛 𝑦𝑛) body(𝑓 ) = 𝑠

sem-call-failure
𝜎, 𝑥 = 𝑓 (𝑥1, . . . , 𝑥𝑛) { 𝜎 ′

Fig. 8. New semantics rules for TSimpAssert.

Γ(𝑥) = @A(vs) T
transl-assign

Γ, 𝑥 = 𝑦 ↦→ assert Prop𝐴 (𝑦, 𝑣𝑠) ; 𝑥 =̂ 𝑦

Γ, s1 ↦→ 𝑠 ′1 Γ, s2 ↦→ 𝑠 ′2
transl-compose

Γ, s1 ; s2 ↦→ s′1 ; s
′
2

sig(𝑓 ) = (@A0 (vs0) T0, @A1 (vs1) T1 𝑦1, . . . , @An (vsn) Tn 𝑦𝑛) Γ(𝑥) = @A(vs) T
transl-call

Γ, 𝑥 = 𝑓 (𝑥1, . . . , 𝑥𝑛) ↦→




assert Prop𝐴1
(𝑥1, 𝑣𝑠1); . . . ; assert Prop𝐴𝑛

(𝑥𝑛, 𝑣𝑠𝑛);
temp𝑇 =̂ 𝑓 (𝑥1, . . . , 𝑥𝑛);

assume Prop𝐴0
(temp𝑇 , 𝑣𝑠0); assert Prop𝐴 (temp𝑇 , 𝑣𝑠);

𝑥 =̂ temp𝑇




Fig. 9. Translation from PTSimp to TSimpAssert.

language TSimpAssert. In the figures, 𝜎 |= 𝑝 for a program state 𝜎 and a formula 𝑝 means that
𝑝 holds in 𝜎 . We also introduce two special end states assertion-failure and assumption-failure,
which we define to never conform to any type context. In addition to what is shown in Figure 8,
all rules in TSimpAssert’s semantics except for sem-pass-failure have the implicit premiss 𝜎 ∉

{assertion-failure, assumption-failure}.
Given a PTSimp program, we can then translate it into a TSimpAssert program according to the

translation defined by Figure 9. Γ, 𝑠 ↦→ 𝑠 ′ means that the statement 𝑠 occurring in the context Γ is
to be replaced by the statement 𝑠 ′. In addition to what is shown there, we add the statements

assume Prop𝐴1
(𝑥1, 𝑣𝑠1); . . . ; assume Prop𝐴𝑛

(𝑥𝑛, 𝑣𝑠𝑛)

to the start of the body of every function with parameter names 𝑥𝑖 and parameter types @Ai (vsi) Ti .
The symbol =̂ is equivalent to =, but it marks which statements have already been translated, and
prevents rules from being applied twice on the same statement. The translation terminates when
no more rules are applicable.
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@Interval (0,21) int g(@Interval (0,12) int x) { ... }

@Interval (0,42) int f(@Interval (0,3) int x,

@Interval (0,1) int y, @Interval (2,3) int z) {

x=1; x=y; x=z; result=g(x)

}

Fig. 10. An example of a PTSimp program.

int f(int x, int y, int z) {

assume 0 ≤ 𝑥 ≤ 3; assume 0 ≤ 𝑦 ≤ 1; assume 2 ≤ 𝑧 ≤ 3;

assert 0 ≤ 1 ≤ 3; x=1;

assert 0 ≤ 𝑦 ≤ 3; x=y;

assert 0 ≤ 𝑧 ≤ 3; x=z;

assert 0 ≤ 𝑥 ≤ 12; temp_int=g(x); assume 0 ≤ temp_int ≤ 21;

assert 0 ≤ temp_int ≤ 42; result=temp_int

}

Fig. 11. Translation of 𝑓 from Figure 10 into TSimpAssert.

Example 3.10. For an example of how this works, we consider the PTSimp function 𝑓 given in
Figure 10, which uses the interval property types from Example 3.8.

Its TSimpAssert translation is shown in Figure 11. The assumptions at the start fail if the function
is not called in a valid starting state, i.e., with parameters of the correct property types. The
assertions before every assignment fail if the assignment would break the assigned variable’s type
property. The assertion before the function call to 𝑔 fails if 𝑔 would be called in an invalid starting
state. The assumption after the function call to 𝑔 states that the variable holding the call’s result has
𝑔’s return type; thus it can only fail if the called function 𝑔 is not correct. And lastly, the assertion
after the function call fails if the type of result in 𝑓 is incompatible with 𝑔’s return type. We use the
temporary variable temp_int to ensure that 𝑔’s result is not assigned to result if this would violate
result’s type property.

The assert statements are injected into the program for the purpose of a static analysis to
discharge. However, they could in principle also be used for run-time assertion checking if one
wants to resort to run-time verification rather than static analysis.

We can now define when such a translated program is correct.

Definition 3.11 (Correctness). A TSimpAssert function 𝑇0 𝑓 (𝑇1 𝑥1, . . . ,𝑇𝑛 𝑥𝑛){ 𝑠 } is correct if (1) it
is well-typed as a TSimp function in the base type system (ignoring all assertions and assumptions),
(2) all functions called by it are also correct, and (3) there exists no valid starting state 𝜎 from which
an assertion-failure state can be reached. Reachability is defined below.

This definition only rules out assertion failures, not assumption failures. The fact than no
assumption failures can occur in a correct function is shown in Theorem 3.14.

Definition 3.12 (Reachable states). We say that a state 𝜎 ′ is reachable from 𝑓 if there exists a
valid start state 𝜎 and a statement 𝑠 such that 𝑓 ’s body is either equal to 𝑠 or equal to 𝑠 ; 𝑡 for some
statement 𝑡 and such that 𝜎, 𝑠 { 𝜎 ′ (We consider the statement composition operator ; to be
associative, i.e., (𝑠1; 𝑠2); 𝑠3 = 𝑠1; (𝑠2; 𝑠3)). In this case, we also say that 𝜎 ′ is reachable from 𝜎 via 𝑠 .

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 143. Publication date: October 2021.



143:12 Florian Lanzinger, Alexander Weigl, Mattias Ulbrich, and Werner Dietl

We now show that the translation defined above gives us what we want: When a correct function
is called in a valid starting state, then every state reachable from that starting state conforms to the
function’s type context. In other words, every variable always fulfills its type property.
We first prove that all states reachable from a correct function are conformant.

Theorem 3.13 (Preservation). Let 𝑓 be a function with body 𝑠 such that its translation 𝑔 with

body 𝑡 is correct. Let 𝜎 be a valid starting state for 𝑔. Let 𝜎 ′ be reachable from 𝜎 .

Then either 𝜎 ′
= assumption-failure or 𝜎 ′ conforms to the type context Γ𝑓 for 𝑓 .

