
Regression Verification for
Programmable Logic Controller

Software

Master Thesis of

Alexander Sebastian Weigl

At the Department of Informatics
Institute for Theoretical Informatics

Reviewer: Prof. Dr. rer. nat. Bernhard Beckert
Advisor: Dr. rer. nat. Mattias Ulbrich

Duration:: 16. July 2014 – 15. January 2015

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu

ii

ii

iii

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, 15. 01. 2015

. .
(Alexander Sebastian Weigl)

iii

iv

iv

Abstract

Plants are a long-term and expensive investment, additionally, they need to be adapted
to the market and technology process. The plant evolves by changing of hardware and
software components. A evolution step can introduce defects in the plant workflow. How
can we find such introduction of defects in view of the high safety claim of plants? In this
master thesis we apply regression verification on two version of automation software, to
prove the equivalence or to find divergence in the software behaviour. We investigate the
regression verification on automation software for Programmable Logic Controller (PLC)
according to the norm IEC61131-3, especially by using the software from Pick-and-Place-
Unit (PPU) case study [VH+14]. We define the equivalence of PLC software and make
observation for the soundness of equivalence proofs. Notably, we introduce the conditional
equivalence. Besides theoretical aspects we provide tool chain for the regression verification
of Structured Text (ST) and Sequential Function Chart (SFC). We formalize syntax and
semantic for ST and SFC, and define an intermediate language ST0, as a subset of ST.
The transformation covers only unwindable loops and unfoldable data structures. The
equivalent ST0 consists only one program, only with assignments and if statements. We
translate ST0 into the Symbolic Model Verifier (SMV) format with symbolic execution via
Single Static Assignment (SSA). From the experience of finding the equivalence condition
in the case study we develop an approach for deriving conditions from the bisimulation of
SFCs. Moreover, we consider high level user-friendly operators for writing these conditions.
We proof equivalence between the case study scenarios, by restricting the program state
and input space. We use the nuXmv model checker and IC3 to validate the invariants
claiming the equivalence. The runtime span from seconds in easy cases, till couple of
hours or even days, but we show that regression verification is feasible upon automation
software. This is the first published work on regression verification and equivalence check
of automation software.

v

vi

vi

Zusammenfassung

Fabrikanlagen sind eine Investition über lange Zeiträume. Durch den Preisdruck des Einleitung
Marktes und technische Erneuerungen müssen Änderungen an den Bauteilen und der
Steuerungssoftware vorgenommen werden. Die Anlage erreicht neue Evolutionsstufen um
sich an die neuen Situationen anzupassen. Die Evolutionsstufe stellt eine neue Kombination
aus Bauteilen und Software dar. Wie können wir sicher stellen, dass der Evolutionschritt kein
unerwünschtes Verhalten im Betrieb der Anlage einführt? Unerwünschte Verhalten entstehen
durch eingeführte Fehler in den Bauteilen oder Software oder durch falsche Abstimmung
zwischen der Hard- und Software. Unter Berücksichtigung, dass von Industrieanlagen
Gefahr von Leib und Leben ausgehen können, ist eine zuverlässige Erkennung unerlässlich.

Regression Testing ist ein Verfahren aus dem Softwareengineering, dass für die Erkennung
des Auftauchens von Fehlern eingesetzt wird. Hierzu wird wie bei Softwaretests, die Ausgabe
der neuen Softwarerevision gegen eine Referenzausgabe abgeglichen. Hat sich die Ausgabe
zwischen zwei Softwarerevisionen geändert, haben wir ein anderes Verhalten in der Anlage
entdeckt. Zum Testen halten wir eine definierte Menge von Eingabeninstanzen vor und nur
für diese Eingabeinstanzen gilt die Aussage, dass die Anlage nach dem Softwareupdate das
äquivalente Verhalten zeigt. Mit Maßnahmen aus der Verifikation möchten wir zeigen, dass
das Verhalten für alle Eingabeinstanzen äquivalent ist.

Die Äquivalenz zwischen Fabrikanlagen ist eine vielschichtige Aussage. Wir müssen den
Begriff schärfen. Zum Einen besteht die Anlage aus verschiedenen Schichten wie Software,
Steuerungshardware, Stellglieder und Sensoren und einem Bussystem zur Kommunikation.
Zum Anderen passiert eine Evolution mit Absicht um Änderungen an der Software und
Hardware, zum Beispiel das Beheben von Fehlern oder die Unterstützung von neuen
Sensoren. Wenn wir die Äquivalenz zwischen zwei Revisionen zeigen möchten, müssen
wir das geänderte Verhalten außer Acht lassen. Als Letztes ist auch eine Anpassung der
eventuell geänderten Eingabe- und Ausgabevariablen zwischen beiden Softwarerevisionen
nötig. Die Äquivalenz unterliegt verschiedenen Abstraktionsebenen, die eine verschieden
starke Aussage über die Äquivalenz zulassen.

In dieser Masterarbeit behandeln wir die Regression Verification zwischen zwei Softwarever- Aufgaben-
stellungsionen für die Steuerung von Fabrikanlagen. Die Steuersignale versendet der Programmable

Logic Controller nach der Ausführung der Steuerungssoftware mit den aktuellen Sensorda-
ten. Wir fokussieren uns dabei auf die zyklischen Arbeitsmodi der PLC. Als Evaluations-
grundlage bietet Pick-and-Place-Unit Fallstudie (PPU) von der Technischen Universität
München [VH+14], verschieden-artige Softwareevolution für die PPU-Anlage. Ziel der
Arbeit ist die Erarbeitung der theoretischen Grundlagen für die Regression Verfication
zwischen Automatisierungsoftware, sowie Führung der Äquivalenzbeweise zwischen den
verschiedenen Szenarien der PPU. Wir bauen dafür eine Kette von Operatoren, um die zwei
Sprachen Structured Text (ST) und Sequential Function Chart (SFC) in Modell für den Mo-
dellchecker zu übersetzen. Insgesamt definiert IEC 61131-3 fünf möglichen interoperatiblen
Programmiersprachen für die Programmierung von PLCs.

Fabrikanlagen stellen ein cyber-physisches System dar. Die PLC-Software steuert über Theorie

vii

viii

die Stellglieder die physischen Größen der Anlage, wie Geschwindigkeit von Werkstücken,
pH-Werte über Mischung von Flüssigkeiten oder Temperaturen. Dafür sendet die PLC
Kommandos über ein Bussystem an die Stellglieder, die dann wiederum intern eine Logik
besitzen, um die Spannungen und Ströme der Leistungselektronik zu regeln. Messinstru-
mente nehmen die physischen Größen auf und verarbeiten diese für Eingabe in die PLC
vor. Wir haben damit eine Feedbackschleife, die PLC erhält die Messwerte von physischen
Größe, trifft Entscheidungen und lässt diese Größe über die Stellglieder ändern.

Für unsere Beobachtungen für die Äquivalenz von PLC-Software spielt die Umgebung
der PLC zwei wichtige Rollen. Zum Einen müssen wir die Umgebung für die Soundness-
Betrachtungen unseres Äquivalenzbeweise berücksichtigen. Zum Anderen helfen berechen-
bare Modelle der Anlage den möglichen Raum von Eingabegröße einzuschränken.

Im Fokus dieser Arbeit stellen wir die bedingte Äquivalenz (conditional equivalence) vor.
Die bedingte Äquivalenz schließt bestimmte Ereignisse in der Gleichheit aus und erlaubt
auch eine partielle Gleichheit der Ausgabewerte. Zum Beispiel sind beide Softwareversionen
im Ausgabeverhalten äquivalent, wenn keine metallischen Werkstücke vorkommen. Eine
solche Bedingung bezieht sich nachher auf die konkreten Messwerte von Sensoren und
Variablenbelegung im Speicher der PLC. Häufig lässt sich die Bedingung stärker formu-
lieren, zum Beispiel haben die beiden Softwareversionen ein äquivalentes Verhalten bis
zum Auftreten von metallischen Werkstücken. Die partielle Gleichheit der Ausgabewerte
erzwingt eine Betrachtung über Soundness. Wir vergleichen beide Softwareversionen in
einer Bisimulation bei gleichen Eingaben in jedem Zyklus der PLC. Ist die Ausgabe der
Softwareversionen unterschiedlich, muss eine Rechtfertigung für Annahme der identischen
Eingaben erfolgen. Eine solche Rechtfertigung ist zum Beispiel die fehlende Rückkopplung
der von der Gleichheit ausgelassenen Stellgliedvariablen.

Wir wandeln die PLC-Software in SMV Modelle um. Symbolic Model Verifier (SMV)Methodik
ist ein expliziter Modellchecker. Wir verwenden einen der Nachfolger nuXmv, um mit
IC3 (Incremental Construction of Inductive Clauses for Indubitable Correctness) [McM03]
Invarianten zu überprüfen, die die Gleichheit beider Softwareversionen sicherstellen. IC3
versucht eine Menge von Klauseln zu finden, die induktiv zum Transitionssystem und aus
denen die Safety Property folgt.

Die Umwandlung von PLC-Software geschieht mehrstufig. Wir normalisieren SFC, durch
Auslagerung von simultanen Abschnitte in SFCs. Die normalisierten SFC0 werden in
ST codiert. ST0 ist eine reduzierte Variante von ST. Wir erhalten ST0 durch Code-
Transformationen aus ST

• Ausrollen von FOR-Schleifen,

• Auspacken von Arrays und Strukturen,

• Timer-Abstraktion,

• Einbettung von Unterprozeduren (function blocks).

ST0 ist frei von Schleifen oder komplexeren Datentypen und enthält nur eine Prozeduren-
rumpf.

Für die Formulierung der Bedingungen für die Äquivalenz definieren wir vier Operatoren
UNTILφ, AFTERα, WITHINω

α und EXCEPTω
α. Mit UNTILφ fordern wir eine Gleichheit

zwischen beiden Softwareversionen bis φ eintrifft. Umgekehrt wird bei AFTERα die Gleich-
heit erst geprüft nachdem α wahr war. WITHINω

α fordert Gleichheit innerhalb der Grenzen,
die mit α und ω definiert werden, sowie EXCEPTω

α lässt die Forderung nach der Gleichheit
in den Grenzen fallen. Die Operatoren dienen zur lesbarer Notation für unsere Bedin-
gungen in der PPU Fallstudie und sollen die Definition von Bedingungen für Ingenieure
vereinfachen.

viii

ix

Aus unseren Erfahrungen über die Herleitung der Bedingungen für der Fallstudie, leiten wir
eine Heuristik zur Ermittlung von Bedingungen für die Äquivalenz ab. Eine Bisimulation
von zwei SFC liefert die Stellen, die zu einer Abweichung in den Stellgliedern führt. Die
abgeleitete Bedingung schließt diese Abweichungen aus der Äquivalenz aus.

Die PPU Fallstudie enthält 14 verschiedene Softwareversionen. Wir haben die Äquivalenz Ergebnisse
zwischen den einzelnen Version bewiesen. Dazu benötigt jeder Beweise, eine Bedingung für
die Äquivalenz die von der Änderung im Evolutionschritt abhängig ist. Die Bedingungen
haben wir manuell durch Vergleichen der Software hergeleitet und mit den Änderungen an
der Anforderung aus [VH+14] abgeglichen. Laufzeiten der Beweise reichen von wenigen
Sekunden bis Stunden, je nach Komplexität der Unterschiede und der gestellten Bedingung.

Diese Arbeit verbindet die Regression Verification und die Verifikation in der Automati- Related
Worksierungsoftware. Regression Verification ist Bestandteil von [GS09; GS13; Str09]. In der

Kategorisierung von [GS08] ist unsere bedingte Äquivalenz als Reactive equivalence ein-
zuordnen. Die Verifikation der Automatisierungssoftware wurde akut um 2000 bearbeitet
mit Konzentration auf Safety- und Liveness Properties. [Bri+02] verwendet den SPIN
Modelchecker [Hol97], [Bau+04b] UPAAL oder [Sme+00] einen SMV-Abkömmling. [LC+99;
YF03] fassen die verschiedenen Ansätze zusammen. IC3 wurde vorgestellt in [McM03] und
weiter verbessert in [Bra11]. [Fel+14] ist ein ähnlicher Ansatz für die Regression Verification
von Integerprogrammen mit dem Versuch, IC3 Klauseln zu ermittlen, die die Gleichheit
belegen. [Bau+04a; Bor+00] liefert eine Formalisierung für SFC.

