
Proving Equivalence between Control Software
Variants for Programmable Logic Controllers

Using Regression Verification to Reduce Unneeded Variant Diversity

Sebastian Ulewicz, Birgit Vogel-Heuser
Technische Universität München

Institute for Automation and Information Systems
Munich, Germany

{ulewicz; vogel-heuser}@ais.mw.tum.de

Mattias Ulbrich, Alexander Weigl, Bernhard Beckert
Karlsruhe Institute of Technology
Institute of Theoretical Informatics

Karlsruhe, Germany
{ulbrich; weigl; beckert}@kit.edu

Abstract—Automated production systems are usually driven
by Programmable Logic Controllers (PLCs). These systems are
long-living and have high requirements for software quality to
avoid downtimes, damaged product and harm to personnel.
While commissioning multiple systems of similar type, pragmatic
adjustments of the software are often necessary, which results in
two or more similar variants of initially identical software. For
further evolution of the software, an equivalence analysis of the
software’s behavior is beneficial to merge divergent development
branches into a single program version. This paper presents a
novel method for regression verification of PLC code, which
allows one to prove that two variants of a plant's software behave
identically in specified situations, despite being implemented
differently. For this, a regression verification method for PLC
code was designed, implemented and evaluated. The notion of
program equivalence for reactive PLC code is clarified and
defined. Core elements of the method are the translation of PLC
code into the SMV input language for model checkers, the
adaptation of the coupling invariants concept to reactive systems,
and the implementation of a toolchain using a model checker.
The approach was successfully evaluated using the Pick-and-
Place Unit benchmark case study.

Keywords—Manufacturing automation; Formal verification;
Software quality; Software maintenance

I. INTRODUCTION

Automated production systems (aPS) [1], such as industrial
manufacturing plants, are usually automated with
Programmable Logic Controllers (PLCs). These computing
devices are specially tailored to controlling automated
production systems in dependable or safety-critical real time
environments. A malfunction may cause severe damage to the
system itself or to the payload, or even harm persons within the
reach of the system. This results in high quality requirements
on the software, which is commonly ensured by software
testing. In many cases, the software cannot be tested as a whole
before commissioning, i.e. the installation and initial startup of
the machine, as the software functionality relies on feedback
from the hardware and the controlled technical process. As
commissioning is driven by meeting deadlines, this process is
very straining on involved personnel and often results in quick
and pragmatic fixes of software faults. For multiple systems of

the same type, similar automation tasks (functions) are
programmed by different engineers at different customer sites
during start-up, but are oftentimes not transferred back to a
base version or the other systems. This results in multiple
variants of code snippets with similar behavior, yet different
implementation. For further evolution of the systems, high
numbers of variants increase the effort for implementation and
testing. It is thus economically useful to keep the number of
similar variants low. In these cases, an analysis of the
behavioral equivalence of the two or more snippets
programmed on-site is beneficial to decide whether the
snippets are really equivalent in behavior and – if this is the
case – which of the snippets should be used in the future to
reduce similar variants to the best variant. Another use case
with the same resulting challenge is parallel development of
code parts for basic functions due to lack of communication
between teams, e.g. an implementation of a new drive in
different teams for different plant types. This cannot be
achieved by simple differencing of code: As shown in Fig. 1,
code can exhibit equivalent behavior with different
implementations. In this paper, a formal regression verification
method and toolchain are presented which approach this
problem.

Fig. 1. Behavioral equivalence with different implementations

The main advantage of regression verification in comparison to
usual functional verification is that no behavioral specification
is needed. As opposed to (regression) testing, regression
verification proofs cover all possible input values and not just
selected test cases. Another advantage is that no hardware test

978-1-4673-7929-8/15/$31.00 ©2015 IEEE

bed or executable hardware model is needed for regression
verification.

In theory, there are no limitations for the approach, as with
fixed finite data structures as used in PLC programs,
equivalence can always be proved by model checking.
However, scalability is an issue in practice. If equivalence
between the two releases is only conditional or partial, the
conditions that capture that partiality must be specified by the
user.