Proof. By induction over the rules for{; see Figures 6 and 8. The only interesting cases are
sem-assign-lit, sem-assign-var, and sem-call(-failure). For brevity’s sake, we only prove conformance
property (3), i.e., ∀𝑥 ∈ dom(𝜎 ′). Γ′(𝑥) = @A(vs) T =⇒ Prop𝐴 (𝜎

′(𝑥), 𝑣𝑠).
For sem-assign-lit, we know that the translation inserted an assertion assert Prop𝐴 (𝑙, 𝑣𝑠) before the

assignment 𝑥 = 𝑙 . If Prop𝐴 (𝑙, 𝑣𝑠) did not hold, the assertion would have ended in assertion-failure,
which contradicts 𝑔’s correctness. Rule sem-assign-var can be proven analogously. Rule sem-call
can also be proven analogously. If 𝜎 ′ did not conform to Γ𝑓 , then the assertion before the assignment
to 𝑥 would fail. For sem-call-failure, note that a correct function only calls other correct functions
and that the assertions placed before a function call ensure that the function is called in a valid
starting state. Since our language contains no recursion, we can assume that this theorem holds for
any function called by 𝑓 . Thus, any such called function cannot lead to an assertion failure.
It remains to be observed that the type property predicate Prop𝐴 for variable 𝑥 only depends

on the value 𝜎 (𝑥). In particular, it does not depend on the value of any other variable. Thus the
property is guaranteed to be preserved until the next assignment to 𝑥 . □

Having shown this, we now show that, if a function is correct, it does not end in an assump-
tion/assertion failure, and it does in fact end, i.e., it has a terminal state.

Theorem 3.14 (Progress). Let 𝑠 , 𝑡 , 𝑓 , 𝜎 be defined as in Theorem 3.13. Let either 𝑡1 or 𝑡1; 𝑡2 be

equal to 𝑡 . Then there exists 𝜎 ′ such that 𝜎, 𝑡1 { 𝜎 ′ and 𝜎 ′
∉ {assertion-failure, assumption-failure}.

Proof. We first show that there exists 𝜎 ′ such that 𝜎, 𝑡1 { 𝜎 ′:
Since 𝜎 is a valid starting state, it cannot be in {assertion-failure, assumption-failure}. The only

rules that have any premisses besides 𝜎 ∉ {assertion-failure, assumption-failure} are sem-compose
and sem-call(-failure). The premisses for sem-compose can obviously always be fulfilled by in-
stantiating them properly. For sem-call(-failure), remember that correct functions can only call
other correct functions. Let ℎ be the function being called. If ℎ were called in an invalid starting
state, the assertions placed before the call would fail, which contradicts 𝑓 ’s correctness. Thus, ℎ
is always called with a valid starting state. Because our language does not have recursion, we
can assume that this theorem holds for ℎ without being circular. Therefore, ℎ has an end state
𝜎 ′

∉ {assertion-failure, assumption-failure} such that result ∈ dom(𝜎 ′), which means that all pre-
misses for sem-call are fulfilled.
A consequence of 𝑓 ’s correctness is that 𝜎 ′

≠ assertion-failure.
Assumptions only occur at the start of a function body and after a function call. The assumptions

at the start of the body of 𝑓 cannot fail because the starting state 𝜎 is valid for 𝑓 . The assumptions
at the start of the body of any function called by 𝑓 cannot fail either. As mentioned before, the
assertions before a function call ensure that functions are only ever called in valid starting states.
The assumption after a call to any function ℎ called by 𝑓 cannot fail either. If it did, the value
returned by ℎ would not have ℎ’s return type, which contradicts ℎ’s correctness. □
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Γ(𝑥) = @B(bs) U @B(bs) U <: @A(as) T
transl-enh-var

assert Prop𝐴 (𝑥, 𝑎𝑠) ↦→ assume Prop𝐴 (𝑥, 𝑎𝑠)

|= Prop𝐴 (𝑙, 𝑎𝑠)

transl-enh-lit
assert Prop𝐴 (𝑙, 𝑎𝑠); 𝑠 ↦→ 𝑠

sig(𝑔) = (@B(bs) U , . . .) @B(bs) U <: @A(as) T

temp𝑇 was last assigned the result of a call to 𝑔

transl-enh-temp-var
assert Prop𝐴 (temp𝑇 , 𝑎𝑠) ↦→ assume Prop𝐴 (temp𝑇 , 𝑎𝑠)

Fig. 12. Enhanced translation rules for TSimpAssert.

3.4 Combining Deductive Verification and Type Checking

We now have a way of translating PTSimp programs into a format that can be checked by a
deductive verification tool. However, we do not have a way of combining that deductive verification
tool with a type checker: The deductive verification tool does not know whether an assertion
already follows from the type system used by the type checker; it has to prove all assertions in the
program.

In fact, the property type hierarchy given by Definition 3.7 is not at all practical to use in a type
checker. To check whether two property types @A T , @B U are subtypes, we have to check whether
the implication Prop𝐴 → Prop𝐵 is universally valid. Depending on the logical structure we use for
the Props, this problem may be undecidable or, in many cases, beyond the capabilities of most type
checkers.
Instead of working with the semantical subtype relationship, in this section, we operate on

user-defined property qualifier hierarchies that are lifted to type hierarchies. These hierarchies have
the advantage that they do not rely on the decidability of logical implications in general and that
type checkers are decidable and can actually be implemented.

Definition 3.15 (Property qualifier hierarchy). Let PQ be the set of all instantiated property quali-
fiers 𝐴(𝑣𝑠) that satisfy Wf𝐴 (𝑣𝑠). We call a partial order <: over PQ a property qualifier hierarchy if
it fulfills the following conditions:

(1) The order is compatible with the base-type relation between the subject types, i.e., 𝐴(𝑎𝑠) <:
𝐵(𝑏𝑠) implies 𝑇𝐴 ⪯ 𝑇𝐵 for any two qualifiers 𝐴(𝑎𝑠), 𝐵(𝑏𝑠).

(2) The order is compatible with the implications between the properties, i.e., 𝐴(𝑎𝑠) <: 𝐵(𝑏𝑠)
implies that ∀subject : 𝑇𝐴 . Prop𝐴 (subject, 𝑎𝑠) → Prop𝐵 (subject, 𝑏𝑠) is valid.

Any property qualifier hierarchy can be lifted to a hierarchy between property types via

@A(as) T <: @B(bs) U :⇐⇒ 𝐴(𝑎𝑠) <: 𝐵(𝑏𝑠) and 𝑇 ⪯ 𝑈

for any pair of instantiated qualifiers𝐴(𝑎𝑠), 𝐵(𝑏𝑠) and base types𝑇,𝑈 ∈ BT. Definition 3.15 ensures
that @A(as) T <: @B(bs) U implies @A(as) T ⪯ @B(bs) U .
Given a property qualifier hierarchy, we obtain an enhanced translation by applying the rules

given in Figure 12 to a TSimpAssert program.
The rules transl-enh-var and transl-enh-temp-var allow us to replace those assertions that are

covered by a type checker for <: by assumptions. The reason we replace assertions by assumptions
instead of just removing them is that the assumptions allow the deductive verification tool to use
the knowledge gained by the type checker, which might make its proofs easier. An example for
when these assumptions come in useful can be seen in the case study in Section 5.

