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Abstract—Automated production systems are usually driven 
by Programmable Logic Controllers (PLCs). These systems are 
long-living and have high requirements for software quality to 
avoid downtimes, damaged product and harm to personnel. 
While commissioning multiple systems of similar type, pragmatic 
adjustments of the software are often necessary, which results in 
two or more similar variants of initially identical software. For 
further evolution of the software, an equivalence analysis of the 
software’s behavior is beneficial to merge divergent development 
branches into a single program version. This paper presents a 
novel method for regression verification of PLC code, which 
allows one to prove that two variants of a plant's software behave 
identically in specified situations, despite being implemented 
differently. For this, a regression verification method for PLC 
code was designed, implemented and evaluated. The notion of 
program equivalence for reactive PLC code is clarified and 
defined. Core elements of the method are the translation of PLC 
code into the SMV input language for model checkers, the 
adaptation of the coupling invariants concept to reactive systems, 
and the implementation of a toolchain using a model checker. 
The approach was successfully evaluated using the Pick-and-
Place Unit benchmark case study.   

Keywords—Manufacturing automation; Formal verification; 
Software quality; Software maintenance 

I.  INTRODUCTION 

Automated production systems (aPS) [1], such as industrial 
manufacturing plants, are usually automated with 
Programmable Logic Controllers (PLCs). These computing 
devices are specially tailored to controlling automated 
production systems in dependable or safety-critical real time 
environments. A malfunction may cause severe damage to the 
system itself or to the payload, or even harm persons within the 
reach of the system. This results in high quality requirements 
on the software, which is commonly ensured by software 
testing. In many cases, the software cannot be tested as a whole 
before commissioning, i.e. the installation and initial startup of 
the machine, as the software functionality relies on feedback 
from the hardware and the controlled technical process. As 
commissioning is driven by meeting deadlines, this process is 
very straining on involved personnel and often results in quick 
and pragmatic fixes of software faults. For multiple systems of 

the same type, similar automation tasks (functions) are 
programmed by different engineers at different customer sites 
during start-up, but are oftentimes not transferred back to a 
base version or the other systems. This results in multiple 
variants of code snippets with similar behavior, yet different 
implementation. For further evolution of the systems, high 
numbers of variants increase the effort for implementation and 
testing. It is thus economically useful to keep the number of 
similar variants low. In these cases, an analysis of the 
behavioral equivalence of the two or more snippets 
programmed on-site is beneficial to decide whether the 
snippets are really equivalent in behavior and – if this is the 
case – which of the snippets should be used in the future to 
reduce similar variants to the best variant. Another use case 
with the same resulting challenge is parallel development of 
code parts for basic functions due to lack of communication 
between teams, e.g. an implementation of a new drive in 
different teams for different plant types. This cannot be 
achieved by simple differencing of code: As shown in Fig. 1, 
code can exhibit equivalent behavior with different 
implementations. In this paper, a formal regression verification 
method and toolchain are presented which approach this 
problem. 

 
Fig. 1. Behavioral equivalence with different implementations 

The main advantage of regression verification in comparison to 
usual functional verification is that no behavioral specification 
is needed. As opposed to (regression) testing, regression 
verification proofs cover all possible input values and not just 
selected test cases. Another advantage is that no hardware test 
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bed or executable hardware model is needed for regression 
verification.  

In theory, there are no limitations for the approach, as with 
fixed finite data structures as used in PLC programs, 
equivalence can always be proved by model checking. 
However, scalability is an issue in practice. If equivalence 
between the two releases is only conditional or partial, the 
conditions that capture that partiality must be specified by the 
user. 

The structure of the paper is as follows: An overview of 
related work is given in Section II. Section III presents the 
approach concepts, including the definition of equivalence of 
PLC programs, environment models to increase precision and 
the method and toolchain. In Section IV, a case study is 
presented to evaluate the approach. A conclusion and an 
outlook are given in the last section. 

II. RELATED WORK 

The aim of software quality assurance methods – e.g., 
testing or formal verification – is to support the developer to 
identify software faults and to fix them efficiently. Software 
engineering techniques available in automation engineering 
today are not sufficient to thoroughly assure the required level 
of availability, functional safety and reliability in variant-rich 
aPS. Recent approaches based on regression testing [2], testing 
of variant-rich aPS using 150% UML state charts [3] or virtual 
commissioning techniques allow validating the system 
behavior in a restricted time frame, but possess weaknesses for 
detecting rare events. 