Dies ist die erste veröffentlichte Arbeit über die Regression Verification von Automatisie- Wissenschaft-
licher
Beitragrungssoftware. Wir stellen Software für die Transformation von ST und SFC über ST0

zu SMV Modellen zur Verfügung. Daneben definieren wir die bedingte Äquivalenz mit
Überlegungen für Anforderungen an den Äquivalenzbeweisen, um die Soundness zu erhalten.

Diese Arbeit stellt nicht den Abschluss der Überlegungen dar. Offene Punkte sind die Ausblick
Erweiterung auf die anderen drei Programmiersprachen im IEC61131-3, die Optimierung
der generierten Modelle und des gesamten Beweisprozesses wie zum Beispiel die Zerlegung
in kleine Teilbeweise.

Herausfordernd dürfte sich die Zugänglichmachung der Verifikation für die Ingenieure
gestalten. Mit den neuen Operatoren haben wir den Versuch angetreten, wiederverwendbare
und verständliche Hilfsmittel zur Modellierung der Bedingung zu geben. Eine andere
Richtung ist die Herleitung der Bedingung aus den syntaktischen Unterschieden zwischen
zwei Softwareversionen. Hier wäre ein Ansatz über die Aufnahme von Gegenbeispiel aus
dem Modelchecker in die Bedingung als machbar anzusehen. Ähnlich verfährt IC3 bei der
Suche nach den induktiven Klauseln. Eine solche Bedingung muss mit der Erwartung des
Ingenieurs bzw. mit den Anforderungsänderungen überprüft werden.

ix

x

x

Contents

1 Introduction 1
1.1 Introductory example . 3
1.2 Related Work . 4

2 Formalisation of PLC software 7
2.1 Variables and Data types . 9
2.2 Structured Text . 12
2.3 Sequential Function Chart . 18
2.4 ST0 . 25

2.4.1 SFC0 . 28
2.4.2 Transformation of SFC0 into ST . 30
2.4.3 Transformation of ST into ST0 . 30

2.5 Software for Introductory Example . 32

3 Regression Verification 37
3.1 PLC as cyber-physical systems . 37
3.2 Equivalence of Programs . 39
3.3 Generating SMV models . 44

3.3.1 SMV and IC3 . 44
3.3.2 Symbolic Execution . 45
3.3.3 Optimizations . 48

3.4 Equivalence as Invariant . 52
3.5 Finding conditions of equivalence . 54

4 Case Study 59
4.1 Scenarios . 61
4.2 Results . 68

5 Conclusion 73

A Introductory Example 75
A.1 Software . 75
A.2 SMV . 77

B Abbreviation for Variables 79

Bibliography 81

List of Figures 85

List of Definitions and Theorems 87

xi

xii Contents

xii

1. Introduction

Plants are a long-term investment and run over many years, or even decades. Market Motivation
pressure and technical progression require changes in the hardware and software of the
plant. The plant evolves and adapts to new situations. The operator replaces hardware
components, and updates the software to ensure that the plant is operational in the
new composition. A desirable aim is the preservation of the old plant behaviour after
the evolution. But the evolution has an intention, for example efficiency, fixing defects,
reducing abrasion or the support of new workpieces. Taking into account, plants are a
large investments with claims on safety for the staff. This question becomes acute: How
can we ensure, that the purposed behaviour of the plant processes stays the same, and how
can we detect the introduction of errors and violation of plant safety?

Regression testing is a technique for finding the introduction of bugs. For this purpose the
test engineers creates a suite of test cases, which both software revisions have to pass. A
test case consist of an expected result and input instance for the tested functionality. If we
use the output of the previous revision as the reference result, we test for equivalence to
the predecessor. But the equivalence only covers the input instances from the test cases.
This disadvantage tackles the regression verification. Regression verification tries to prove
the equality of two revisions by usage of verification techniques. The prove covers all
possible instances and the achieved equivalence statement is stronger. But the reference for
correctness is previous version, hence regression verification shows that the new revision is
correct or defect like predecessor.

Equivalence between plants is a soft notion. We have to sharpen the term in several ways.
First, the plant has different layers, there the components are located. The equivalence can
talk about the single layers: physical measurement, the sensor or actuator values, just the
variables within the automation software, or bundle them into a new system. Second, the
changes between revisions have an intention, for example fixing bugs or supporting different
hardware. If we show the equivalence of both revision, regardless of the layer, we need to
exclude the behaviour, which was inflicted by intentional changes. The remaining behaviour
should be the common base of both revisions and behave equally. Third, a translation of
the output and input values between both revision are necessary if the environment with
his sensor and actuators has changed. So the equivalence underlies an abstraction level,
conditions and translations. We give in Section 1.1 an example for a plant.

A plant consists of hardware pieces, that are controlled by the Programming Logic Controller Automation
(PLC). The PLC is the central controlling unit, that cyclic executes the automation

1

2 1. Introduction

SMV

Model Checker φ

Symbolic
Execution

ST0

Normalization

PLC code

Symbolic
Execution

ST0

Normalization

PLC code

3� 7

Revision A Revision B

Figure 1.1 Overview over the verification process. PLC code from both versions are normalized
into a subset of ST called ST0. With symbolic execution we create modules in SMV, that are tested
for equivalence in the model checker. φ describes the condition for the equivalence. The model
checker decides whether the equivalence holds or not, respective it hits our personal timeout.

software. The sensors and actuator values are transferred over a bus system. The IEC61131
norm [Com02b] standardize the automation of plants with on hardware and communication
as long with five textual and graphical programming languages. The combination of
software and hardware implies an particular awareness of safety requirements. Such a plant
can harm humans, for example every plant requires an emergency stop.

In this thesis we use verification techniques for proving the equivalence of PLC software.Focus of
Work This excludes the reading and writing on the bus system, equivalence on observable

behaviour of the plant or the equivalence non-functional requirements. We do not check
individually for safety property, instead if the behaviour from the previous revision is
safe, then the new revision is safe, under the assumption of the equivalence. Additionally,
we assume that the PLC is crucial decider of the plant behaviour, and the sent PLC
commands causes the same actions and effects in the plant. As conclusion, a change of an
equivalent PLC does not change the plant behaviour. We cover the cycle operation mode
of PLC, in which the software is triggered in fix time intervals. Additionally, we focus on
the programming languages Structured Text (ST) and Sequential Function Chart (SFC),
without loss of generality, because the other languages are reducible to ST. Figure 1.1 gives
the big picture of the processing pipeline.

Both software revisions are translated into Symbolic Model Verifier (SMV) format. The
nuXmv1 [Cav+14] model checker proves with IC3 (Incremental Construction of Inductive
Clauses for Indubitable Correctness) [Bra11; McM03] our equivalence invariants between
translated software revisions.

We use the Pick-and-Place Unit case study [VH+14] from the Technical University Munich
1http://nuxmv.fbk.eu

2

http://nuxmv.fbk.eu

1.1. Introductory example 3

for evaluation. The case study consists of 15 software revisions for a plant, with changes
in soft- and hardware. We treat every revision, which introduces changes to software, by
proving the equivalence to the predecessor revision.

We begin with the introduction of our continuous example (Section 1.1) for this thesis. Outline
The example is reused in the following chapter to illustrate the presented methods. The
Figure 1.1 gives overview about verfication process and about this master thesis. We start
with the PLC code in Chapter 2 with the introduction of Structured Text (Section 2.2) and
Sequential Function Chart (Section 2.3). We formalize both languages with their syntax
and semantics. Our aim is transfer both languages into an intermediate representation
ST0 (Section 2.4) for the translation into SMV models (Section 3.3). In Section 3.1 we
make theoretical observations with PLC as the controller of a cyber-physical system. For
the regression verification we introduce an extensive definition of conditional program
equivalence (Section 3.2) and decode several derivation of conditional equivalence in SMV
(Section 3.4). In Section 3.5 we formalize our observation of finding the conditions between
the case study scenarios to an heuristic approach. Chapter 4 explains the case study, the
difference between the revisions and presents the equivalence conditions and performance
results. In Chapter 5 we discuss open and further aspects.

This is the first work on the regression verification of PLC software. We provide a software Contributions
for translating Structured Text and Sequential Function Chart source code into SMV
modules, define a new equivalence notion: conditional equivalence, lay the foundation of
the regression verification between plants and show feasibility on the basis of sophisticated
software for real academic plant.

1.1 Introductory example
We introduce an motivational example of this work. Later we will pick it up in Section 2.5,
Section 3.3 and Section 3.5 for an illustration of the presented steps.

Figure 1.2 shows a conveyor belt with a crane at the right end. An human operator puts a
workpiece at the left end. The workpiece should be transported to the right and finally
picked up by the crane. In this scenario the workpiece disappears after the pick up by the
crane. We have light barrier sensors for detecting the presence of workpieces at the left
and right belt end (w1,2 in Figure 1.2). A boolean variable run controls the movement of
the conveyor belt. If run is true, the top plane of the conveyor belt moves to the right.
The crane is autonomous and offers one atomic operation pickup for grabbing a workpiece.

The plant should have following behaviour. If a workpiece is presence at the left edge, the
conveyor starts moving, so that the workpiece is transported to right. If the workpiece
reaches the position of the crane on the right edge, the conveyor stops and crane picks up
the workpiece. After pickup, the plant is ready to process the next workpiece. Additionally
to this behaviour, an human operator can abort this process with an emergency stop. In
the case of an emergency stop the conveyor and the crane halts. The emergency stop resets
the plant to the starting state, waiting for a workpiece at the left end.

Our example serves like a base plant for different kinds of extensions. For example we
could enhance the plant with sorting, arrangement or different processing capabilities
for workpieces. The next revision (Figure 1.3) introduces a detector, denoted by D,
for distinguishing between intact and broken workpieces. We want to reject the broken
workpieces from the intact ones, by picking up the intact ones with the crane. The broken
workpieces end up in the rubbish bin at the right side.

The transportation and the pickup by the crane is the common part of both revisions. We
observe an equivalence between both revision, if only intact workpieces appears on the
conveyor belt.

3

4 1. Introduction

w1 w2

Figure 1.2 First revision of the introductory example. This plant can just move workpiece from
left to right and pick them up by the crane. It has two light barrier sensors w1,2 for detecting the
presence of a workpiece, a crane and a conveyor belt.

w1 w2

D

Figure 1.3 Second revision of the introductory example. The hardware components the same
like Figure 1.2, except the detector D and the rubbish bin at the left. This plant sorts between
intact and broken workpiece.

Proposition 1.1 (Equivalence of Introductory Example) Revision in Figure 1.3 be-
haves the same like revision from Figure 1.2 if and only if intact workpieces appears.

The Proposition 1.1 let many points open. The equivalence of plants can be described in
many ways. We could simulate both revisions with same workpieces and observe if the
conveyor belt and crane do the same operations. In this thesis we concentrate at the input
and output values of the PLC in both revisions and assume that plant behaves equivalent,
if the PLC software is equivalent. We compare the output results of the PLC in every
turn between both revisions, under the same input. Before we can prove Proposition 1.1
we need to write the PLC software (Section 2.5) and translate the software into SMV
(Section 3.3.1).

1.2 Related Work
We conjoin two disciplines of software verification, verification of automation programs and
the regression verification.