The structure of the paper is as follows: An overview of
related work is given in Section II. Section III presents the
approach concepts, including the definition of equivalence of
PLC programs, environment models to increase precision and
the method and toolchain. In Section IV, a case study is
presented to evaluate the approach. A conclusion and an
outlook are given in the last section.

II. RELATED WORK

The aim of software quality assurance methods – e.g.,
testing or formal verification – is to support the developer to
identify software faults and to fix them efficiently. Software
engineering techniques available in automation engineering
today are not sufficient to thoroughly assure the required level
of availability, functional safety and reliability in variant-rich
aPS. Recent approaches based on regression testing [2], testing
of variant-rich aPS using 150% UML state charts [3] or virtual
commissioning techniques allow validating the system
behavior in a restricted time frame, but possess weaknesses for
detecting rare events.

For rare events, formal verification techniques are suitable,
as the state space of the system is analyzed for compliance
exhaustively. Several works focus on verifying PLC code
through model checking [4] [5] [6]. All of the approaches fail
or struggle with the state explosion problem when applied to
industrial PLC software. In addition, most approaches rely on
precise function specifications or environment models, which
oftentimes do not exist in the domain of automation
engineering.

Regression verification was first introduced by [7] who
used the bounded software model checker CBMC to prove the
equivalence of C programs. Many approaches have been
developed for the verification of program equivalence since. In
[8], sufficiently strong coupling predicates are automatically
inferred to prove the equivalence of C programs. The new
approach presented in this paper transfers and extends these
ideas into the world of PLC software. An active research area
related to regression verification is equivalence checking of
hardware circuits, [9] presents a symbolic model checking
approach for hardware similar to ours for software.

III. CONCEPTS

To be able to reason about equivalence for control
programs, a formal definition of equivalence of PLC programs
is given, followed by the concept of environment models.
These are used to avoid or reduce the number of false alarms
by excluding impossible input signals. The developed method

and toolchain for the regression verification approach based on
these notions is subsequently presented.

A. Formalizing Equivalence of PLC Programs

There are various possibilities for defining system
boundaries when modeling an aPS. Entire systems or
individual components can be modeled. Even when focusing
on the PLC, models of peripheral hardware components could
still be included. However, the presented method concentrates
on the software that runs on the controller and disregards all
effects outside the software. Sect. III.B discusses measures to
include the environment in the models.

PLCs are reactive systems with a cyclic data processing
behavior, repeating the same control procedure indefinitely. In
our approach we consider PLC programs with a constant cycle
time which perform the following steps repeatedly: (1) read
input values, (2) execute task(s), (3) write output values, (4)
wait. PLCs can be modeled as functions that compute output
values from input signals read at the beginning of a cycle.
However, the same input may result in different output signals
at different points in time since PLCs possess an internal state
(memory) that may change over time. To examine the
equivalence of PLC software, it does hence not suffice to look
at the cycle's input/output function, but a notion of equivalence
of signal traces must be used: If the two software variants are
presented with the same sequence of input sensor readings,
they must produce the same sequence of actuator outputs as
illustrated in Fig. 1.

 The trace semantics of a PLC program is a mathematical
function that maps every trace (i.e., infinite sequence) of input
signals to the corresponding trace of output signals computed
by the PLC when it is presented with that input sequence. Two
PLC programs are called perfectly equivalent if their trace
semantics are equal (they compute the same function). They
are called conditionally equivalent if their trace semantics
produce the same results for a subset of possible input traces
(the formal description of the subset is then called the
condition).

B. Environment Models to Increase Precision

To reduce false alarms during the comparison of two
revisions of a PLC program, it is sensible to include available
knowledge about possible input traces into the verification. It is
irrelevant if the programs behave differently on input traces
which cannot occur in practice.