In the rule transl-enh-lit, |= 𝑝 means that the closed formula 𝑝 holds under the fixed interpretation
𝐼 used in the preceding sections and that this fact can be shown by the type checker. This rule allows
us to remove type property assertions containing valid formulas without free variables. In this case,
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int f(int x, int y, int z) {

assume 0 ≤ 𝑥 ≤ 3; assume 0 ≤ 𝑦 ≤ 1; assume 2 ≤ 𝑧 ≤ 3;

x=1;

assume 0 ≤ 𝑦 ≤ 3; x=y;

assert 0 ≤ 𝑧 ≤ 3; x=z;

assume 0 ≤ 𝑥 ≤ 12; temp_int=g(x); assume 0 ≤ temp_int ≤ 21;

assume 0 ≤ temp_int ≤ 42; result=temp_int

}

Fig. 13. Enhanced translation of 𝑓 from Figure 10.

we remove the assertion instead of replacing it since such tautological formulas do not provide
new constraints that could be used by the deductive verifier, nor are they helpful lemmas. Like the
original translation, the enhanced translation terminates when no more rules are applicable.

Example 3.16. Consider again the program from Example 3.10 given in Figure 10 and its transla-
tion in Figure 11.

Suppose that we have a type hierarchy <: which includes all relations of the form @Interval int <:
@Interval int where 𝑎 ≥ 𝑐 ∧ 𝑏 ≤ 𝑑 except for the relation @Interval(2, 3) int <: @Interval(0, 3) int.

Given a type checker for this hierarchy, we can translate the function 𝑓 as shown in Figure 13:
The assertion containing the trivially true closed formula 0 ≤ 1 ≤ 3 before the assignment 𝑥 = 1

has been removed. All of the assertions which follow from relations in <: and can thus be verified
by the checker have been turned into assumptions. Only the single assertion which is not trivial
and does not follow from such a relation remains and has to be shown by the deductive verification
tool.

We now re-prove Theorems 3.13 and 3.14 using this enhanced translation. These proofs tell us
that the enhanced translation is just as good as the original translation in that it still ensures that
in a correct function, every variable always fulfills its type property.

Theorem 3.17 (Preservation, II). Let 𝑓 be a function with body 𝑠 such that its enhanced translation

𝑔 with body 𝑡 is correct. Let 𝜎 be a valid starting state for 𝑔. Let 𝜎 ′ be reachable from 𝜎 .

Then either 𝜎 ′
= assumption-failure or 𝜎 ′ conforms to the type context Γ𝑓 for 𝑓 .

Theorem 3.18 (Progress, II). Let 𝑠 , 𝑡 , 𝑓 , 𝜎 be defined as in Theorem 3.17. Let either 𝑡1 or 𝑡1; 𝑡2 be
equal to 𝑡 . Then there exists 𝜎 ′ such that 𝜎, 𝑡1 { 𝜎 ′ and 𝜎 ′

∉ {assertion-failure, assumption-failure}.

Proof. Let 𝑔𝑜 with body 𝑡𝑜 be the original translation for 𝑓 .
Then for both theorems, it suffices to show that if 𝑔 is correct, 𝑔𝑜 is also correct, i.e., if no

assertion-failure is reachable from 𝑔, then no assertion-failure is reachable from 𝑔𝑜 . The claims then
follow from the original theorems.
To show this, it suffices to show that no assertion in 𝑔𝑜 that can be removed or replaced by an

assumption in 𝑔 can lead to an assertion-failure. This follows from the enhanced translation rules:
The rule transl-enh-lit only removes assertions containing valid closed formulas, i.e., assertions
that can never fail. Suppose that the rule transl-enh-var replaces a possibly failing assertion with an
assumption. Then the assertion/assumption is executed in a reachable state 𝜎∗ in which a variable
𝑥 does not respect its type property Prop𝐴 (𝑥, 𝑎𝑠). But for such a state 𝜎∗ to be reachable, there must
have been a failing assertion before an assignment to 𝑥 which was removed, which we have shown
to be impossible. Suppose that the rule transl-enh-temp-var replaces a possibly failing assertion
with an assumption. Then the assertion/assumption is executed in a reachable state 𝜎∗ in which a
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temporary variable temp𝑇 does not respect its type property Prop𝐴 (temp𝑇 , 𝑎𝑠). Temporary variables
are only assigned in function calls. Thus, for such a state 𝜎∗ to be reachable, the function ℎ whose
result was assigned to temp𝑇 must have returned a result which does not have ℎ’s return type,
which contradicts ℎ’s correctness. □

3.5 General and Dedicated Type Checkers

The approach presented in Section 3.4 can be applied to many different type checkers. Section 3.4
assumes the simplest possible checker, which given some property type hierarchy only checks a
program for some simple subtyping rules.
When we bring this approach from TSimp to a real language like Java, then a more powerful

type checker can obviously do much more than just enforcing subtyping rules. Type refinement,
type inference, and other features allow us to discharge many more assertions and only leave the
really tricky cases to a deductive verification tool.
There are two general possibilities for what kind of type checker to use:

(1) Use a general-purpose property-agnostic type checker that can be instantiated with any
property type hierarchy but is not very powerful and probably not useful without being
combined with a deductive verification tool.
This allows us to create custom property type hierarchies for application-specific properties.
The only code that needs to be written are the definitions of the type qualifiers and the
qualifier hierarchy, which can be given as input to the general checker.
An example for this is the checker presented in Section 4.1. This checker was developed
alongside this paper using the Checker Framework. It can be instantiated with any property
type hierarchy and is essentially the Java implementation of what is shown in Section 3.4.

(2) Use an optimized special-purpose checker designed for a particular property, like the Checker
Framework’s Nullness Checker.
This allows us to use deductive verification to add precision to an existing, established type
hierarchy and checker, thus allowing it to verify more programs.
For that, the user must provide an appropriate property and well-formedness condition for
every qualifier used by the checker. These must be chosen such that the checker can guarantee
that in every reachable program state, every initialized variable satisfies its property, and
that the well-formedness condition of every qualifier appearing in the program holds.
As mentioned in Section 2, the correct property for @NonNull would be subject != null.

It is possible to use multiple property type systems in the same program, some of which can
be checked using a general-purpose checker and some using a special-purpose checker. There is
one type checker invocation for every type system. The translations resulting from all of those
checker invocations can easily be combined: Instead of, for example, adding a single assertion or
assumption before an assignment, we add one for every type system.