Around 2000 the verification of safety properties in automation software was a popularAutomation
Verification topic. This era is covered in [YF03] with an overview and classification of covered IEC61131

language and verification approach of various papers. Additionally the survey [LC+99]
gives a more detail overview of transformation processes for program languages to verifiable
models. [LC+99] shows two different approaches for verification of SFCs: theorem proving
and model-checking approach. Both approaches are developed on the SFC’s ancestor
standard Grafcet [Com02a]. The authors state validity for SFC. In theorem proving the
SFC is translated into theorems and proved in combination with axioms for SFC. For
model-checking approach the SFC is translated into transition system for various kind

4

1.2. Related Work 5

of models, for example timed automata, hybrid automata or state machines. All papers
are dedicated to checking safety or liveness properties and limited to subset of IEC61131
languages or language features. Especially the ST and SFC dialect are of interest for us.
We narrow the discussion to these dialects. [Sme+00] covers all languages of IEC 61131 by
translating them into transition diagrams. A scan cycle consists of multiple transition steps.
In our approach every scan cycle execution becomes one transition in the model checker.
[Sme+00] leads to bigger transition diagrams with smaller state changes. Accordingly the
reached states at the end of a scan cycle has to marked specially. Only in the marked
states the safety properties must hold. [Bor+00] present a method for SFC verification.
They translate the SFC directly into SMV modules for the model checker, with support
for nested SFCs, but the SFC actions contain only assignments. [Bor+00] paper gives a
first formalization of SFC, that is extended in [Bau+04a] with covering of timed SFC.
[Bau+04a] is a companion paper to [Bau+04b], in which the authors illustrate verification
for safety properties of untimed SFC with a SMV model checker and timed SFC with the
Uppaal model checker. A completely different approach is in [Bri+02] with SPIN [Hol97].
[Bri+02] build a model to check real-time properties among others with an abstraction of
time for a example plant.

Regression Verification has a more general focus. The discipline tries to make equivalence Regression
Verificationstatements sophisticated program with recurrence and loops. [GS09] describes regression

verification as the “prove that it [the software] is ‘as correct’ as the previous version”.
Godlin and Strichman have published many papers on regression verification [GS09; GS13;
Str09]. They engage in regression verification on C programs with respect to loops and
recursion. In an earlier work [GS08] from 2008 they state different kinds of equivalence:

1. Partial equivalence: Given the same inputs, any two terminating executions of P1
and P2 return the same value.

2. Mutual termination: Given the same inputs, P1 terminates if and only if P2
terminates.

3. Reactive equivalence: Given the same inputs, P1 and P2 emit the same output
sequence.

4. k-equivalence: Given the same inputs, every two executions of P1 and P2 where

• each loop iterates up to k times, and

• each recursive call is not deeper than k,

generate the same output.

5. Total equivalence The two programs are partially equivalent and both terminate.

6. Full equivalence: The two programs are partially equivalent and mutually termi-
nate.

We categorize our equivalence approach as conditional equivalence. We claim the equivalence
of both revision only if the given condition holds. The condition fades out the equivalence
in cases with intentional changed behaviour (Section 3.2). In the category of [GS08] we
categorize the equivalence of PLC software as reactive. Divergent run is not allowed in
the scan cycle setup (Chapter 2). [Fel+14] gives an automatic approach for determining
coupling invariant for supporting an equivalence claim, by solving derived Horn constraints
from the two given programs. In the background of the constraint solving algorithm works
IC3 (Incremental Construction of Inductive Clauses for Indubitable Correctness). IC3 is
introduce in [McM03] and refined in [Bra11]. From the hardware verification comes the Sequential

Equivalence
Checkterm of Sequential Equivalence Check (SEC). SEC describes the equivalence of sequential

circuits, also circuits with an internal memory, like the PLC.

5

6 1. Introduction

6

2. Formalisation of PLC software

In this chapter we define the function eval, that describes evaluation of Structured Text Overview
(Section 2.2) and Sequential Function Chart (Section 2.3) code. eval describes the opera-
tional semantics, also how an execution of language fragments changes the memory of the
PLC.

With the eval definition for SFCs, we are able to give a reduction of SFCs with simultaneous
constructs into an equivalent SFC without these constructs (Section 2.4.1). Our goal is
an intermediate representation in ST0 for the base of the verification (Section 2.4). ST0
is the language, on which we define later the translation into SMV model (Section 3.3).
We align the explanation of the language structure with the case study [VH+14]. So we
leave out parts of the standard, that are not present in the case study. Especially we leave
out the configuration and tasks definition. Both are defined in IEC61131-3, but often the
implementation is vendor and device specific.

We start the syntax and semantics of PLC software after IEC61131-3. We use [TJ09]
and [Neu+00] as the reference to the language. The IEC61131-3 norm leave space for
interpretation, so different behaviours between implementation of the standard are possible.
Furthermore, the vendor augments the SFC or ST implementations with specific features.
The case study is developed with CODESYS1. Defining a formalized execution model of the
IEC61131-3 languages, especially SFC, is research subject in various of papers [Bau+04a;
Bor+00; Nar+10a; YF03].

We start with a top down view on the structure in Figure 2.1. The configuration is a Software
Structurecomposition of different tasks and contain shared variables or access path definitions. A

task describes the scheduling of programs, for example event-based or cyclic execution
in fixed time intervals. A program can be triggered by more than one task. If multiple
tasks conflicts, the task priority determines the scheduling. We focus on cyclic invocations
every nms. The memories of different tasks are disjoint, but the configuration can allow
the access to specific variables from other programs, under a local name. The syntax of
configuration and tasks are often vendor specific, with the level of programs, the IEC61131-
3 programming languages take place. Programs are the entry point of execution like the
main symbol in shared objects. Program’s signature does not allow arguments or return
values. The communication with the environment is configured on configuration level,
as a binding between the program’s variables and the bus system. Function blocks are
instantiable functions and are allowed with programs or other function blocks. You can

1http://www.codesys.com/products/codesys-engineering/development-system.html

7

http://www.codesys.com/products/codesys-engineering/development-system.html

8 2. Formalisation of PLC software

Configuration Task Program

Function

Function Block

contains § triggers §

call
s §

calls §

đ
callsinstantiate §

đ instantiate

Figure 2.1 Structure of the programming language contstructs. One system configuration has
multiple Tasks. A task triggers one program. Programs and function blocks can call and instantiate
other function block. Only functions have a volatile state.

consider function blocks like classes with one function or like a function with a local state.
Programs, function blocks and functions can call functions. Functions are pure in the sense,
that they can not change the global state, and they the local state is volatile. They are not
allowed to instantiate function blocks. A function block can not instantiate itself. Every
memory is static and allocated before the program starts. An self instantiating would
end in an infinite loop. The languages miss features for dynamical memory allocation or
pointers. Our goal in regression verification is the equivalence of two PLC programs with
the same scan cycle time.

Programs, function blocks and function2 are divided in two parts: the declaration andProcedures
definition. The declaration defines all variables in this procedure scope, like in the pro-
gramming language Pascal. We discuss the declaration in Section 2.1. The definition part
holds the implementation in either one of the five languages:

• Structured Text (ST)

• Sequential Function Chart (SFC)

• Ladder Diagrams (LD)

• Function Block Diagram (FBD)

• Instruction List (IL)

LD, FBD and SFC are graphical representation. IL is an assembler language and ST is a high
level with high similarities to the Pascal language family. The procedure implementation can
be given in one of the five representations and is able to call every procedure independently
of his implementation representation. In this thesis we focus on ST (Section 2.2) and SFC
(Section 2.3), because they are constituent in the case study. IL, LD and FBD are not
considered further. But the introduced technique should be valid for them, too. As far as
we can see, they are transformable into ST and thereby transformable to ST0 and SMV.

We develop a general concept about the execution of the five programming languages.Execution
Model Our goal is to cover the execution semantic into a function eval for ST and SFC. eval is

extendable to IL, FBD and LD, if needed. In general, the execution of a program modifies
the state of the system. In our case the system is an embedded computer, which stores the

2We define the notion “procedure” as notion for the three callable units.

8

2.1. Variables and Data types 9

state in a memory. We formalize the memory as function V , that maps a variable identifier
to a value and the function image can be changed for particular variables.

Definition 2.1 (Memory) V represents the memory of the PLC, with

V : Lpxnameyq Ñ ∆, (2.1)

where the domain of V are all possible variable identifiers, and the codomain ∆ denotes
every possible value.

Definition 2.2 (Memory Update) Let V be a memory. We denote a update of the
memory with brackets. An update of the variable x to value v leads to, that every access of
x respond to v after the update:

Vrx :“ vspxq “def v (2.2)

The complete definition is

Vrx :“ vspyq “def

#

v : y “ x

V pyq : else
(2.3)

Every variable has a value either by the declaration of an initial value or by the default
of the data type. A look up of an undefined variable results into an error. V returns an
undefined value �. Moreover, V handles his argument case insensitive, for instance VpA
and Vpaq denotes the same value.

We define the evaluation of a well-formed source code R in an arbitrary programming
language, as the change of the memory.

Definition 2.3 (Evaluation) eval executes the R in the memory V and returns the new
memory assignment V 1

eval : V ˆR Ñ V, (2.4)

where V is the set of all possible memories and R denotes of all possible programs.

In this thesis we describe the syntax for the languages as context-free grammars in similar Grammar
Notionform as EBNF. The atomic statements are the literals, marked with single quotes, and

non-terminals, denoted by angle brackets. Consecutively statements forms a sequence. A
star a˚ denotes, that the expression a can be repeated arbitrary often, including zero. If
we exclude the zero-repetition, we write a`. An optional statement a is written as a?.
The bars marks exclusive choice of separated cases. The paren is only for making the
precedence clear.

2.1 Variables and Data types
A procedure declaration (2.4) consists of multiple variable declarations xdecly. A variable
declaration begins with an variable keyword and can define multiple variables with identifier,
data type and initial value.

The variable identifier is case insensitive, hence “a” and “A” denotes to the same memory Identifier
location. Moreover, device dependent, there is a fix amount of significant digits, to which

9

10 2. Formalisation of PLC software

1 FUNCTION_BLOCK A
2 VAR b : B;
3 {* ... *}
4 END_FUNCTION_BLOCK

1 FUNCTION_BLOCK B
2 VAR a : A;
3 {* ... *}
4 END_FUNCTION_BLOCK

Figure 2.2 Example of cyclic variable instantiation

the variable identifier is truncated. So “abc1” and “abc2” links to the same memory, if
the significant digits count is less than four. After [TJ09] current PLCs systems have 32
significant digits. The identifier follows the usual rules: start with a alphabetical letter or
underscore, consecutively letters may be alphanumerical or underscore.

The variable keyword defines the reading and writing permissions from inside (callee) andVariable
Keyword outside (caller) of the procedure. Input variables are readable and not writable within

the procedure, but writable and not readable from the outside, vice versa for output
variables. Normal variables are readable and writable from the inside and not accessible
from the outside. The caller and callee can write and read from in-out variables. It is
possible to declare a variables as global (’VAR_GLOBAL’) and access these variables from
other procedure (’VAR_EXTERNAL’). We omit these variables in this thesis. They map
between input and output channels on the bus to PLC internal variables. Access variables
are defined on configuration level.

A variable can have attributes. In our case ’CONSTANT’ is the only relevant one. ’RETAIN’Variable
Attributes and ’NON_RETAIN’ describes the behaviour on restart. Retained variables are cached

in non-volatile memory and restored on a warm restart. In all other cases the variables
are initialized accordingly to the data types initial value (Table 2.1). ’R_EDGE’ and
’F_EDGE’ modifies boolean variables only. Such boolean values are presented as a raising
or falling edge on the bus.

xnamey denotes a valid identifier name. xtypey is the name of a built-in data type, a
user-defined data type or the name of function block. The xliteraly denotes the literal of
an initial value.

Definition 2.4 (Declaration grammar)

xdeclsy Ñ pxdeclyq˚ (2.5)
xdecly Ñ p’VAR’ | ’VAR_INPUT’ | ’VAR_OUTPUT’ | ’VAR_IN_OUT’ (2.6)

’VAR_GLOBAL’ | ’VAR_EXTERNAL’q
pxattributeyq?
pxnamey ’:’ xtypey p ’:=’ xliteraly q? ’;’q`

’END_VAR’

There is no concept of dynamical allocation or deallocation of variables. Every variable
is allocated at the start the PLC hardware. It is not possible to have cyclic variables
instantiation (Figure 2.2), for instance a function block A instantiate a function block B
and B instantiate B.