In simple cases properties of the physical system can be
stated in form of conditions on the PLC inputs. In more
complicated cases, these are difficult or error-prone to express.
Then it is better to use a model of the context of the aPS which
uses output of PLC program as input and delivers the possible
sensor signals to the PLC program. This model represents the
environment of the software, i.e. the uncontrolled (parts of the)
plant and possible other factors of investigation, such as bus
behavior or user interaction. This restricts the search space,
increases precision of regression verification and avoids false
alarms. Such models can be expressed in form of state
machines.

While increasing model accuracy reduces the search space
and allows more correct revisions to be verified, it at the same
time enlarges the system description for the model checker. It
is, hence, a good idea to abstract away from behavior for the
regression verification wherever this is possible.

C. Method and Tool Chain

Regression verification for PLC software is achieved in the
presented approach by construction of a verification condition
from two PLC program variants and environment models. The
workflow of our method, as shown in Fig. 2, covers several
transformation steps.

In the final step, the resulting verification condition
consisting of a transition system and a property is presented to
a model checker that can come back with three possible results:
It may report that the verification property holds for the
transition system in which case the two PLC programs are trace
equivalent. It may report a counterexample with a concrete
(finite) input trace that leads to the equivalence violation. There
are no “false positives”: Every reported violation uncovers a
case of unequal behavior. In case the condition is not valid, it
may be that the environment is not modeled precisely enough,
and that the failure is a false alarm in the sense that it cannot
occur in practice with the real hardware. The variables range
over finite datatypes and the model checking problem is, in
theory, decidable. Depending on the size and complexity of the
verification condition, it is still possible that the model checker
runs out of resources (time or memory) and does not come
back with an answer, which is the third possible result.

Fig. 2. Overview over the regression verification method

The IEC 61131-3 standard defines two textual and three
graphical PLC programming languages. According to the ARC
industry advisory group [10], the use of PLC systems
compliant with IEC 61131-3 currently is and will remain the
state of industrial practice for the next five to ten years. The
approach considers input PLC programs written in the textual

language Structured Text (ST) or the graphical language
Sequential Function Chart (SFC).

For a uniform treatment of programs regardless of the
particular language, an intermediate language into which all
incoming programs are translated, is defined. This language
ST0 is essentially the loop- and call-free fragment of ST
reduced to fewer, more basic datatypes. The only statements in
ST0 are assignments and if-then-else conditionals. Despite
their notational differences, programs in all 61131-3
programming languages can be represented in ST0 (provided
they do not have unbounded loops, which are to be avoided in
real time systems) [11]. During normalization to ST0, loops are
fully unwound and function block invocations are inlined. The
normalized code in ST0 is symbolically executed to derive a
state transition system as model checker input.

Since ST0 programs that result from translating SFC code
involve many consecutive and nested if-statements to encode
the original state machine, the number of paths through the
program is huge and explicitly enumerating them is infeasible.
For example, the last scenario (Ev14) of the case study (Sect.
IV) yields some 13 billion paths, such that the resulting proof
obligation would not fit into the available memory. To avoid
this problem, a smaller program representation by not
explicitly enumerating all paths but following the concept of
Phi-nodes [12] to merge the effects of the branches of an if-
statement is produced. While this procedure cannot guarantee
that the result is not exponentially larger than the input,
experiences showed that the results are acceptable in practice.

The proof obligation handed to the symbolic model checker
consists of a state transition system and a property that is to be
proved an invariant for it. The state transition system is a
composition of the two systems that result from translating the
two PLC program revisions A and B and the models for the
environment as introduced in Sect. II.B. All variables of the
input spaces of A and B make up the input variables of the
combined model. If the sensor readings are constrained by an
environment model, the input signals of that model are input
signals of the entire state transition system while input signals
of the PLC programs corresponding to sensor readings are
taken from the outputs of the environment model. This has two
effects: (1) The input space size is reduced and (2) the
modeling is more precise.