4 VERIFYING PROPERTY TYPES IN JAVA

In this section, we explain how we implemented a property type system as introduced in Section 3
in Java. We implemented a generic property-agnostic checker as described in Section 3.5 using the
Checker Framework. This checker takes a definition of a property qualifier hierarchy written in a
domain-specific language and checks for the usual subtype and well-formedness properties. This is
explained in more detail in Section 4.1.
This checker includes an algorithm that translates a program using property qualifiers to a

program annotated with JML specifications. This algorithm works much like the one described in
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annotation MinLength(int min)

java.util.List # 𝑇MinLength
:<==> "subject.size() >= min" # PropMinLength

for "min >= 0"; # WfMinLength

annotation UnknownLength () any :<==> "true" for "true";

relation MinLength(min0) <: MinLength(min1) :<==> "min0 >= min1";

relation MinLength(min) <: UnknownLength () :<==> "true";

Fig. 14. Example qualifier hierarchy definition.

Section 3.3 and Section 3.4. Section 4.2 explains how this theoretical algorithm can be applied to
Java and JML.

The JML-annotated code can then be given to a deductive verifier. The pipeline works just like
the one in Figure 1, though in addition, it includes two preliminary steps: First, the user must
ensure that the property qualifier hierarchy defined by them satisfies the requirements defined in
Section 3.4. Second, they must ensure that the Java program satisfies some constraints, which are
discussed in Section 4.3.

4.1 The Generic Java Property Checker

The Java Property Checker is configured using a hierarchy definition. Figure 14 shows what
such a hierarchy definition looks like. Everything after a hash symbol # is a comment. Every
property qualifier is defined by a statement of the form annotation 𝐴 𝑇𝐴 :<==> Prop𝐴 for Wf𝐴;.
The qualifier hierarchy is defined by statements of the form relation 𝐴 <: 𝐵 :<==> 𝑃 where 𝑃 is a
Boolean expression which always terminates normally, and whose value only depends on 𝐴’s and
𝐵’s parameters. Then 𝐴 <: 𝐵 if and only if 𝑃 evaluates to true.

The user must take care that their qualifier hierarchy is well-defined and satisfies Definition 3.15.
These requirements are not checked by the current implementation.

Figure 14 defines a hierarchy of qualifiers @MinLength(n) where a list has the type @MinLength(n)
List if its length is at least n. The qualifier @UnknownLength serves as a top element: It can apply to
any base type (as opposed to @MinLength which can only apply to Lists) and its property is true.
The Checker Framework requires the qualifier hierarchy to be a bounded lattice. To support this,
the hierarchy definition language also has meet and join declarations with which to define the
greatest lower bound and least upper bound of any pair of qualifiers. For brevity’s sake, these are
not included in Figure 14. These declarations are trusted, i.e., their correctness is not checked.
The type checker checks for the usual subtype properties that form the basis for almost all

Checker Framework type systems and are provided for by the Checker Framework: Whenever Java
would require the base types of two expressions to have a certain subtype relationship, the checker
requires the property types to have that same relationship. The only exception is that the checker
allows for the qualifiers on parameters of overriding methods to be contravariant (but as usual in
Java, if the base types of the parameters differ, the method is overloaded instead of overridden).
In addition, a primitive or string literal can be assigned to any variable whose type property it
satisfies. This is implemented by compiling all type properties as Java methods and calling those
methods with the literals as parameters.

4.2 The JML Translation Algorithm

Here, we present an implementation of an algorithm that takes a Java program which uses a
property qualifier hierarchy as described in Section 3.4 and inserts JML specifications. We do not
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𝑇 temp = 𝑒; /*@assert Prop𝐴 (temp);*/ 𝑣 = temp;

Fig. 15. JML translation of an assignment.

class C {

@Length("5") List l0;

C(@Length("5") List l) { helper (); this.l0 = l; l0.removeFirst (); }

void helper () { @Length("5") List l = this.l0; }

}

Fig. 16. (Wrong) usage of property types in Java.

prove that Theorems 3.17 and 3.18 apply to the JML translation. Proof sketches to that effect can be
found in the master’s thesis by Lanzinger [2021].

The translation adds an assertion or assumption before every assignment, local variable or field
declaration3, and return statement. Methods and method calls are handled via contracts instead of
assertions; this is explained below.

Because Java expressions may contain side-effects and JML expressions must not, we first evaluate
the right-hand side of an assignment 𝑣=𝑒; and save the result in a temporary variable. We then refer
to that temporary variable in the assertion or assumption, and afterwards assign the temporary
variable to the actual left-hand side variable 𝑣 . The result of this translation is shown in Figure 15.

In Section 3, we also added assertions before every method call and an assumption after every
method call. This approach cannot be exactly applied to Java because unlike in TSimp, in Java we
do not only want to check that every method satisfies its own type signature; we also want to
check that every method satisfies the type signature of the method it overrides, i.e., that its return
type is covariant and its parameter types are contravariant.
We thus instead add a JML contract to every method and constructor, which contains the

parameters’ type properties as preconditions and the result’s type properties as postconditions.
JML’s semantics require a method to satisfy the contracts of its parent method. This approach
however leads to a different problem: Just as we replace assertions which have been proven by
the Property Checker by assumptions, we want to replace preconditions which have been proven
by the Property Checker by free preconditions, i.e., preconditions which can be assumed by the
callee but do not have to be proven by the caller. However, a contract is specified once for each
method; we cannot specify a separate contract for each method call. To solve this, we add a so-called
trampoline method for every method and constructor𝑚 and replace every call to𝑚 with a call to
𝑚’s trampoline. The trampoline method has an additional Boolean parameter 𝑏𝑖 for every regular
parameter 𝑥𝑖 . Its contract includes every parameter 𝑥𝑖 ’s type property twice: once as a regular
precondition, which is used if 𝑏𝑖 is false, and once as a free precondition, which is used otherwise.
The structure of trampoline methods, along with the rest of the JML translation algorithm is

shown in Appendix B.

4.3 Constraints on Java Programs

Java is considerably more complex than the conceptual language TSimp. Many of the concepts
extend naturally to full Java, but to ensure soundness some constraints are necessary. These are
explained in this section.

3One cannot add assertions/assumptions before inline field initializations. The translation thereforemoves such initializations
to the beginning of the constructor(s).
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Figure 16 contains a Java class using the property qualifier @Length(value) with the property
subject.size() == value. It shows what can go wrong when one naïvely transplants the theoretical
presentation into Java. The example has two serious issues:

(1) The assignment in helper() looks good in isolation, but actually helper() is called before l0

has been initialized. This means that the local variable l is assigned the value null, which
does not respect the necessary type property.

(2) While there is no invalid assignment, the call to removeFirst() breaks the type property of
both C::l0 and the parameter l.