The overview of the data types is in Table 2.1. These are the built-in data types, that canData types
be derived or composed into new data types. The runtime promotes variables to the next
biggest type, for example the addition from SINT and LINT results into a LINT. Arithmetic
overflows can occur. The standard provides functions for explicit casting between the data

10

2.1. Variables and Data types 11

Name Size Initial Range

ANY_BIT
BOOL 1 0
BYTE 8 0
WORD 16 0
DWORD 32 0
LWORD 64 0

ANY_INT
SINT 8 0 r´128, 127s
INT 16 0 r´32768, 32767s
DINT 32 0 r´231, 231 ´ 1s
LINT 64 0 r´263, 263 ´ 1s

ANY_INT
USINT 8 0 r0, 255s
UINT 16 0 r0, 65535s
UDINT 32 0 r0, 232 ´ 1s
ULINT 64 0 r0, 264 ´ 1s

ANY_REAL
REAL 32 0.0 IEEE 754
LREAL 64 0.0 IEEE 754

ANY_DATE
DATE D#0001-01-01
TIME_OF_DAY TOD#00:00:00
DATE_AND_TIME DT#0001-01-01-00:00:00
TIME T#0
STRING 8/char ’’
WSTRING 16/char ""

Table 2.1 Overview about the built-in data types with ranges after [TJ09].

types. Literals have a prefix, which defines the data type. For some data types, for instance
time or date, the prefix is mandatory, for other types the prefix is optional.

User-defined data types are introduced with the ’TYPE’ keyword. They are ether a User-defined
data typesderivation of a data type, or a declaration of a new one. A derivation can limit the range

or set a different initial value of a data type. A declaration creates either a enumeration,
array or a structure.

11

12 2. Formalisation of PLC software

1 TYPE
2 Speed : UINT (10..100) ;
3 Vector : ARRAY [0..2] OF LREAL := [1.2, 5.2, 6.2];
4 Crane_T :
5 STRUCT
6 postion : Vector ;
7 pressure : UINT := UINT #5;
8 open : BOOL := BIT #1;
9 END_STRUCT ;

10 END_TYPE

Figure 2.3 Declaration of types

Definition 2.5 (Grammar of Type Declaration)

xtdecly Ñ ’TYPE’ (2.7)
pxnamey ’:’ xtypey ’;’q`

’END_TYPE’
xtypey Ñ xnamey pxtrangeyq? p’:=’ xliteralyq? (2.8)

| xtstructy
| pxtarrayy | xtenumyq p’:=’ xliteralyq?

xtrangey Ñ ’(’ xliteraly ’..’ xliteraly ’)’ (2.9)
xtenumy Ñ ’(’ xnamey p’,’ xnameyq˚ ’)’ (2.10)
xtstructy Ñ ’STRUCT’ (2.11)

pxnamey ’:’ xtypey ’;’q`

’END_STRUCT’
xtarrayy Ñ ’ARRAY [’ xuinty ’..’ xuinty p ’,’ xuinty ’..’ xuinty q˚ ’]’ (2.12)

’OF’ xnamey

Structs can be nested, but have to be cycle free, else the pre-allocation of the data structures
can not be made at the hardware start. Figure 2.3 gives an example of the defined grammar,
where Speed is a derived UINT in the inclusive interval from 10 to 100, Vector an array
of LREAL and Crane_T a structure with three elements. The complex built-in types in
Table 2.1 can be implemented as structures. Nevertheless, for efficiency date and time data
type are encoded as integer.

2.2 Structured Text
ST is the only high-level textual programming language in IEC61131-3. It is similar to
the Pascal language. In this section we define the syntax and semantics of expression and
statements in ST. We give the syntax in the defined form from the beginning of this chapter
and semantic in form of the eval function. Syntax and semantics are reusable for ST0.

For the definition of the ST semantics we need a concept of execution configuration. The
configuration consists a memory V (Definition 2.1) and the rest program. The rest program
is the part of the source code, that needed to be executed. It is similar to maintaining a
program counter, that points to the current source code line.

Definition 2.6 (Execution Configuration) The execution configuration is a tuple pV,Rq,
where V is the current memory and R is the current position in the program code, decoded
as the rest program, that needed to be executed.

12

2.2. Structured Text 13

As an invariant, the rest program is always a well-formed ST source code and from the set
RST of all ST programs.

We split the explanation of ST into two parts. First, we look on the evaluation of expression,
later we define the statements. The expression grammar follows the rules for Pascal. A Expression

Grammarvariable name (2.17) or a literal (2.18) are the base cases. Arbitrary expressions can be
combined with a binary operator (2.13), unary operator (2.14), in a function call (2.15) or
just wrapped in paren (2.16).

Definition 2.7 (Grammar of Expression)

xexpry Ñ xexpry xbinopy xexpry (2.13)
| xunaryy xexpry (2.14)
| xnamey ’(’ xexpry p’,’ xexpry q˚ ’)’ (2.15)
| ’(’ xexpry ’)’ (2.16)
| xnamey (2.17)
| xliteraly (2.18)

xbinopy Ñ ’+’ | ’-’ | ’*’ | ’**’ | ’MOD’ | ’/’ | (2.19)
’<’ | ’>’ | ’<=’ | ’>=’ | ’=’ | ’<>’ |
’&’ | ’AND’ | ’OR’

xunaryopy Ñ ’NOT’ | ’-’ (2.20)

The definition does not care about left recursion or ambiguity. We define the operator
precedence separately in descending binding strength.

Definition 2.8 (Operator Precedence) The precedence of the operator is

1. parenthesis (2.16)

2. function call (2.15)

3. unary arithmetic and logical negation (2.14)

4. power (’**’)

5. point arithmetic (’*’, ’/’, ’MOD’)

6. line arithmetic (’+’ and ’-’)

7. numerical comparison (’<’, ’>’, ’<=’, ’>=’)

8. equality (’=’) and non-equality (’<>’)

9. boolean operators (’AND’, ’XOR’, ’OR’).

We define the evaluation of an expression by induction. Beginning with the base cases with Expression
Interpreta-
tionvariable names and literals. The induction steps works with the different operators.

Definition 2.9 (Semantics of expressions) We define the interpretation IV of expres-
sion e P Lpxexpryq in a given memory V

IV : Lpxexpryq Ñ ∆, (2.21)

where ∆ denotes the set of all possible values.

13

14 2. Formalisation of PLC software

base Let the given expression e be a literal or name of a variable, then we evaluate the
value directly or lookup in the current configuration.

IVpeq “def

#

Vpeq : e is a name
ce : e is a literal

(2.22)

ce P ∆ denotes the value for the corresponding literal e.

induction In the following we differ between the identifier f of a function or b for an
operator and bM the concrete implementation on the data level. The implementation
is denoted with an index M . We distinguish between the cases of xexpry.

binary operation Let e “ g b h be an expression of a binary operator b, like ’+’
or ’**’, the g, h are expressions. We interpret as recursively

IVpg b hq “def bM pIVpgq, IVphqq. (2.23)

unary operation Let e “ b g be an unary expression, then b is an unary operation
and g an arbitrary expression. We interpret as follows:

IVpb gq “def bM pIVpgqq (2.24)

function call Let e “ fpg1, . . . , gnq be a function call of f with arguments g1, . . . , gn.
First, we interpret the arguments, then we apply the corresponding function fM .

IVpfpg1, . . . , gnqq “def fM pIVpg1q, . . . , IVpgnqq (2.25)

Expression are side-effect free, hence IV does not modify the memory V . Please note, that
it is not allowed to call a function block within an expression. Only application of functions
are allowed. A function block does not have a declared return value and type. Instead
you have to access the output variables separately. It is possible to sum up the induction
step into the case of function calls, with predefined function for the built-in unary and
binary operators. Please note, fM is either a built-in function or defined by the user. In
the second case requires an appropriate eval function for the implementation of f . Next,
we will define such a function evalST for ST, beginning with the syntax.

ST has following statements: assignment (2.28), function block call (2.29), conditionalsStatement
Grammar statements if (2.31) and case (2.32) and three loops for (2.34), while (2.35) and repeat (2.36).

Keyword statements exit and returns manipulate the control flow. EXIT terminates a loop
premature, respective RETURN a procedure. Examples of ST code are in Figure 2.16
and figures A.1 to A.3. We give an easier version of the grammar of [Nar+10b].

14

2.2. Structured Text 15

Definition 2.10 (Grammar of Statements)

xlosy Ñ xstatementy p’;’ xstatmentyq˚ (2.26)
xstatementy Ñ xassigny | xcally | xif y | xcasey (2.27)

| xfory | xwhiley | xrepeaty
| ’RETURN’ | ’EXIT’

xassigny Ñ xnamey ’:=’ xexpry (2.28)
xcally Ñ xnamey ’(’ xparamy ’)’ (2.29)

xparamy Ñ xnamey ’:=’ xexpry (2.30)
| xnamey ’=>’ xnamey
| xparamy p’,’ xparamyq?

xif y Ñ ’IF’ xexpry ’THEN’ xlosy (2.31)
p’ELSEIF’ xexpry ’THEN’ xlosyq˚

p’ELSE’ xlosyq?
’END_IF’

xcasey Ñ ’CASE’ xexpry ’OF’ pxcexpry ’:’ xlosyq` (2.32)
p’ELSE’ xlosyq? ’END_CASE’

xcexpry Ñ xintegery | xnamey | xintegery ’..’ xintegery | (2.33)
xcexpry p’,’ xcexpryq?

xfory Ñ ’FOR’ xidentifiery ’:=’ xexpry ’TO’ xexpry p’BY’ xexpryq? (2.34)
’DO’ xlosy ’END_FOR’

xwhiley Ñ ’WHILE’ xexpry ’DO’ xlosy ’END_WHILE’ (2.35)
xrepeaty Ñ ’REPEAT’ xlosy ’UNTIL’ xexpry ’END_REPEAT’ (2.36)

We need the operational semantics for manipulating the memory V with ST statements.
We have already defined the configuration C. Restating Definition 2.6, a configuration
contains the current memory V and the ST rest program R P Lpxlosyq. In Definition 2.11
we transform a configuration into a successor configuration by executing the first statement
R0 of the rest program R We note the relation between current and next configuration as
follows

V ‖ R0;R1

V 1 ‖ R1 (2.37)

where the current configuration C “ pV,R0;R1q and the next configuration C1 “ pV 1,R1q.
We assume at the end every procedure an implicit return statement. So the execution
terminates if the rest program R is the return statement.

Definition 2.11 (Semantics of statements) Let C “ pV,Rq be a the current execution
configuration. We divide R “ R0R

1 in the current statement R0 and the rest R1.

assign An assignment modifies the memory at a certain position, given by the variable
name.

V ‖ a := e ; R1

Vra :“ IVpeqs ‖ R1 (2.38)

15

16 2. Formalisation of PLC software

return If R0 is the return statement, we halt the execution.

V ‖ RETURN ; R1

V ‖ �
(2.39)

call If R0 is a function block call, we need to evaluate the arguments, call the eval function
on the procedure body, and transfer the output variables into the caller memory.
Moreover the function block have a local state, we assume that this state is stored
within the caller memory under the instance name. The startup initialization of the
PLC assures, that such a memory exists for every initialized function block.

We apply following steps.

1. We need to look up the procedure body of f and obtain an arbitrary IEC procedure
body. Let Rf the procedure body.

Additionally we obtain a the internal memory of the function block Vf from the
caller memory.

Vf :“ Vpfq . (2.40)

2. Update all given input slots ai with ai :“ ei in the new configuration:

V 1f psiq :“ IVpeiq (2.41)

3. Execute the function block and store the new state

V2f :“ evalpV 1f ,Rf q. (2.42)

4. We update the internal memory in the caller’s memory:

V 1 “def Vrf :“ V2f s. (2.43)

Additionally set every output parameter o1 ñ t1, . . . , on ñ tn into the caller
memory:

V2 “def V 1rti :“ IV 1
f
poiq, . . . , tn :“ IV 1

f
ponqs (2.44)

The new configuration is C1 “def pV2, S1q.