Modern model checkers allow the application of state
abstraction methods to find proofs for safety properties more
efficiently. Regression verification using symbolic model
checkers with such abstractions is particularly promising, since
the two software variants are closely related if they are based
on the same variant, adapted to the same application scenario.
In such cases, it is likely that the variants of the program have a
similar – yet not necessary equal – encoding of their state
spaces. Using an invariant over the state spaces of two program
variants allows to reason about safety properties. Such a
predicate, building a bridge between the state spaces, is called a
coupling predicate. The more similar the state space encodings
of two program variants are, the closer the coupling predicate is
to equality on the state spaces.

If an existing software base is adapted simultaneously and
independently to similar changed requirements, it is to be

expected that the changes affect only a relatively small
number of the state variables whereas much of the state
remains unchanged (and leaves both revisions' behavior
equivalent in many cases). An inductive invariant implying
equivalence then comprises equality between the unmodified
state variables, and a more general coupling invariant must be
generated only for the affected variables.

The regression verification method using invariants is
complete but the user of the verification tool would have to
find and formalize all coupling invariants which can be large
and unintuitive. Instead, the capabilities of state-of-the-art
symbolic model checkers to automatically infer inductive
invariants are used. The presented case study shows that even
with large state spaces, this state abstraction mechanism allows
to prove equivalence of non-trivial programs. The model
checker nuXMV is capable of coming up with the required
coupling predicates. If this invariant generation mechanism is
switched off, the tool relies on more traditional symbolic model
checking techniques, in which case even the simpler problems
in the case study could not be solved.

IV. CASE STUDY

We have evaluated our approach by applying it to the
benchmark evolution scenarios of the Pick-and-Place Unit
(PPU), which is illustrated in Fig. 3. The PPU is an open case
study for the machine manufacturing domain [13]. The PPU
has 22 digital input, 13 digital output, and 3 analogue output
signals and defines a number of simple discrete event
automation tasks. Despite being a bench-scale, academic
demonstration case, the PPU is complex enough to demonstrate
selected challenges that arise during engineering of aPSs. The
toolchain was successfully applied to all scenarios from [13]
that had a suitable change of software implementation. As the
complexity of the case study is noticeably below industrial use
cases, e.g. regarding the number of inputs and outputs and the
use of analogue input and output values, scalability of the
presented approach is focus of future work.

Panel

Crane

Panel

Panel

Fig. 3. Schematic of the hardware setup of the PPU case study [13]

Proving conditional equivalence was evaluated using
scenario 3 (Table I. Sc3), in which the functionality of starting
the machine was implemented in a different way. Trace
equivalence could be proven using an LTL formula omitting

other changes to the system (changes of the input panel
hardware, see Fig. 3, “Panel”).

An environmental model was used to investigate scenario 6,
in which handling of certain work pieces by the crane (Fig. 3,
“Crane”) was implemented differently. Equivalence was
assumed and analyzed for the individual work piece types
(Table I. Sc6a, Sc6b) and both types (Sc6ab). Using an
environmental model of the crane transporting the work pieces,
the ad-hoc assumption could be more intuitively formulated
(Sc6+EM).

Using our method and toolchain, automatic regression
verification was successful for all selected scenarios from the
PPU case study. Table 1 shows statistics for relevant
experiments with the PPU. The evolution scenarios were
verified using nuXMV version 1.0.1 on an Intel Dual-Core with
2.7 GHz and 4 GB RAM running OpenSUSE 12.2.

TABLE I. RESULTS OF EXPERIMENTS

Scenario Sensor inputs
[bits]

State space
[bits]

Min. time
required

Max. time
required

Sc3 19 246 9s 17s
Sc6a 19 284 15.1m 155.4h
Sc6b 19 284 8.9m 9.1h
Sc6ab 19 284 18.1m 13h
Sc6+EM 11 299 2m 21m

The verification times for the same problem on the same
machine may vary considerably in multiple runs due to random
choices in the symbolic model checker which have a great
impact on the verification time.