We prevent these and some other problems by introducing the following constraints:

Initialization. We must take into account when objects are initialized. To that end, we define an
object 𝑜 to be initialized if all fields that are reachable from 𝑜 fulfill their type property.

Summers and Müller [2011] introduce a pluggable type system for initialization which is imple-
mented in the Checker Framework. There are three qualifiers Initialized, UnderInitialization,
and UnknownInitialization, where references of a type @Initialized T are guaranteed to point
to initialized objects4. The Property Checker’s implementation is based on the Initialization Checker:
It only considers type properties of objects annotated with Initialized and checks that these
annotations are correct.

Immutability/monotonicity. We only allow variables referring to immutable objects to be anno-
tated with property qualifiers5. This ensures that assignments to the subject’s fields do not invalidate
its type property. Potanin et al. [2012] give an overview over different notions of immutability in
object-oriented languages. For our approach, deep immutability is necessary, i.e., fields of immutable
objects may be neither reassigned nor mutated. This includes transitive fields, i.e., if a is immutable,
then so are a.b and a.b.c.
Our implementation currently includes no immutability type system. Depending on the im-

mutability type system used, the immutability checks could take place at different times. A class-

based immutability system is one in which a variable’s immutability can be determined only by its
class. Such a system could be checked separately from the actual type checking, together with the
constraints on properties outlined below: One would only have to iterate through the subject types
𝑇𝐴 for every qualifier 𝐴 and check that𝑇𝐴 is either primitive (and thus immutable) or an immutable
class type. Non-class-based immutability systems on the other hand might have to be integrated
into the Property Checker.

Actually, requiring immutability is an over-approximation: When using a dedicated type system
for some specific properties instead of the general-purpose Property Checker checker, it is possible
to allow some mutations as long as the type system ensures that all type properties are monotonic,
i.e., an object can never be mutated in a way that would invalidate its type property.
The best example for this is a nullness type system: The value of the property PropNonNull =

subject != null is completely independent from the object pointed to by the subject, so objects
pointed to by variables of a type @NonNull T could be allowed to be mutated more freely6. Things
get more complicated when one also considers flow-sensitive type refinement.

4Summers and Müller [2011] actually define an object as initialized when all reachable fields are not null, notÐas we
doÐwhen all reachable fields satisfy some arbitrary property, but as noted in Section 5.8 of their paper, their approach also
supports more general invariants like our type properties.
5Actually, because in the Checker Framework every variable must be annotated, we allow qualifiers whose property is
true even for mutable objects.
6Some restrictions are still necessary. Objects whose fields are non-null cannot be mutated completely freely without
breaking the type properties of the fields.
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Constraints on properties. In our implementation, properties Prop𝐴 and well-formedness condi-
tionsWf𝐴 are not logical predicates but Boolean expressions defined by the user for every qualifier.
To ensure that the value of these expressions does not change, we require that

(1) parameters of qualifiers are of primitive or String type7. Java also allows class literals and
arrays, which we exclude because they are not supported by the theoretical framework
presented here.

(2) well-formedness conditions and properties only contain calls to pure (deterministic and
side-effect free) methods.

(3) the value of a well-formedness condition depends only on its parameters.
(4) the value of a property depends only on its parameters, the subject, and any fields reachable

from the subject.
(5) the evaluation of well-formedness conditions and properties always terminates normally.

For points (2) to (4), both the Checker Framework [Checker Framework developers 2020, 20] and
JML [Leavens et al. 2013, 7.1.1.3] include ways to specify that a method is pure [Rudich et al. 2008]
(via the @Pure annotation in the Checker Framework or the /*@pure@*/ annotation in JML).

To specify and verify that an expression’s value depends only on certain variables, one could
either use KeY’s information flow analysis [Ahrendt et al. 2016, Ch. 13] or, more simply, perform a
conservative syntactical analysis (e.g., checking that no other variables are ever referred to). None
of these options are currently a part of our implementation.
For technical and pragmatic reasons, we enforce some additional constraints as to what Java

programs we allow. First, since the theoretical framework presented in the preceding sections is
not equipped to deal with generic types, we only consider Java programs without generics. The
implementation is currently limited to programs without generics, but the approach can be extended
to also support generics. Although the support of generics in KeY is very limited, the Checker
Framework and OpenJML support them. To support generics, we would have to introduce a way to
allow a method’s JML contract to depend on the instantiation of type variables. Second, we only
allow property qualifiers to appear on variable (local variable, parameter, or field) declarations, on
return types, and on constructor declarations. Qualifiers on new expressions, casts, and instanceof

expressions are not supported by the framework presented here. Third, we do not allow property
qualifiers8 to appear on static fields. This is a constraint of the initialization type system, as it is
generally not possible to say when a static field will be initialized [Summers and Müller 2011, 5.3].
Finally, the JML translation assumes that there are no assignments in nested expressions (e.g., an
expression like a + (b = c) would be illegal)9, that a variable in an inner scope never has the same
name as a different variable in an outer scope, and that all fields and methods that are referred to
in qualifier properties and well-formedness conditions are public10.

7Actually, we only allow Strings which contain Java expressions that evaluate to a value of primitive or String type. This
allows us to support dependent qualifiers (see Appendix A) by allowing users to use expressions whose value is not known
at compile-time as parameters.
8Except for qualifiers whose property is true.
9Otherwise, we would not be able to add assertions/assumptions before the assignment. A more elegant translation
implementation would automatically unroll such expressions.
10JML has the modifier spec_public for fields that should be public for the specification but have some other visibility for
the actual program code [Leavens et al. 2013, 2.4]. Because our checker implementation does not use JML and sometimes
inspects the code of the program being checked using Java’s reflection API, we chose to have this requirement instead of
implementing our own version of these modifiers.
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if (invInfo.vars() != null) {

@SuppressWarnings("nullness")

@NonNull List var_perms = invInfo.var_permutations ();

}

Fig. 17. Dependency between two return values12.

5 EVALUATION

In this section, we present an evaluation in two parts. First, we show that our approach can be used
to detect false positives in type checking by applying the JML translation to several code snippets
taken (and made self-contained) from Daikon [Ernst et al. 2007]. As a reminder, Daikon contains
1129 explicit nullness annotations and there are 198 @SuppressWarnings annotations or castNonNull
method calls. Second, we demonstrate our approach in a case study in the form of a small program
that was annotated with property qualifiers, then type checked using the generic property type
checker, and then the JML translation is checked by KeY and OpenJML. This case study shows that
our approach reduces the verification overhead significantly as opposed to just using a deductive
verification tool like KeY.

False positives in Daikon. There is already one example for a false positive result by the Checker
Framework’s Nullness Checker in Section 2.
We extracted a few more simplified examples from Daikon and used the JML translation to

discharge the type checker’s false positive results; this works with both KeY and OpenJML. Like the
example in Section 2, the other examples are also mostly based on dependencies between different
variables.