In short

V‖fpa1 :“ e1, . . . , an :“ en, o1 ñ t1, . . . , om ñ tmq;R1

Vrf :“ evalpVpfqrai :“ IVpeiqs,Rf qsrtj :“ IV 1pojqs‖R1 , (2.45)

where ai :“ IVpeiq and tj :“ IVpojq stand for the update of every input or output
variable with 1 ď i ď n and 1 ď j ď m.

16

2.2. Structured Text 17

if Let R0 be an if statement. In the simple case, there are no alternative cases

V ‖ IF c THEN RB END_IF ;R1

V ‖

#

RB;R : IVpcq is true
R : IVpcq is false

. (2.46)

In general, a if statement has several branches with statements Ri
B protected by a

condition ci, in order of their occurrence in the if statement. The else branch is
protected by J and we assume an empty statement lists if the else branch is omitted.
We execute the statements Ri

B, if i is the first branch where IVpciq “ J.

V ‖ IF . . . END_IF ;R1

V ‖ Ri
B;R , (2.47)

where i :“ arg min0ďiďn tIVpciqu.

case We rewrite the condition of the cases of the case statement, so we fallback to an if
statement. Let e be the expression of the case statement and cji be the jth condition
on the ith case entry.

ci “def
ł

j

gepc
j
i q (2.48)

where ge is function that handles the different types of case guards:

gepxq “def

$

’

&

’

%

IVpeq “ IVpxq : x is an integer
IVpeq “ x : x is an indentifier3

a ď IVpeq ď b : x is range expression with borders a, b
(2.49)

The default case in R has the guard J. Now, we have guards ci corresponding
statement blocks Ri

B. The operational semantic is the same for if statements.

V ‖ CASE e OF . . . END_CASE ;R1

V ‖ Ri
B;R , (2.50)

where i :“ arg min0ďiďn tIVpciqu.

while Let R0 be a while loop, then the semantic is as follows:

V ‖ WHILE c DO RB END_WHILE ;R1

V ‖ IF c THEN RB;R0 END_IF ; R1 (2.51)

repeat Let RO be a repeat loop, then the semantic is as follows:

V ‖ REPEAT RB UNTIL c END_REPEAT ; R1

V ‖ RB; IF NOT c THEN R0END_IF; R1 (2.52)

17

18 2. Formalisation of PLC software

for We reduce for loops into while loops.

V ‖ FOR i :“ start TO stop BY step
DO RB END_FOR ; R1

Vri :“ IVpstartqs ‖
WHILE i ă stop

DO RB ; i :“ i` step
END_WHILE ;R1

(2.53)

Note, for loops does not guarantee a termination if a assignment in the loop body RB

overrides the loop variable i. The above operational semantic does not consider the exit
statement.

Definition 2.12 (evalST) The evalST pV,RST q function is defined over the operational
semantic from Definition 2.11. The function evalST returns the memory after termination
R “ �.

2.3 Sequential Function Chart
SFC are based on the Grafcet standard [Com02a] and both inherit ideas from petri nets.SFC

boundary A complete formalisation of all aspect are in [Bau+04a]. We state simpler model, sufficient
for the case study. We do not specify timed behaviour or non-history SFCs. Hierarchical
SFC, there SFC actions trigger other SFCs, are done over function blocks and is not part
of the definition, like in [Bau+04a].

A SFC is similar to finite state automata or petri net (Figure 2.4), but uses different terms.SFC
components The states of a SFC are called steps and actions can be bound to them. Actions consist of

a name and qualifier, which determines the moment, when they are triggered. We consider,
entry, executed on entering the step, exit, executed on leaving the step, and active, executed
during the step is active.

In literature they are often referred as P0, P1 and N. A transition connects steps via a
guard. The guard can be expressed in an IEC61131-3 language. Steps can be marked as
active. An initial step is marked as active at the moment of initialization. Each active
step holds a token, that is passed to the successor steps, iff. there is a transition and the
transition guard is fulfilled.

Divergences allow a case distinction, where the transition guards determines the nextfork-join
split-merge active steps. In a normal divergence, like (2) in Figure 2.5, can only be one branch with an

active step. Simultaneously divergences allow more than one active step, (3) in Figure 2.5.
The token is split at the simultaneously divergence and merged at the simultaneously
convergence. Divergence and convergence are the terms of the IEC61131. From now on,
we refer to simultaneously constructs as split and merge and to the normal divergence and
convergence with fork and join. There is only one global guard at a split, hence a selection
of branches is not allowed.

If a token enters a step, that does not had a token before, the assigned entry actions are
evaluated. The exit actions are executed, if an action is not active anymore, and active
actions of a step are executed as long as the steps holds a token. If an actions is executable,
because of the above rules, we call this action enabled.

There are two ambiguous behaviours in the standard. First, the action order is important,SFC
Definitions whenever multiple steps are active. Race conditions can occur, because the order of the

active actions matters. Second, the branch selection of fork is ambiguous if multiple

18

2.3. Sequential Function Chart 19

Figure 2.4 SFC with annotations from [Bau+04a]

transition guards are fulfilled. [Bau+04a] solves these ambiguity with the introduction
of execution order of actions < and for the selection of transitions ă. We derive our
definitions from [Bor+00], with adaption to make the incorporate with other languages of
the IEC61131-3 family.

Definition 2.13 (State) A state of a SFC is a variable assignment V (Definition 2.1).

The memory V holds besides the declared variable of the function, the current active steps
of the SFC. The state can be modified by executing the actions or taking a transition.

Definition 2.14 (Guard) A guard g is a expression or function in any IEC language,
that can be evaluated given an memory V.

We say a state V satisfies a guard g, iff g evaluates to true in V

IVpgq “ J iff. V |ù g . (2.54)

Definition 2.15 (Action, action sequences) An action manipulates the state V of the
SFC and is evaluable with eval.

Additionally to [Bor+00] we qualify our actions in three categories: entry, active and
exit. In [Bau+04a] the action is a tuple pq, nq, where the qualifier q is the action category
(Figure 2.4) and n denotes the name. In our case we use three functions aentry,active,eixtp¨q
for the mapping between a step and corresponding action. [Bau+04a; Bor+00] explicit
declare sub SFC in action sequences. We model sub SFCs as normal function blocks, that
can be called like every other function block, and nested within each other in arbitrary
depth. We take the definition from [Bor+00], add the categories of action and reduce their
action sequence to one action w. l. g.

Definition 2.16 (Sequential Function Chart) A sequential function chart (SFC) is a
6-tuple S “def pS, s0, T, a,<,ăq, where S is a finite set of steps, s0 P S is the initial step,
T Ď p2SztHuqˆGˆp2SztHuq is a finite set of transitions, a : tactive, entry, exituˆS Ñ A
is an action labeling function which assigns an action sequence to each step, < Ď S ˆ S is

19

20 2. Formalisation of PLC software

Figure 2.5 Types of possible transitions, from [Bau+04a; Bor+00]

an irreflexive total order on steps, used to define the order in which the action sequences
of the active steps are to be executed, and ă Ď T ˆ T is an irreflexive partial order on
transitions, such that conflicting transitions are comparable. This defines priorities for
solving the conflicts.

G denotes the set of all possible guards and A the set of all possible actions. In our case,
the case study, this is reduced to ST expression, respective statements.

A transition ps, g, tq connects multiple steps s P S via a guard with multiple other steps
t P S. The connection between multiple model split and merge of tokens. We give a
transition examples in Figure 2.5. The textual description of these transitions look as
follows:

1. pts1u, g1, ts2uq

2. pts3u, g2, ts4uq, pts3u, g3, ts4uq, pts3u, g4, ts6uq

3. pts7u, g5, ts8, s9, s10uq

4. pts11, s12, s13u, g6, ts14uq

5. pts15, s16, s17u, g7, ts18, s19uq

We develop the evalSFC algorithm for making one turn in an SFC. A turn consists of forTurn
Algorithm phases:

1. Execute entry actions,

2. Execute active actions,

3. Calculate next steps and

4. Execute exit actions.

We have to execute the active entry actions (Item 1). An entry action is active if and only
if a corresponding step received a token in the previous round. The next step (Item 2) is
the execution of all enabled active actions. We have to calculate the successor step for each
token (Item 3) by evaluating every transition outgoing from an active step. The order of
evaluation is indifferent, because the guards are side-effect free. If multiple transition are
enabled, outgoing from the same step, then the < order decide which transition is taken.
At the end (Item 4) we execute every exit action from the steps, which will lose his token
in the next round. The execution of the actions is done with respect to the action order
<. Going to a step, which held a token in the previous turn, does not trigger the entry
action and the exit action is only trigger if the step is not active in the next turn. Hence, a
self-loop over a step never triggers any entry or exit action. In each turn, every token is
able to take one transition, but only if the associated guard is satisfied. Tokens can only
be created on splits, respective destroyed on merges. Figure 2.6 execute one turn of a SFC.

20

2.3. Sequential Function Chart 21

Data: A SFC S “def pS, s0, T, a,<,ăq.
Input: A variable assignment V, a set of active steps S Ď S and a function

new : S Ñ B, that determines if the step was marked as active in the last turn.
Output: A variable assignment V 1, a set of active steps S1 Ď S and a function

new1 : S Ñ B, that determines if the step was marked as active in this turn.
begin

V 1 :“ V;
/* Execute entry actions of fresh marked steps */
for step P S^ newpstepq in order of < do

V 1 :“ evalpV 1, apentry, stepq;
end
/* Execute active actions of active steps */
for step P S^ step P S in order of < do

V 1 :“ evalpV 1, apactive, stepq;
end
/* Calculating transition active transitions */
T 1 :“ tpx, g, yq | x Ď S^ IV 1 |ù gu;
/* Decide conflicts by transition order ă */
for pt1 “ px, g, vqq P T 1 ^ pt2 “ px, g1, v1qq P T 1 do

if t1 ă t2 then
T 1 :“ T 1 ztt1u

else
T 1 :“ T 1 ztt2u

end
end
S1 “ S;
new1 “ HˆH;
for px, g, yq P T 1 do

S1 :“ pS1 z xq Y y /* forward token from x to y */;
/* marking new active steps */
new1pstepq :“ J for all step P y ^ step R S;

end
/* Execute exit actions of leaved steps */
for step P S z S1 in order of < do

V 1 :“ evalpV 1, apexit, stepq;
end

end

Figure 2.6 TurnS,VpS, newq : This algorithm evaluates one turn for a SFC S

21

22 2. Formalisation of PLC software

Data: A SFC S “def pS, s0, T, a,<,ăq.
Input: A variable assignment V, a set of active steps S Ď S and a function

new : S Ñ B, that determines if the step was marked as active in the last turn.
Output: A variable assignment V, a set of active steps S1 Ď S and a function

new1 : S Ñ B, that determines if the step was marked as active in the last
turn.

if VpSFCResetq then
S :“ ts0u /* Jump into initial step */;
Reset all SFC control flags in V;
Set newpstepq :“ K for all step P S;

else
if VpSFCInitq then

S :“ tInitu /* Jump into initial step */;
Set newpstepq :“ K for all step P S;

end
if VpSFCPauseq then

return TurnSpV, S, newq
else

return V,S, new
end

end

Figure 2.7 Turn1
SpV,S, newq Turn algorithm with controllabe flow

Several special variables controls the SFC’s control flow. These variables are vendor specificControl
Flags and the code of the case study [VH+14] uses these variables offered by CODESYS, for

handling of the emergency stop. We restate the behaviour of SFCInit, SFCReset and
SFCPause from the internal CODESYS help.

SFCInit If this variable gets true, the sequential function chart will be set back to the
initial step. All steps and actions and other SFC flags will be reset (initialization).
The initial step will remain active, but not be executed as long as the variable is true.
SFCInit must be set back to false in order to get back to normal processing.

SFCReset This variable behaves similarly to SFCInit. Unlike the latter however, further
processing takes place after the initialization of the initial step. Thus in this case for
example a reset to false of the SFCReset flag could be done in the Init step.

SFCPause As long as this variable is true, the execution of the SFC is stopped.