For rare events, formal verification techniques are suitable, 
as the state space of the system is analyzed for compliance 
exhaustively. Several works focus on verifying PLC code 
through model checking [4] [5] [6]. All of the approaches fail 
or struggle with the state explosion problem when applied to 
industrial PLC software. In addition, most approaches rely on 
precise function specifications or environment models, which 
oftentimes do not exist in the domain of automation 
engineering. 

Regression verification was first introduced by [7] who 
used the bounded software model checker CBMC to prove the 
equivalence of C programs. Many approaches have been 
developed for the verification of program equivalence since. In 
[8], sufficiently strong coupling predicates are automatically 
inferred to prove the equivalence of C programs. The new 
approach presented in this paper transfers and extends these 
ideas into the world of PLC software. An active research area 
related to regression verification is equivalence checking of 
hardware circuits, [9] presents a symbolic model checking 
approach for hardware similar to ours for software. 

III. CONCEPTS 

To be able to reason about equivalence for control 
programs, a formal definition of equivalence of PLC programs 
is given, followed by the concept of environment models. 
These are used to avoid or reduce the number of false alarms 
by excluding impossible input signals. The developed method 

and toolchain for the regression verification approach based on 
these notions is subsequently presented. 

A. Formalizing Equivalence of PLC Programs 

There are various possibilities for defining system 
boundaries when modeling an aPS. Entire systems or 
individual components can be modeled. Even when focusing 
on the PLC, models of peripheral hardware components could 
still be included. However, the presented method concentrates 
on the software that runs on the controller and disregards all 
effects outside the software. Sect. III.B discusses measures to 
include the environment in the models. 

PLCs are reactive systems with a cyclic data processing 
behavior, repeating the same control procedure indefinitely. In 
our approach we consider PLC programs with a constant cycle 
time which perform the following steps repeatedly: (1) read 
input values, (2) execute task(s), (3) write output values, (4) 
wait. PLCs can be modeled as functions that compute output 
values from input signals read at the beginning of a cycle. 
However, the same input may result in different output signals 
at different points in time since PLCs possess an internal state 
(memory) that may change over time. To examine the 
equivalence of PLC software, it does hence not suffice to look 
at the cycle's input/output function, but a notion of equivalence 
of signal traces must be used: If the two software variants are 
presented with the same sequence of input sensor readings, 
they must produce the same sequence of actuator outputs as 
illustrated in Fig. 1. 

 The trace semantics of a PLC program is a mathematical 
function that maps every trace (i.e., infinite sequence) of input 
signals to the corresponding trace of output signals computed 
by the PLC when it is presented with that input sequence. Two 
PLC programs are called perfectly equivalent if their trace 
semantics are equal (they compute the same function). They 
are called conditionally equivalent if their trace semantics 
produce the same results for a subset of possible input traces 
(the formal description of the subset is then called the 
condition).  

B. Environment Models to Increase Precision 

To reduce false alarms during the comparison of two 
revisions of a PLC program, it is sensible to include available 
knowledge about possible input traces into the verification. It is 
irrelevant if the programs behave differently on input traces 
which cannot occur in practice. 

In simple cases properties of the physical system can be 
stated in form of conditions on the PLC inputs. In more 
complicated cases, these are difficult or error-prone to express. 
Then it is better to use a model of the context of the aPS which 
uses output of PLC program as input and delivers the possible 
sensor signals to the PLC program. This model represents the 
environment of the software, i.e. the uncontrolled (parts of the) 
plant and possible other factors of investigation, such as bus 
behavior or user interaction. This restricts the search space, 
increases precision of regression verification and avoids false 
alarms. Such models can be expressed in form of state 
machines. 



While increasing model accuracy reduces the search space 
and allows more correct revisions to be verified, it at the same 
time enlarges the system description for the model checker. It 
is, hence, a good idea to abstract away from behavior for the 
regression verification wherever this is possible. 

C. Method and Tool Chain 

Regression verification for PLC software is achieved in the 
presented approach by construction of a verification condition 
from two PLC program variants and environment models. The 
workflow of our method, as shown in Fig. 2, covers several 
transformation steps.  