For example, in Figure 17, invInfo.var_permutations() cannot return null if invInfo.vars()
is not null. We verified the method containing this snippet by adding JML clauses to those two
methods as seen in Figure 18.

The Checker Framework supports limited method pre- and postconditions via annotations like
@EnsuresQualifierIf(result=true, expression="#1", qualifier=Odd.class)11, which states that
if the result of the annotated method is true, the first parameter will be set to an odd number. These
annotations are currently not supported by the Property Checker. Instead, we use the annotation
@JMLClause to inject additional JML clauses into the contracts generated by the translator. This
allows us to use the property that invInfo.var_permutations() cannot return null if invInfo.vars()
does not in our proof.

Another interesting property is seen in Figure 19, where at least one parameter must be non-null.
Again, we added this condition as a JML clause, allowing us to close the proof.

Case study. We also implemented a small web shop case study tomeasure the potential verification
speedup when using the property type checker and KeY versus using just KeY by itself. The class
diagram in Figure 20 shows all classes except for the class Main and their most important fields and
methods. The case study consists of 269 total lines of Java code and 102 lines of property qualifier

11Example from https://checkerframework.org/api/org/checkerframework/framework/qual/EnsuresQualifierIf.html
12See the original file at https://github.com/codespecs/daikon/blob/a62c452bf4a5818271f87bd0d2ba322a18e197ee/java/
daikon/DiscReasonMap.java#L149
13See the original file at https://github.com/codespecs/daikon/blob/a62c452bf4a5818271f87bd0d2ba322a18e197ee/java/
daikon/inv/InvariantInfo.java
14See the original file at https://github.com/codespecs/daikon/blob/a62c452bf4a5818271f87bd0d2ba322a18e197ee/java/
daikon/diff/DetailedStatisticsVisitor.java#L148
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public class InvariantInfo {

public final @Nullable String vars;

@JMLClause("ensures \result == vars")

public @Nullable String vars() { return this.vars; }

@JMLClause("ensures \result == null <==> vars == null")

public @Nullable List var_permutations () { ... }

}

Fig. 18. JML specifications for invInfo13.

@JMLClause("requires inv1 != null || inv2 != null")

public static int determineArity(

@Nullable Invariant inv1 , @Nullable Invariant inv2) {

@SuppressWarnings("nullness")

@NonNull Invariant inv = (inv1 != null) ? inv1 : inv2;

...

}

Fig. 19. Dependence between parameters14.

Fig. 20. UML diagram for the case study.

definitions. It implements a queue of orders, where an order is a pair consisting of a customer and
a product such that the customer is old enough to buy the product.

We use seven property qualifier hierarchies: (1) a hierarchy for @Positive and @Negative integers;
(2) a hierarchy for @Interval(min,max) qualifiers for more general integer intervals; (3) a hierarchy
for @Length(min,max) qualifiers for lists of a particular length; (4) a nullness hierarchy with @NonNull

and @Nullable qualifiers; (5) a hierarchy for @AgedOver(age) qualifiers to represent customers over
a certain age; (6) a hierarchy for @AllowedFor(age) qualifiers to represent products with some age
restriction. This, along with the @AgedOver(age) hierarchy, is used to guarantee that for every order,
the customer is old enough to buy the product. (7) a hierarchy containing several qualifiers whose
properties encode certain invariants or properties for the queue class, in particular, an invariant used
by Okasaki [1995] to guarantee amortized constant-time insertion and removal. These hierarchies
are defined in the language presented in Section 4.1. The full hierarchy definitions can be seen in
Appendix C. The most important type properties for the @AllowedFor(age) hierarchy and for the

15The case study war run on a computer with an AMD Ryzen 7 PRO 4750U (8x1.7GHz) CPU and 32 GB of RAM.
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Table 1. Run times for the case study15.

Raw translation Enhanced translation
(all files)

Enhanced translation
(only files with unfin-
ished proofs)

No. of trials (KeY) 10 10 10
Mean (KeY) 517 s 490 s 311 s

Deviation (KeY) 14 s 24 s 4 s

No. of trials (OpenJML) 10 10 0
Mean (OpenJML) 232 s 475 s N/A

Deviation (OpenJML) 39 s 123 s N/A

Okasaki queue hierarchy are shown in Figure 20 in the notes attached to the Order and Shop classes
respectively.
An Okasaki queue is made up of two lists, called front and back. The Okasaki invariant, shown

in the note attached to the Shop class in Figure 20, states that front is never shorter than back.
To insert an item into the queue, we add it to back. To remove an item, we remove it from front.
Reestablishing the Okasaki invariant (by moving items from back to front) after every insertion and
removal guarantees that those two operations can be done in amortized constant time [Okasaki
1995, 4]16.

All in all, the program contains 111 explicit annotations, of which 50 are @JMLClauses and the
rest are property qualifiers.

In addition to the classes shown in Figure 20, there is a Main class which instantiates some orders
and adds them to the order queuemanaged by the singleton Shop instance. Thewell-typedness of this
Main class and that of the Shop class can be shown by the Property Checker, while the well-typedness
of the other classes cannot be proven by the Property Checker alone. The reasons for this are twofold:
First, the other classes often use dependent qualifiers, which are supported by the JML translator,
but not by the checker. For example, the constructor List(Object head, List tail) returns an
object of type @Length(min="tail.size + 1", max="tail.size + 1") List, which is dependent on
tail. Second, while the Main and Shop classes only use and preserve the type properties, the other
classes must establish them. For example, the fact that the method Queue::toOkasaki shown in
Figure 21 establishes the Okasaki invariant cannot be proven by the type checker. For the if

branch, the checker would have to see that the path condition implies that the invariant holds
for this and that this thus has the type @Okasaki Queue. For the else branch, the checker would
have to substitute the newly created queue into the invariant definition and evaluate it. While
both of these things are beyond our current Property Checker, the LiquidHaskell tutorial by Jhala
et al. [2017], which also implements Okasaki queues, shows that such properties are expressible
and provable in a refinement type system. The Main and Shop classes on the other hand can
use the guarantees established by the other classes in ways that can be proven by the checker.
For example, by simply calling orders.toOkasaki() whenever the orders queue is modified, we
guarantee that the invariant is preserved. We used some tricks here to get around the missing
support for dependent types in the checker: The Customer constructor has the dependent signature
@AgedOver(age="age") Customer(String name, int age), so we added additional builder methods
like @AgedOver(age="18") customer18(String name). While the correctness of these builders must
be established by KeY, the Main class which uses them can then be proven in the checker.

16Actually, this only works for lazy lists, which we do not use in this case study for simplicity’s sake.
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public @Okasaki Queue toOkasaki () {

if (back == null || (front != null && front.size() >= back.size ())) {

// Okasaki invariant already holds.

return this;

} else {

// Invariant does not hold.