Figure 2.7 wraps the standard TurnS,VpS, newq function for providing support of the
control flags. The interface stays the same and the control flags are given over the variable
assignment V. Setting SFCReset and SFCInit does not lead to an execution of the entry
and exit actions of the active steps.

We can now state the evalSFC function.

Definition 2.17 (evalSFC)

evalSFCpV,Sq “def V 1 (2.55)
in V 1, St`1, newt`1 “ Turn1S,VpSt, newtq, (2.56)

where St and newt are the variables from the previous call with S0 :“ ts0u and new0pxq :“ K
for all x P S.

22

2.3. Sequential Function Chart 23

Figure 2.8 A not well-formed SFC from [Bau+04a]

Not every SFC defined by Definition 2.16 is well-formed in the sense, that is behaviour is Well-formed
SFCclear during the execution. Figure 2.8 gives an example. [Bau+04a] restrict themselves to

just “safe” SFC, but leaving out a proper definition. In Figure 2.8 there are three cases,
which cause an unclear behaviour. First, the transition with guard g3 creates unlimited
tokens. Second, tokens can accumulate in step s5 and a step can only hold one token at
a time. Third, the split creates three tokens, but only two tokens can reach the merge,
hence step s7 is not reachable. We want to narrow the definition of not well-formed SFCs,
knowing that there is no absolute definition of this. We state a SFC is well-formed, if it is
clear and determined how to execute the state chart.

Every SFC is well-defined if it does not contain split or merge. Without split and merge,
there is only one token, resp. one active step, at every execution step. With the prohibition
of split and merge we are near the deterministic finite automata.

Lemma 2.18 (Well-formed SFC without simultaneous constructs) A SFC S “

pS, s0, T, a,<,ăq is well-formed, if does not contain split and merge, hence

@ px, g, yq P T : |x| “ 1^ |y| “ 1

But not every SFC, that uses split and merge is miss-formed. We describe the set of
well-defined SFC further. We address the safe use of split and merge and the prevention of
unlimited tokens, like in Figure 2.8. SFC with split and merge is safe, if it is guaranteed
at every time, that token count is limited This is not sufficient as Figure 2.9 presents an
counter example. If we set b2 to K, we could overcome the merge and leave a token behind
in step 22. Additionally step 23 could hold two tokens.

Unlimited tokens can only be created with transition, that breaks out the split-merge
section, like in Figure 2.8. Interference between branches in split-merge section is able to
create multiple tokens in a step. We create partitions on the steps of a SFC and claim the
isolation of the found partition. There can at most one token in each partition. Only split
and merge transitions are allowed between token partitions. Any normal transition violates
the prohibition of interference between the branches of a split-merge section.

23

24 2. Formalisation of PLC software

1

11

12

13

a1

a2

21

22

23

b1

b2

31

2

Figure 2.9 Unsafe SFC with restriction of token amount

Definition 2.19 (Token Partition) A token partition is a set PT Ď S for a SFC S “
pS, s0, T, a,<,ăq. The token partition fulfills following properties:

• In a token partition there exists at most one token (active step).

• There are only normal transition between steps in a token transition.

@a, b P PT : @ps, g, tq P T : a P s^ b P tÑ |s| “ 1^ |t| “ 1

A partition starts with the initial step or the first step after a split and is limited by next
merge. Every step, that is reachable via normal transitions, fork and join belongs to one
token partition. Figure 2.10 show a schematic SFC, where we mark the token partitions
with colors. But the SFC in Figure 2.10 is not safe, althoug the token partitions are disjoint.

α

γβ

Figure 2.10 Token Partitions of a schematic SFC. α is the outer partition of β and γ.

24

2.4. ST0 25

It is still possible to create an arbitrary token quantity, the tokens in the left branch from
top split never reach the merge and we can visit the top split unlimited time.

Lemma 2.20 (Well-formed simultaneous SFC) Let S “ pS, s0, T, a,<,ăq be SFC
with simultaneous constructs and p1, . . . , pn token partitions, then the SFC is well-defined,
if

pi X pj “ H

for 0 ď i ă j ď n and if a step in a outer partition is active, no step in an inner partition
is active.

The relation of outer and inner partition is defined over the transitions. Let Po a outer outer-inner
partitionpartition to the inner partition Pi, then

Dps, g, tq, ps1, g1, t1q P T : |s| “ 1^ |t| ą 1^ |t1| “ 1^ |s| ą 1 (2.57)
^ Da P s : a P Po (2.58)
^ Db P t : b P Pi. (2.59)

Equation (2.57) describes, that we can reach the inner partition via split from the outer
partition and merge leads from the inner to the outer partition. The algorithm for finding
the token partition is based upon breadth first search, maintaining an history of created
tokens by splits. We give a sketch in Figure 2.11. The algorithm maintains reached, prefix
and weight. reached contains the current reached steps and enables transitions. prefix
contains the partition as a list of numbers, the numbers maintain the hierarchy and history
of created partitions. weight determines, if a split-merge section is closed. We claim, that
prefixpaq returns of a P S or the common prefix if a Ď S.

The algorithm stops if every step is reached. The second loop considers all transition, which
outgoing steps has been reached. For a normal transition we copy the prefix and weight.
On splits, we share the weight among the branches and create a new token identifiers
with prefixes from the outgoing step. On merge, we sum up the weights to determine, if
the section is closed. On a closed section we use the common prefix between all outgoing
branches, else we leave one branch open. The algorithm is correct, if all created tokens will
finally reached a merge and the given SFC S is safe. If the SFC is not safe, the algorithm
assigns two different prefixes to one step.

If the token partitions of a SFC do not overlap, the SFC is safe. Every step is in a token
partition:

p1 Y p2 Y ¨ ¨ ¨ pn “ S

We can not state the other direction in Lemma 2.20, because the definition of safe SFC is
not formally described. It is more a notion created by examples of an undefined behaviour.
The definition of token partitions helps us by the reduction from SFC with split and merge
into deterministic SFCs (Proposition 2.22).

2.4 ST0

We build an intermediate representation (IR) for the regression verification. The IR ST0 is
a subset of ST. We need a transformation of SFC into ST and transformation for making

25

26 2. Formalisation of PLC software

Input: SFC S “ pS, s0, T, a,<,ăq
Output: Partition identifier prefix.
begin

reached :“ ts0u;
prefixps0q :“ x0y;
weightps0q :“ 0;
while reached “ S do

for t “ pu, g, vq P T if all u Ď reached do
T “ T zttu;
reached :“ reachedY v;
if |u| “ |v| “ 1 then /* Normal transition */

weightpvq :“ weightpuq;
prefixpvq :“ prefixpuq;

else
if |u| “ 1^ |v| ą 1 then /* split */

i :“ 0;
for a P v do

prefixpaq :“ prefixpuq ˝ i;

weightpaq :“ weightpuq
|v|

;

i :“ i` 1;
end

else /* merge */
weightpvq :“

ř

aPv weightpaq;
if weightpvq ‰ weightpaq for a step a with prefixpaq “ prefixpuq
then /* old weight not reached, hence section not closed,
open new token partition */

prefixpvq :“ prefixpuq ˝ 0;
else /* use the common prefix */

prefixpvq :“ prefixpuq;
end

end
end

end
end

end

Figure 2.11 This algorithm finds token partition in an SFC.

ST simpler. Figure 2.12 shows the translating steps for ST and SFC language into ST0.
The other IEC61131-3 languages can also translatable into ST and could be embedded in
this workflow, but are out of scope for this thesis.

ST0 is a restriction on ST. The operational semantics (Definition 2.11) stays the same. We
only prohibit certain statement and expressions in Definition 2.21

Definition 2.21 (ST0) ST0 follows Definitions 2.5, 2.7 and 2.9 to 2.11 The generation
ST0 program starts with the xSTy0 non-terminal.

26

2.4. ST0 27

xST0 y Ñ xtypey (2.60)
’PROGRAM’ xnamey (2.61)
xlos0 y (2.62)
’END_PROGRAM’ (2.63)

xlos0 y Ñ xstatement0 y p’;’ xstatment0 yq
˚ (2.64)

xstatement0 y Ñ xassigny | xif y (2.65)

In ST0 the following data types can be used
• integer (SINT, INT, DINT, LINT),
• unsigned (USINT,UINT, UDINT, ULINT),
• enumerations and
• boolean.

Function calls within expressions are prohibited.

Only one program definition and one type declaration is allowed in a ST0 program. The
function and function blocks calls have to be embedded in the program body. For loops
need to be unwound. While and repeat loops are not supported in the translation. Loops
are avoided in ST, because they can diverge and the program does not terminate at the end
of scan cycle. So real software spare the use of while and repeat loops, like the software in
the case study. Unfolding of structs and arrays helps on restriction of data types. The only
prohibited data structures are the strings and reals, as dates and times can be compose as
integers. Later in Section 3.3.1, we present the transformation of ST0 to a SMV module.

ST SFC

Removing
split-merge

SFC0`Preamble

Roll out
for-loop

Replace
structs

and arrays

Embedding
Function
Blocks

Timer to
Counter

ST0

Figure 2.12 Preprocessing for ST0

27

28 2. Formalisation of PLC software

2.4.1 SFC0

We want to purify SFC from unambiguous and complex behaviour. Our target is to
translate well-defined SFC into a deterministic form (Lemma 2.18) and with disjoint guards
on forks. In the end we do not need the order of actions < and translation ă anymore.

We ensure the disjunction of the guards by simultaneously replacing the guards ([Bor+00]):

g1 “def g
ľ

t1“pQ1,g1,Q1
1qPT,Q1XQ2‰H,t1ăt

 enabpg1q . (2.66)

There is no need for the transition order ă after rewriting the guards.

The removal of merge and split sections is more complex. We put the different token
partitions (Definition 2.19) within split and merge into separate SFC function blocks. A
new step replace the split and merge section and calls the created SFC function blocks.
The attention lies upon entry and exit in the token partitions. We have to keep the same
behaviour, for every turn. If such token partitions exists, we can rely on the disjointedness
of the split branches.

Every partition, becomes a separate function block and the upper split-merge section is
replace through a proxy step in the top SFC. The top SFC is the outer partition, and the
inner partition becomes a sub SFC. In the Figure 2.11 we can decide by investigating the
prefix of both partitions identifiers. The new function block need to access every variable
from top SFC. Additionally we need to reset the sub SFC (partition) if we enter proxy
step. There is one point we loose in the transformation. This abstraction preserves the
action order < only if the order is consistency in one partition. Hence, every associated
action ai from partition pi is executed before the associated actions from partition pj . If we
reduce the partitions to a proxy step, we can only decide the execution on partition level.
There may be complex ways to preserves the action order. This is sufficient as the vendor
specifies the order of the action execution branch-wise from right to left, resp. Siemens
from right to left.4

Proposition 2.22 (Elimination of simultaneous constructs) Let p1, . . . , pn be token
partitions of split-merge section with the incoming transition t “ px, g, yq P T and the
outgoing transition t1 “ px1, g1, y1q P T in a given SFC S.

1. Every pi becomes a SFC τi with the first reached step after a split as the initial step.

2. Each variable from S is duplicated into τi as a ’VAR_IN_OUT’.

3. We add a new variable accept in every τi as a signal, that the SFC has reached the
last steps before the convergence. The last steps lj in each SFC τi sets accept to J.

4. We replace the whole split-merge block by a new step ρ. apentry, ρq resets every SFC
τi and calls the entry action from the seed step.5 The active actions calls every
function block τi. Before and after each call the scope of S and τi are synced by
setting the variables in τi (resp. S). The function calls block are in order of <. Every
exit action of the last steps from the sub SFC τi is gathered into the λ’s exit action in
order of <.

5. The outgoing transition t1 “ px1, g1, y1q P T from the split is replaced by new transition
ptρu, g1 ^

Ź

1ďiďn accepti, y
1q.

4Covering complex orders: Imagine, the functions blocks of the sub SFC return a set of action identifiers
and the proxy step executes each action in the returned set in the in the specific order.

5The entry action of initial steps not called in the start.