In the final step, the resulting verification condition 
consisting of a transition system and a property is presented to 
a model checker that can come back with three possible results: 
It may report that the verification property holds for the 
transition system in which case the two PLC programs are trace 
equivalent. It may report a counterexample with a concrete 
(finite) input trace that leads to the equivalence violation. There 
are no “false positives”: Every reported violation uncovers a 
case of unequal behavior. In case the condition is not valid, it 
may be that the environment is not modeled precisely enough, 
and that the failure is a false alarm in the sense that it cannot 
occur in practice with the real hardware. The variables range 
over finite datatypes and the model checking problem is, in 
theory, decidable. Depending on the size and complexity of the 
verification condition, it is still possible that the model checker 
runs out of resources (time or memory) and does not come 
back with an answer, which is the third possible result. 

 
Fig. 2. Overview over the regression verification method 

The IEC 61131-3 standard defines two textual and three 
graphical PLC programming languages. According to the ARC 
industry advisory group [10], the use of PLC systems 
compliant with IEC 61131-3 currently is and will remain the 
state of industrial practice for the next five to ten years. The 
approach considers input PLC programs written in the textual 

language Structured Text (ST) or the graphical language 
Sequential Function Chart (SFC).  

For a uniform treatment of programs regardless of the 
particular language, an intermediate language into which all 
incoming programs are translated, is defined. This language 
ST0 is essentially the loop- and call-free fragment of ST 
reduced to fewer, more basic datatypes. The only statements in 
ST0 are assignments and if-then-else conditionals. Despite 
their notational differences, programs in all 61131-3 
programming languages can be represented in ST0 (provided 
they do not have unbounded loops, which are to be avoided in 
real time systems) [11]. During normalization to ST0, loops are 
fully unwound and function block invocations are inlined. The 
normalized code in ST0 is symbolically executed to derive a 
state transition system as model checker input.  

Since ST0 programs that result from translating SFC code 
involve many consecutive and nested if-statements to encode 
the original state machine, the number of paths through the 
program is huge and explicitly enumerating them is infeasible. 
For example, the last scenario (Ev14) of the case study (Sect. 
IV) yields some 13 billion paths, such that the resulting proof 
obligation would not fit into the available memory. To avoid 
this problem, a smaller program representation by not 
explicitly enumerating all paths but following the concept of 
Phi-nodes [12] to merge the effects of the branches of an if-
statement is produced. While this procedure cannot guarantee 
that the result is not exponentially larger than the input, 
experiences showed that the results are acceptable in practice. 

The proof obligation handed to the symbolic model checker 
consists of a state transition system and a property that is to be 
proved an invariant for it. The state transition system is a 
composition of the two systems that result from translating the 
two PLC program revisions A and B and the models for the 
environment as introduced in Sect. II.B. All variables of the 
input spaces of A and B make up the input variables of the 
combined model. If the sensor readings are constrained by an 
environment model, the input signals of that model are input 
signals of the entire state transition system while input signals 
of the PLC programs corresponding to sensor readings are 
taken from the outputs of the environment model. This has two 
effects: (1) The input space size is reduced and (2) the 
modeling is more precise. 

Modern model checkers allow the application of state 
abstraction methods to find proofs for safety properties more 
efficiently. Regression verification using symbolic model 
checkers with such abstractions is particularly promising, since 
the two software variants are closely related if they are based 
on the same variant, adapted to the same application scenario. 
In such cases, it is likely that the variants of the program have a 
similar – yet not necessary equal – encoding of their state 
spaces. Using an invariant over the state spaces of two program 
variants allows to reason about safety properties. Such a 
predicate, building a bridge between the state spaces, is called a 
coupling predicate. The more similar the state space encodings 
of two program variants are, the closer the coupling predicate is 
to equality on the state spaces.  

If an existing software base is adapted simultaneously and 
independently to similar changed requirements, it is to be 



expected that the changes affect only a relatively small 
number of the state variables whereas much of the state 
remains unchanged (and leaves both revisions' behavior 
equivalent in many cases). An inductive invariant implying 
equivalence then comprises equality between the unmodified 
state variables, and a more general coupling invariant must be 
generated only for the affected variables. 