// Establish it by moving all items in back to front.

return new Queue(rotate(front , back , null), null);

}

}

Fig. 21. The method which establishes the Okasaki invariant.

@AllowedFor(age="18") Product product18 = ...;

@AgedOver(age="18") Customer customer18 = ...;

addOrder18(customer18 , product18 );

addOrder18(customer18 , product18 );

Fig. 22. addOrder requires additional specifications if the Property Checker is not used.

We say in Section 4 that the Property Checker requires every class which can be used with a
qualifier to be immutable. In our case study, this applies to all classes except for Main and Shop. We
made these classes immutable by making all of their transitive fields final. Methods which one
could expect to modify an object, like Queue::remove, instead return a new object.

The proof times for the case study are shown in Table 1. We ran the case study three times:
First, we tried to prove all type properties using only KeY by running the JML translator without

running the Property Checker first. This is the raw translation. This version required some additional
JML specifications to be provable in KeY; instead of the 50 @JMLClauses mentioned above, we needed
5 more for a total of 55. For example, in Figure 22, KeY is unable to prove the correctness of
the second call for addOrder18 because it cannot guarantee that the first call did not modify the
customer’s age to be under 18. By annotating addOrder18 with assignable Shop.instance.orders,
we guarantee that no heap location except for the order queue is modified. The Property Checker
on the other hand knows that the type property for @AgedOver(age="18") holds in every reachable
state and can thus discharge this method call, so that it does not need to be proven by KeY. The
total number of assertions and method call preconditions in the raw JML translation is 117, which,
as seen in Table 1, take on average 517 seconds to prove in KeY.
Next, we repeated the process, but this time running the Property Checker before the JML

translation. It is able to prove 90 of those assertions and preconditions, leaving 27 false positives.
The JML translation which considers this is the enhanced translation. We have two options of how
to proceed with the enhanced translation: We can either load every method in KeY, even those
methods which have been completely discharged by the Property Checker (in which case KeY
symbolically executes the methods without proving anything); this leads to a very similar run time
of 490 seconds, though we no longer need the 5 additional JML specifications. Or we can only load
those methods in which there remains something to be proven for KeY, in which case KeY’s average
run time decreases to 311 seconds. For all versions, the type checker and JML translator run for 8
seconds on average with a standard deviation of 0 seconds17.

17For want of an implementation, we did not perform the preliminary checks outlined in Section 4.3.
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This tells us that proving the comparably simple properties which the Property Checker can
prove has no large impact on KeY’s run time, which is instead dominated by the loading times, the
symbolic execution, and proving the harder properties which the Property Checker cannot prove.
Thus, discharging only some but not all of the assertions in a given method with the Property
Checker does not substantially improve KeY’s run time. However, if we write our program in such
a way that the Property Checker can prove all assertions in a given method, then that method does
not even have to be loaded in KeY, which does lead to a significant run time improvement.

In addition, we have seen that the Property Checker’s ability to prove that type properties hold in
every reachable state complements KeY’s abilities by allowing us to prove a program’s correctness
with fewer JML specifications.

To confirm this, we also ran the case study in OpenJML, a fully automatic JML verification tool
that generates first order verification conditions and uses SMT solvers to discharge them. Since
OpenJML always proves all proof obligations in a program, we were not able to turn off the proof
obligations which have been completely discharged by the checker. In addition, OpenJML reports
some spurious or intentional errors, namely: (1) integer overflows, which we did not consider
and told KeY to ignore, (2) possible null dereferences in the type property definitions and JML
specifications, which we also ignore because they never occur if our case study is used correctly,
(3) errors in the trampolinemethods, which are correct by construction but not provable in OpenJML.
We thus only used two versions of the case study with OpenJML: First, we tried to prove the raw
translation. Ignoring the spurious/intentional errors listed above, OpenJML reports 25 warnings.
Second, we tried to prove the enhanced translation, which (again, ignoring the spurious ones)
leads to no warnings. The fact that OpenJML takes longer to run on the enhanced translation than
on the raw translation is due to the fact that for the raw translation, the warnings lead to some
proof obligations not being considered. We can thus see that using a type checker in addition to a
verification system lowers the specification burden as well as the verification burden.

From a development point of view, the classes which we had to prove in KeY/OpenJML (i.e., the
queue and list implementations, as well as the classes for customers, products, and orders) probably
need to be changed less often than the classes we were able to prove completely in the Property
Checker (the shop class which manages the orders, and the main class which instantiates the shop
and places some orders), which further decreases the verification burden.
The missing support for dependent types, as well as the fact that we used the generic Property

Checker instead of stronger checkers, led to some unnecessary overhead. For example, the Property
Checker does not know that the result of a constructor is always @NonNull, and as a result every
constructor had to go through the JML translation to be proved correct. We believe that with some
improvements to the Property Checker, or with the use of dedicated checkers, the verification time
could be lowered even further.

6 RELATED WORK

There is a large body of work on both type systems and formal verification. This section briefly
discusses the relation to work in run-time verification, dependent and refinement types, and static
verification.

Run-time verification. Run-time verification is sometimes a sensible alternative to the compile-
time verification offered by deductive verification tools and type checkers. Like type checkers, it
scales well and is easy to use, and like deductive verification, it is quite powerful. In fact, run-time
verification has no false positives at all. However, it cannot statically guarantee that a program
always respects its specification.
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Cheon and Leavens [2002] introduce a run-time checker for JMLwhich transforms JML-annotated
Java code in such a way that exceptions are thrown if a JML specification is violated. Our approach
could use this run-time checker to enforce the remaining property type assertions at run time if a
static analysis is not desired or not possible.
Bean Validation [Morling 2019] is an example of run-time verification for Java which uses

annotations. It allows the programmer to define annotations via Validator objects. These Validators
provide a boolean method which, when supplied with an object, must return true if and only if
the object conforms to the annotation’s constraints. Annotations defined this way can be used to
annotate declarations of types, fields, methods, constructors, parameters, and container elements
of JavaBeans only. The Validators are called at pre-defined times during run time, e.g, whenever a
setter method is called. They can also be called manually [Morling 2019, 6.4].
The Ada programming language [Intermetrics, Inc. 2016] has subtype predicates which can be

used to define a subtype by constraining the supertype instances to those for which the predicate
holds. These predicates are checked by inserting assertions into the code which are checked at run
time.

Knowles and Flanagan [2010] introduce an approach for hybrid type checking, which combines
static type systems with dynamic run-time checks: A type use whose correctness cannot be
established at compile time can be translated into a dynamic cast whose correctness is checked at
run time. Unlike our approach, where the type checker outputs two possible results for a program
(definitely well-typed, or unknown), in hybrid type checking, there are three possible results
(definitely well-typed, definitely ill-typed, or unknown). To achieve an analogous extension in our
approach, we would have to annotate the type qualifier hierarchies not only with implications
between the property types, but also with inconsistencies between them. This would allow the
type checker to report guaranteed true errors (i.e., without any potential for false positives) if
inconsistent types are encountered. Furthermore, although this is not considered in this paper,
KeY is sometimes able to generate counterexamples for programs that do not satisfy their JML
specification, thus proving them to be definitely ill-typed.
In contrast to these run-time approaches, we combine two static verification approaches to

achieve both scalability and precision.