28

2.4. ST0 29

We need clarify some parts of Proposition 2.22. First the proposition should applied to
the most inner pair of split and merge. An application of the proposition does not lead to
miss-formed SFC and the behaviour is not changed. We apply the proposition repeatedly
until every split and merge has disappeared. We just have to be careful in the selection of
the token partitions. If we want to proof the soundness of the construction, we need to
limit the <, as discussed above. We define an order ű on the token partitions with

Q ű P iff @q P S, p P P : aQpqq < aP ppq , (2.67)

where Q,P are token partition. Only if every action from Q executed before P in the
original SFC we can safely put proxy steps in charge.

For the proof, we fixate a split-merge block and compare at the entry, active and exit in
the token partition and the proxy step. We need to assume that Equation (2.67) holds
pairwise for every token partition in a split and merge section. The goal is to show, that
the entry, active and exit section for each step is activated in the same step if the same
input comes in, which results in the execution same actions.

Proof 2.23 (Soundness of Proposition 2.22) We fixate a split-merge section with an
incoming transition t and a outgoing transition s.

entry turn The transition t “ px, g, ty1, . . . , ynuq into the split-merge block is satisfied
C |ù g and the exit action apexit, xq is called for the step. In the next step following
happens:

Old behaviour We jump directly into every step y1, . . . , yn after the split. First the
entry action apentry, yiq is called, then the active action apactive, yiq – both
categories in the order of <. After finding any successor, the particular exit
actions are called.

New behaviour The new step ρ get the token, apentry, ρq is called, and resets the
sub SFCs and calls the apentry, τiq. In apactive, ρq the Figure 2.6 is invoked
on all sub SFCs. It calls on every sub SFC apactive, yiq and maybe apexit, yiq.
The exit action is only called if the transition is satisfied after the active action.
The same behaviour as in the old SFC. The actions are called in ű order after
assumption.

active turns The new proxy step just forwards every turn in the top SFC to the sub SFC.
The order of steps in both behaviour are the same and the proxy can only be left if
every old guard on transition s holds and every sub SFC has accepted.

exit turn Let assume the tokens are merged via the transition s “ ptx1, . . . , xnu, g, yq. This
happens iff all started token at split reached a step before the merge, and g is valid.
This is the same condition as in the guard after the proxy step. We assume the leaving
of the split-merge section.

Old behaviour If we leave the section, we are in the last steps xi of each token
partition and notice, that we take the transition. apactive, xiq is called for the
last time and apexit, xiq once respecting the order <. In the next step apentry, yq
and apactive, yq are called.

New behaviour Proxy step ρ is active. Turnp¨q executes in ű order the sub SFC.
For every sub SFC τi, the last step xi is active and apactive, xiq is executed. So
accepti becomes valid.

29

30 2. Formalisation of PLC software

The upper SFC evaluates the transition guard. in the upper SFC is checked
The guard is valid because g (assumption) and

Ź

1ďiďn accepti is valid. We are
leaving ρ and call apexit, ρq. After Proposition 2.22 apexit, ρq contains every exit
action from the sub SFC6.
In the next step apentry, yq and apactive, yq are called.�

Of course is the order of action execution differently, but the changed variables appeal
at the end of a scan cycle. The execution order matters only internally if variable are
dependent. For the transformation to ST0, we assume that the action sequences (entry,
active, exit) are encoded into words over Lpxlosyq, so there are valid ST code.

Definition 2.24 (SFC0) A SFC0 is a SFC with following restriction:
• every action sequence is coded in ST
• no splits and merges
• disjoint guards on forks

2.4.2 Transformation of SFC0 into ST
For the transformation from SFC0 to ST we only need to roll out the Figure 2.6 for a given
SFC S. We give a template to generate the ST code in Figure 2.13.
The template language is like a macro, that generates code on execution. The placeholderTemplate

Language are in angle brackets and part of the meta level. We replace a placeholder <a> by the value
of the a with supports of fields. The for loop <for a in seq> duplicates the content between
<for> and <endfor>, and assigns a value from seq to a. See Section 2.5 for examples.
We first create a new enumeration type <name>_state_t, where <name> is the name of the SFCTemplate

SFC to ST (or some arbitrary unique identifier). Differently, we could encode the steps as integers,
but for debugging and tracing we use the step names. The SFC becomes a function block
with the same name <name>. Additionally, the old variables <old_variables> from the SFC
we declare two more: _state holds the current step, and _transit is valid iff a transition
is taken. For every step <s> we create an entry in a case statement. The entry action
<s.entry> is called if the step is freshly encountered, hence _transit is valid. After entry
action we reset _transit and call the active action <s.active>, which is always executed.
Every outgoing transition is represented by an ELSEIF branch. The order doesn’t matter
after the replacement of the guards in SFC0. If a transition guard g is satisfied, we need to
set the new state v and activate _transit, so the entry function <u.entry> will be called in
the next round. Besides, _transit triggers the exit action s.exit. The Figure 2.13 covers
the Figure 2.6.

2.4.3 Transformation of ST into ST0

To bring ST code into ST0 form, we apply following transformations:

• unwind loops
• unpack structs and arrays
• timer to counter
• embedding function blocks.

Every transformation can applied on it’s own. But there are good and bad orders. We
separately present the transformation. For the same transformation we use the same
template language as in Section 2.4.2.

6The exit action are in the top SFC, because we can not decide to execute them locally in the sub SFC.

30

2.4. ST0 31

Unwinding of for loops

A for loop has the form of Equation (2.34). We need statically evaluable loop boundaries
<start>, <stop> and <step>, that means the evaluation of the boundary is possible on the
basis of the syntax. We support only expression that composed of literals and constants
variables. Additionally, we have to ensure that the loop variable <var> is not written within
the loop body. Otherwise the termination of the for loop is not guaranteed and the unwind
is not sound.

In the transformation, the for loop is pulled up to the macro level (Figure 2.14). With
start:step:stop we refer to a sequence

an “def n ¨M step`M start

for every loop iteration i until ai ą stop and ˚M ,`M denotes the multiplication and
addition in machine semantics. The evaluation of the sequence has to be done within
the boundaries of IEC61131-3’s data types. In the loop body <body> we replace every
occurrence of the loop variable with current constant value. The replacement helps us in
the next steps if we unfold structs and arrays. The counter variable is defined in procedure’s
scope, so we need to assign the first value beyond the boundary to counter variable.

Replace structs and arrays

Structs and arrays are just composition of data types. In structs the sub elements are
addressed by name and in arrays by multiple indices. In both cases the amount of sub
elements are determined statically and can not be changed during runtime.

We rewrite every access to an element <var>.<element> of a struct variable into <var>_< Structs
element>, and declare the variable <var>_<element> in the scope of the old struct variable.
Of course the used variable should not already exists, else we can generate a other unique
name. We can apply the same technique repeatedly on struct variables, to flatten the
hierarchy.

The access to array elements happens over integer expressions, for example a[floor(sin Arrays
(x)+1)]. Like the for loop boundaries the expressions have to be evaluable syntactically.
For this reason, we have replaced the loop counter variable with a constant in the loop
body. The replacement is the same as with structs, if we find an array access, for example
name[a,b], we calculate the accessed positions a, b and rewrite it as normal a variable
<name>_<a>_. In the variable scope we need to introduce every possible position of the
arrays.

We need to consider the case of an assignment of whole structs or arrays variables, or calling
functions with the variables. The assignment of composite data types, are assignments of
every element recursively. We can easily expand such an assignment to an assignment of
every element. The input and output parameters in function block applications becomes
assignments before and after the call. This does not work for functions. Anyway we
prohibited function calls in expression, by the definition of ST0.

We can use the unfolding of data structures for covering the built-in data structures of
IEC61131-3, too. For example, we can define the date data types like Figure 2.15 in the
preamble. Additionally, we need to reimplement the built-in functions, before these data
types become useful.

31

32 2. Formalisation of PLC software

Timer to counter

IEC 61131-3 defines timer function blocks, that depends on the real time of the PLC. Real
time is hard to model into model checkers (see [Lam02] for examples). We are simulating
the system in scan cycle turns and assume that every turn consumes a certain time quantity.
So instead of counting the time, we count the scan cycles.

We look at the TON function block, because the case study uses it. TON has two input
argument IN, PT of BOOL and TIME, and two output variables Q,ET of bool and TIME.
Informal, TON set Q to true if the given time PT has run out and IN stays valid at all
calls. In other words, Q becomes true iff IN is valid at least PT seconds long. ET hold
the time since the timer has triggered. TON is often used to wait a specific time before
continuation of the control flow. Formal we can describe TON as a function. Note the
normal behaviour specification is informal given as timing diagrams [TJ09].

TONpIN, PT q “

$

’

’

’

’

&

’

’

’

’

%

K,K : IN “ K

K, 0 : IN 1 “ K^ IN “ J

K, ET ` CCT : IN 1 “ J^ IN “ J^ PT ă ET

J, PT : IN 1 “ J^ IN “ J^ PT “ ET

, (2.68)

where CCT is the time quantity consumed by one scan cycle, and IN 1 is the IN input
from the previous call. TON returns a tuple of Q,ET , where Q becomes true after the
waiting time ET reaches PT . ET is limited to PT . There is no definition for the behaviour
if changes PT during several calls with IN is true. The difference to a counter based
approach, is setting CCT to one and PT is divided through the CCT . A function block
definition for TON could be like Figure 2.16. Later in Section 3.3.3 we will discuss a
technique for getting complete rid of TON.

Embedding function blocks

The embedding of function blocks consists of multiple steps:

1. create a copy of the function block with prefixed variables.

2. duplicate the function blocks variables in the caller scope

3. replace every call to this function block with the block’s statements.

The prefix is the instance name followed by unique terminator, for example “$”. We have
to check for variable name collisions and need to set the input and output before and after
the call. The application may have to be done multiple times until every function block
call disappears. Mutual use of function blocks is not allowed after IEC61131-3.

2.5 Software for Introductory Example
We pickup the introductory example (Section 1.1). First, we create the SFCs for both
revisions and a main program. Second, we show the transformation into ST0.

The SFC for revision I is in Figure 2.17a . We start in step Wait with a non-moving beltSFC
Revision I and wait there, until a workpiece is lay on the belt. The sensor w1 registers the appeared

workpiece (w1 “ J) and we jump into Run step. We wait in Run, that the activated the
conveyor belt (run :“ top) has transported the workpiece to the right edge (w2 “ J). Then
SFC goes into Pick, stops the belt (run :“ K) and activates the crane (pickup). After the
crane removed the workpiece (w2 “ K), we wait for next workpiece. Interestingly, there is a

32

2.5. Software for Introductory Example 33

synchronize mechanism, like barriers or mutual exclusion, via the real physical world. One
process is halted until a physical event occurs, that is created by another process within the
software or the physical world. In our example the belt halts, when the workpiece hits w2.

We want to extend our first revision from Figure 1.2 by a sorting feature. Figure 1.3 shows SFC
Revision IIa,
IIbthe new constellation with the new detector D. The detector can distinguish correctly

manufactured workpieces from broken ones during the transportation. The crane should
only pick up correct workpieces, while the broken workpieces fall over the right edge into
the wasted bin. Figures 2.17b and 2.17c shows two possible solutions for the second revision.
In revision IIa (Figure 2.17b) the new behaviour introduces a branch. The new branch
prevents the belt from being halted, if the detector saw a broken workpiece. Revision IIa
is not minimal. In revision IIb, the same behaviour was achieved with an more complex
action with in the step Pick. Obviously, revision IIa and IIb behave the same under equal
input w1, w2.

We need a program to call our SFC function blocks. The program in Figure A.1 takes care main
programabout emergency stop, forwards sensor values to SFC and sets the actuator commands

from the SFC into the bus. The mapping between the local program variables and the
bus system is done on the configuration level. Both the function block and the program
does not contain any complex data types or loops. We can directly embed the function
block into the program (Figure A.3). Note, the case statement becomes an if statement
and every variable from the function block is copied with a prefix into the program. We
have leave out the empty entry actions and the transit variable.