The regression verification method using invariants is 
complete but the user of the verification tool would have to 
find and formalize all coupling invariants which can be large 
and unintuitive. Instead, the capabilities of state-of-the-art 
symbolic model checkers to automatically infer inductive 
invariants are used. The presented case study shows that even 
with large state spaces, this state abstraction mechanism allows 
to prove equivalence of non-trivial programs. The model 
checker nuXMV is capable of coming up with the required 
coupling predicates. If this invariant generation mechanism is 
switched off, the tool relies on more traditional symbolic model 
checking techniques, in which case even the simpler problems 
in the case study could not be solved. 

IV. CASE STUDY 

We have evaluated our approach by applying it to the 
benchmark evolution scenarios of the Pick-and-Place Unit 
(PPU), which is illustrated in Fig. 3. The PPU is an open case 
study for the machine manufacturing domain [13]. The PPU 
has 22 digital input, 13 digital output, and 3 analogue output 
signals and defines a number of simple discrete event 
automation tasks. Despite being a bench-scale, academic 
demonstration case, the PPU is complex enough to demonstrate 
selected challenges that arise during engineering of aPSs. The 
toolchain was successfully applied to all scenarios from [13] 
that had a suitable change of software implementation. As the 
complexity of the case study is noticeably below industrial use 
cases, e.g. regarding the number of inputs and outputs and the 
use of analogue input and output values, scalability of the 
presented approach is focus of future work.  

Panel

Crane

Panel

Panel

 
Fig. 3. Schematic of the hardware setup of the PPU case study [13] 

Proving conditional equivalence was evaluated using 
scenario 3 (Table I. Sc3), in which the functionality of starting 
the machine was implemented in a different way. Trace 
equivalence could be proven using an LTL formula omitting 

other changes to the system (changes of the input panel 
hardware, see Fig. 3, “Panel”).  

An environmental model was used to investigate scenario 6, 
in which handling of certain work pieces by the crane (Fig. 3, 
“Crane”) was implemented differently. Equivalence was 
assumed and analyzed for the individual work piece types 
(Table I. Sc6a, Sc6b) and both types (Sc6ab). Using an 
environmental model of the crane transporting the work pieces, 
the ad-hoc assumption could be more intuitively formulated 
(Sc6+EM). 

Using our method and toolchain, automatic regression 
verification was successful for all selected scenarios from the 
PPU case study. Table 1 shows statistics for relevant 
experiments with the PPU. The evolution scenarios were 
verified using nuXMV version 1.0.1 on an Intel Dual-Core with 
2.7 GHz and 4 GB RAM running OpenSUSE 12.2.  

TABLE I.  RESULTS OF EXPERIMENTS 

Scenario Sensor inputs 
[bits] 

State space 
[bits] 

Min. time 
required 

Max. time 
required 

Sc3 19 246 9s 17s 
Sc6a 19 284 15.1m 155.4h 
Sc6b 19 284 8.9m 9.1h 
Sc6ab 19 284 18.1m 13h 
Sc6+EM 11 299 2m 21m 

 

The verification times for the same problem on the same 
machine may vary considerably in multiple runs due to random 
choices in the symbolic model checker which have a great 
impact on the verification time. 

The regression verification method can not only be used for 
verifying equivalence of PLC programs, but unintentional 
differences between programs can also be found using the 
presented approach. The evaluation revealed that in scenario 3, 
new intermediate code blocks are added into SFCs that cause a 
difference by delaying the system answer one cycle for each 
work piece. Since the cycle time is very short in the PPU 
(4 ms), the discrepancy between the programs was not found 
by testing, but points to an inferior implementation. 

V. CONCLUSION AND FUTURE WORK 

We have presented a method and toolchain for the 
automatic regression verification of PLC software by means of 
a symbolic model checker. In this process, a software variant 
serves as specification for the other one. Conditions can be 
specified under which systems must behave equivalently and 
models of environment can be added to make the process more 
precise. Evaluation proved the presented method to be 
applicable to non-trivial PLC software. Automatic regression 
verification was successful for all selected scenarios from the 
PPU case study.  

Currently, the developed toolchain supports notions that 
compare PLC behavior cycle by cycle. Future work will allow 
for conditions and relations to relate variables of different 
cycles. Another interesting path of investigation is the use of 
abstractions to factor out parts of PLCs that have not been 
touched by evolution and need not be proved equivalent. In 



addition, the scalability of the approach in real industrial use is 
to be investigated. 
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