Dependent types and refinement types. The property types introduced in this paper can be thought
of as refinement types. Refinement types were first introduced by Freeman and Pfenning [1991] for
the ML language. Vazou et al. [2014] introduce the refinement type system used in the language
LiquidHaskell. LiquidHaskell’s refinement types allow the programmer to decorate types with logical
predicates. Depending on where such a decorated type occurs, its predicate can be interpreted as a
function precondition, a function postcondition, or an invariant. Refinement type systems are a
type of dependent type systems. In a language with a dependent type system, references to programs
and variables can appear inside of types [Chlipala 2013, 1.2.2]. The type system of LiquidHaskell
limits itself to SMT-decidable predicates. The well-typedness of a program is decided by translating
all refinement predicates to SMT formulas and using an SMT solver [Vazou et al. 2014, 1, 2.1]. Full
dependent type systems go a step further and make no restrictions about which values can appear
in types. This comes at the cost of the well-typedness of a program no longer being decidable. An
example of a language with full dependent types is Idris [Brady 2013].

Our translation of property types to JML formulas allows us to use the full power of a deductive
verification tool like KeY in addition to a type checker. While our type checker implementation
does not support dependent types, JML clauses are allowed to contain arbitrary side-effect free
Java expressions. Appendix A briefly explains how dependent property types can be included in
our approach.
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Stump and Wehrman [2006] propose a notion of property types for Java. They extend generics
to allow not just types but also values as type arguments. They associate such parameterized
classes with properties. For example, the class Leq<int i, int j> can be instantiated as Leq<3, 4>

to express the fact that 3 ≤ 4. They adapt the Curry-Howard correspondence [Howard 1980] to
imperative languages: They use instances of classes like Leq<3,4> as proofs that the respective
property holds. The trusted code that creates these proof objects is encapsulated from the untrusted
client code which uses the property types.
Our property type approach does not make proof objects available at run time. Instead, we

introduce a pluggable type system that has no effect on a program’s run-time semantics. While our
approach allows the user to separate a program into untrusted code which can be checked with a
type checker, and a trusted core whose correctness cannot be established by a type checker, this is
not obligatory. Our approach is able to prove the correctness of both the untrusted and the trusted
code within the same pipeline.
Toman et al. [2020] introduce the ConSORT system, which shows how ownership types can be

used to allow refinement types to work with mutable objects. Like our work, this is an application
of refinement types to imperative languages which reduces the number of false positives reported
by type checkers. Unlike our work, it achieves this reduction not by combining a type checker with
a deductive verification system, but by providing a more powerful type system which combines
refinement and ownership types.
Sammler et al. [2021] introduce RefinedC, another combination of refinement and ownership

types. It is similar to our work in that the type refinements are translated into another language, in
this case Coq [Bertot and Castéran 2004]. However, unlike in our approach, there is no light-weight
type checker that runs before this translation. Instead, everything is proven in Coq.

Static verification and type systems. Ownership and ownership type systems [Clarke et al. 2012]
are frequently used to ensure program correctness or support program verification. Dietl and Müller
[2012] survey the use of ownership for program verification. Universe types [Dietl and Müller
2004] is an ownership type system for Java and JML that is geared towards modular verification of
programs.
The Rust programming language uses an ownership and borrowing system. RustBelt [Jung

et al. 2017] is an approach to proving the soundness of the Rust programming languageÐmore
specifically, the correctness of the memory safety guarantees claimed by Rust’s ownership type
systemÐwhereby the soundness of all programs which use a safe subset of Rust is proven once
and for all, while the soundness of programs using unsafe features is established by generating a
verification condition which can be shown in the Coq [Bertot and Castéran 2004] proof assistant.
The approach of guaranteeing the correctness of most programs with the help of a type system
and verifying the programs/libraries for which this is not possible using a proof assistant is very
similar to our approach of combining type systems with deductive verification. However, we do
not limit proofs to memory safety.

Dafny [Leino 2017] is a programming language designed for deductive verification. Its type system
distinguishes between non-null types (object) and nullable types (object?). The verification engine
comprises a state-of-the-art approximating nullness type checker. An assertion for the absence of
null values is automatically added in those cases where the type checker cannot guarantee null
safety. Dafny follows similar ideas as our approach, but again limited to the one built-in property
of non-nullness.
JavaCOP [Markstrum et al. 2010] is a framework for pluggable Java type systems based on

the theoretical framework by Chin et al. [2005]. Unlike the Checker Framework, which provides
declarativemeta-annotations and a JavaAPI for the development of type checkers, JavaCOP provides
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a domain-specific declarative language for type systems. The hierarchy definition language outlined
in Section 4.1 is similar to, but far less expressive than JavaCOP’s language. The focus of our work
is not on the definition of the types and type systems, but on the translation of these types to a
specification language.

7 CONCLUSION AND FUTURE WORK

This paper introduces a novel approach to avoid false positives in type checkers by translating
types to specifications. This approach works for all property type systems, which are type systems
in which every type is associated with some logical property that expresses its meaning.
We implemented this approach for Java by providing a generic property checker written with

the Checker Framework and a translator of property types to JML specifications. The property type
checker can be instantiated with simple user-defined property type systems and the resulting JML
specifications can be verified with KeY or OpenJML.
Our approach combines the scalability of static type checkers with the precision of deductive

verification. We prove the soundness of the approach for a minimal language and illustrate the
benefits of the approach using case studies: removing false positives of a nullness checker and
speeding up deductive verification.

This paper focused on proving the correctness of an existing program specification. It would be
very helpful if, given an incorrect program, the verification pipeline were able to insert additional
assertions or checks at critical places in the program. This can be combined with type inference on
the side of the Checker FrameworkÐas demonstrated for example by Dietl et al. [2011b], Huang
et al. [2012], Xiang et al. [2020]Ðwhich determines a valid typing for a given program, if one exists.

It would also be interesting to see if and how the property type system can be extended to allow
for non-monotonic properties of mutable objects to be verified. For that, one would have to leverage
an ownership system like Universe Types to deal with the problems presented by reference aliasing.
As mentioned in Section 4.3, the approach can also be extended with support for generics.
Furthermore, the current implementation is incomplete, as it neither contains the preliminary

checks from Section 4.3 nor a checker for the well-formedness of property qualifier hierarchies.
It would be interesting to more deeply explore how our approach works with type checkers

stronger than our generic Property Checker, to offer a definition language for stronger type systems,
and to also offer a way to prove the correctness of the given type rules using a deductive verifier.
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