The regression verification method can not only be used for
verifying equivalence of PLC programs, but unintentional
differences between programs can also be found using the
presented approach. The evaluation revealed that in scenario 3,
new intermediate code blocks are added into SFCs that cause a
difference by delaying the system answer one cycle for each
work piece. Since the cycle time is very short in the PPU
(4 ms), the discrepancy between the programs was not found
by testing, but points to an inferior implementation.

V. CONCLUSION AND FUTURE WORK

We have presented a method and toolchain for the
automatic regression verification of PLC software by means of
a symbolic model checker. In this process, a software variant
serves as specification for the other one. Conditions can be
specified under which systems must behave equivalently and
models of environment can be added to make the process more
precise. Evaluation proved the presented method to be
applicable to non-trivial PLC software. Automatic regression
verification was successful for all selected scenarios from the
PPU case study.

Currently, the developed toolchain supports notions that
compare PLC behavior cycle by cycle. Future work will allow
for conditions and relations to relate variables of different
cycles. Another interesting path of investigation is the use of
abstractions to factor out parts of PLCs that have not been
touched by evolution and need not be proved equivalent. In

addition, the scalability of the approach in real industrial use is
to be investigated.

REFERENCES
[1] B. Vogel-Heuser, C. Diedrich, A. Fay, S. Jeschke, S. Kowalewski, M.

Wollschläger and P. Göhner. "Challenges for Software Engineering in
Automation," Journal of Software Engineering and Applications, vol. 7,
no. 5, pp. 1-12, 2014.

[2] S. Ulewicz, D. Schütz and B. Vogel-Heuser. "Software Changes in
Factory Automation - Towards Automatic Change Based Regression
Testing," Conference of the IEEE Industrial Electronics Society, pp. 1-7,
2014

[3] M. Lochau, J. Bürdek, S. Lity, M. Hagner, C. Legat, U. Goltz and A.
Schürr. "Applying model-based software product line testing approaches
to the automation engineering domain," at – Automatisierungstechnik,
vol. 62, no.11, pp. 771–780, 2014.

[4] R. Huuck. "Semantics and analysis of instruction list programs," Electr.
Notes Theor. Comput. Sci. 115, pp. 3–18, 2005.

[5] N. Bauer, S. Engell, R. Huuck, S. Lohmann, B. Lukoschus, M. Remelhe
and O. Stursberg. "Verification of PLC programs given as sequential
function charts," Integration of Software Specification Techniques for
Applications in Engineering, LNCS 3147, pp. 517–540, 2004.

[6] A. Wardana, J. Folmer and B. Vogel-Heuser. "Automatic Program
Verification of Continuous Function Chart based on Model Checking,"

Conference of the IEEE Industrial Electronics Society (IECON 2009),
Jan. 2009, pp. 2422-2427.

[7] B. Godlin and O. Strichman. "Regression verification: proving the
equivalence of similar programs," Software Testing, Verification and
Reliability, vol. 23, no. 3, pp. 241–258, 2013.

[8] D. Felsing, S. Grebing, V. Klebanov, P. Rümmer and M. Ulbrich.
"Automating regression verification," ACM/IEEE International
Conference on Automated Software Engineering (ASE), pp. 349–360,
2014.

[9] C. A. J. van Eijk. "Sequential equivalence checking based on structural
similarities," IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 19, no. 7, pp. 814–819, 2000.

[10] ARC Advisory Group. "PLC & PLC-based PAC worldwide outlook:
Five year market analysis and technology forecast through 2016," 2011.

[11] A. Weigl. "Regression verification of programmable logic controller
software," Master’s Thesis, Karlsruhe Institute of Technology, 2015.

[12] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman and F. K. Zadeck.
"An effcient method of computing static single assignment form," ACM
Symposium on Principles of Programming Languages (POPL 89),
ACM, 1989.

[13] B. Vogel-Heuser, C. Legat, J. Folmer and S. Feldmann. "Researching
Evolution in Industrial Plant Automation: Scenarios and Documentation
of the Pick and Place Unit," mediaTUM, Munich, Germany, 2014.