33

34 2. Formalisation of PLC software

1 TYPE <name >_state_t : (<state_names >); END_TYPE
2 FUNCTION_BLOCK <name >
3 VAR _state : <name >_states_t ;
4 _transit : BOOL
5 END_VAR
6 <old_variables >
7
8 CASE _state OF
9 < for s in S >

10 <s.name > :
11 IF _transit THEN <s.entry > END_IF ; {* entry action on transit *}
12 _transit := FALSE ;
13 <s. active > {* active action always *}
14
15 IF FALSE THEN {* empty then branch *}
16 < for (u, g, v) in T where u = s >
17 ELSEIF <g> THEN
18 _state := <t>;
19 _transit := TRUE;
20 < endfor >
21 END_IF ;
22 IF _transit THEN <s.exit > END_IF ; {* exit action on transit *}
23 < endfor >
24 END_CASE
25 END_FUNCTION_BLOCK

Figure 2.13 Generation of the Figure 2.6 for a specific Sequential Function Chart 0 S “

pS, s0, T, a,<,ăq with a macro language.

1 FOR <var > := <start >
2 TO <stop > [BY <step >]
3 DO <body >
4 END_FOR

1 < for i in start:step:stop >
2 <body[var/i]>
3 < endfor >
4 <var > := (i+1)*step+start;

Figure 2.14 Unwinding pattern for for loops. The for loop is pulled to the macro level with
evaluated boundaries. The body is copied with the replacement of the loop variable by a constant.

34

2.5. Software for Introductory Example 35

1 TYPE
2 DATE : STRUCT
3 day : USINT (1..31) ;
4 month : USINT (1..12) ;
5 year : UINT;
6 END_STRUCT ;
7
8 TIME_OF_DAY : STRUCT
9 hour : USINT (0..23) ;

10 minute : USINT (0..59) ;
11 seconds : USINT (0..59) ;
12 ms : INT (0..999) ;
13 END_STRUCT ;
14
15 DATE_AND_TIME : STRUCT
16 d : DATE;
17 t : TIME_OF_DAY ;
18 END_STRUCT ;
19
20 TIME : STRUCT
21 days : INT;
22 hours : INT;
23 minutes : INT;
24 seconds : INT;
25 milliseconds : INT;
26 END_STRUCT ;
27 END_TYPE

Figure 2.15 Preamble for some built-in IEC61131-3 data types. Time is often encoded as one
integer value.

1 FUNCTION_BLOCK TON
2 VAR_INPUT IN : BOOL; PT : USINT ; END_VAR
3 VAR_OUTPUT Q : BOOL; ET : USINT ; END_VAR
4
5 IF IN THEN
6 Q := ET = USINT #0;
7 IF ET > USINT #0 THEN
8 ET := ET - USINT #1
9 ELSE

10 ET := USINT #0
11 END_IF
12 ELSE
13 Q := FALSE;
14 ET := PT;
15 END_IF ;
16 END_FUNCTION_BLOCK

Figure 2.16 Function block for simulating TON component

35

36 2. Formalisation of PLC software

Wait

Run

Pick

w1

w2

 w2

run :“ K

run :“ J

run :“ K pickup

(a) SFC for Revision I

Wait

Run

Pick Reject

w1

w2 ^ d w2 ^ d

 w2

J J

run :“ K d :“ K

run :“ J d :“ d_D

run :“ K pickup

(b) SFC for Revision IIa

Wait

Run

Pick

w1

w2

 w2

run :“ K d :“ K

run :“ J d :“ d_D

run :“ d IF d THEN pickup END_IF

(c) SFC for Revision IIb

Figure 2.17 Revision of the SFC for our example

36

3. Regression Verification

Regression verification is the assurance of program equivalence. In this section we close the
gap between our intermediate representation language ST0 and verification of equivalence
(Section 3.3). We present theoretical and soundness consideration about the equivalence
between of plants controlled by PLC (Section 3.2), and abstract the whole plant in general
as a cyber-physical system (Section 3.1). Additionally to the transformation of ST0 to
Symbolic Model Verifier (SMV), we show the encoding of the equivalence notion into
invariants and define templates for modelling the claims, operator on SMV level, for
modelling relaxing equivalence in different ways.

This chapter provides, besides the transformation and theoretical aspects, two impulses
for making verification friendly for engineers. First, we define equivalence claims as high
level operator for equivalence statements in Section 3.4. Second, in Section 3.5 we deduce
conditions under which the equivalence holds. This works on symbolic bisimulation of the
same SFC in both revisions and performs well on the case study.

3.1 PLC as cyber-physical systems
Cyber-physical systems (CPS) are about the collaboration of physical entities controlled
by software. The physical entities are part of and controlled by electronic and mechanical
components. In our case the CPS contains the PLC, actuators and sensors (Figure 3.1),

PLCse
ns
or
s m

k

continuous discrete

lo
gi
c

ac
tu
at
or
s

lo
gi
c

Figure 3.1 Illustration of the components in a cyber-physical system controlled by a PLC. The
PLC communicates via the bus system with the logic circuits in the sensors and actuators. The
sensors transforms the physical magnitudes into discrete values, vice versa for the actuators.

37

38 3. Regression Verification

physical entities

sensors

sensor logic

PLC

actuator logic

actuators

t P R

t P R

t0 t1 t2 t3 t4 t5 t6

t0 t1 t2 t3 t4 t5

t0 t1 t2 t3 t4 t5 t6

t P R

Figure 3.2 Timing and communication behaviour of CPS PLC model

and a central control logic software runs on the PLC. We divide the model into an discretediscrete vs.
continuous and a continuous world. In the discrete part the state is digital, including elements from

enumerable and finite sets. The state consists the memory of the actuators and sensor
logic, the PLC memory and the actual values on the bus system. Therefore the continuous
world covers the physical entities, like velocity, acceleration, temperature or radiation,
and often contains states from uncountable sets like R. The state is built up implicit
from actual position of workpieces, motors, current or voltages. The physical entities are
modelled with differential equation. In despite, a model for the discrete world comprises
logical and arithmetical expressions. Sensors and actuators are in both world. One part
communicates with the PLC with discrete values. The other part read or manipulate the
physical magnitudes.

The PLC is the central controller of the hardware components by sending commands toPLC
actuators and reading values from the sensors. The decisions of the PLC are relatively
high, the actuators receive simple commands from the PLC. For example, the PLC sends
an on-off commands to electric engines and the internal controllers of the engine take care
about voltage and current (Figure 3.1). PLC decides on actual or seen sensor values and
older computed values stored in the local memory. In our model (Figure 3.1), there isActuator
no restriction on the internal actuator and sensor logic. The internal logic can see every
command and manipulates every physical magnitude. The whole actuator logic is one
single sequential circuit and participate in the downstream of the PLC as a part of CPS.
So the actuator logic is able to control all actuators at once. We model the same for the
sensors. The raw sensor values can be preprocessed by a logic circuit. For example, imagineSensors
a presence detector for workpieces, like in the introductory examples, is realised as light
barrier with a photoresistor. If a workpiece blocks the light cone into the photoresistor, the
resistance increases and the current drops. The PLC only receives a boolean input variable
if the light cone is blocked. In the preprocessing, we need an analog-digital converter and a
comparison unit to check if the incoming light is under a threshold. The internal logic of
the sensors is a single sequential circuit, the same as with actuators. Hence, we are able to
model sensor fusion in the internal logic.

We observe the equivalences of our model. Figure 3.2 shows two communication cycle ofAbstraction
the whole system. The sensors read the physical magnitudes from the continuous world
and the logic process these measurement at discrete moments in sensor logic. The sensor
logic provides the data to the PLC over bus system. The cycles of the sensor and actuators
circuits and the PLC does not need to be synchronized. The PLC retrieves the last value on
the bus system. After processing the PLC puts the new commands on the bus system and
actuator logic tries to change physical magnitudes via the actuators. Every communication
and computation need an amount of time, hence the whole system has latency. We don’t

38

3.2. Equivalence of Programs 39

consider the latency further.

Every subsystem of our model has a internal state, input and output values. In the following Functional
Descriptionwe denote every subsystem with a function. With the use of function we encapsulate the

local state of sub system from the other sub systems. Additionally the use of functions
implies, that the sensors and actuators does not have uncertainty or inaccuracies, because
for every input exists only possible value. Later, the uncertainty can be introduced by
relaxing the functions to relations.

Definition 3.1 (Cyber-physical Model)

St : Rp Ñ Nr (3.1)
SLt : Nr Ñ pNY Bqm (3.2)

PLCt : pNY Bqm Ñ pNY Bqk (3.3)
ALt : pNY Bqk Ñ Ro (3.4)
At : Ro Ñ Rp (3.5)

St describes the sensors, SLt the downstream logic of the sensors, PLCt the programmable
logic controller, ALt the actuator logic circuit and At the changes of the physical magnitudes.
Every function can vary over time and hold a local hidden state. The cardinality or sets in
the Definition 3.1 are not important, as long as the signatures are compatible. So we can
allow St to return values after a floating point convention, as long as SLt can handle this
type.

We often refer to a physical model of the input. With the equation from Definition 3.1 we
are able to describes this term more precisely.

Definition 3.2 (Physical Input Model)

pimt`1 “def SLt ˝ St ˝At ˝ALt (3.6)
: pNY Bqn Ñ pNY Bqm. (3.7)

The physical input model is the counterpart of the PLC. The input model takes PLC’s
output and transform this into input for the next turn.

Equivalence is the claim for the same behaviour under the same input. In our model
(Figures 3.1 and 3.2) we have multiple level of inputs and outputs. For example, we can
demand equivalence on the observable physical magnitude under the same PLC input. This
excludes the sensors and sensor logic from the proof. It is important to state, that you
can grab input and output values from every connection in the model. This is useful for
testing custom boundaries of submodules in the model. Additionally it can be necessary to
replace some sub modules with stub implementations. With this technique we can relax
equivalence. Moreover you can plug in different kinds of input models, beginning with
non-deterministically choice of every possible input value and ending with a full correct
physical input model (Definition 3.2) including user interaction. We address the input
model in Theorem 3.7.

3.2 Equivalence of Programs
We have defined our environment, in which the software is embedded. In this section, we
compare two software revision for the same PLC system. Imagine, we make a bisimulation

39

40 3. Regression Verification

with the same environment, but with two PLC with different software revisions. We would
describe the equivalence of both programs a, b as the equivalence of the output.

@x P I : fapxq “ fbpxq. (3.8)

In Equation (3.8) there are many implicit assumptions. The output space Oa and Ob ofEquivalence
Assumption both programs must be compatible in respect to the equivalence relation “. The input

space I and the input value x are identical between both function. Both programs must
be expressible as pure function f : IÑ O, with no internal state. The ST0 programs has
internal memory, that need to store between the function applications. Of course we can
concatenate the ST0 program nth times, hence the state keeps local in the first n turns. But
we test only the output equivalence after nth turn. Starting with n “ 0 and an iterative
increasing n lead us to bounded model checking. For stronger statement we let n go to
infinity, and so we need to talk about infinite input and output vectors.

In the rest of this section, we extend Equation (3.8) to Definition 3.3. In the following weInfinite
Sequences talk over infinite sequences, similar to ω-structures. We denote a infinite sequences s with

a top vertical line, and Aω denotes the set of all possible infinite sequences with elements
of A:

Aω “def AˆAˆ ¨ ¨ ¨ ˆAlooooooooomooooooooon

8

(3.9)

We need this notation for the set of possible input vectors I and output vector O. Equa-Perfect
Equivalence tion (3.8) becomes suitable if we use infinite input sequences x P Iω.

@x P Iω : fapxq “ f bpxq (3.10)

We define the functions fa,b with fa,b : Iω Ñ Oω to return the corresponding infinite output
trace of x. Equation (3.10) is writable as a safety condition in linear temporal logic
(LTL) [BK08]:

Gpoa “ obq (3.11)

oa denotes the actual output from program a (resp. ob). Note, LTL notion hides several
aspect of the equivalence, for example the input, but gives a clearer view on the temporal
constraints.

The above considerations are fine if the two programs a, b are perfectly equivalent. MoreoverConditional
Equivalence we have not addressed the problem, that new revision introduces intentionally different

behaviour, for example for fixing a erroneous program behaviour. We relax the perfect
equivalence in Equation (3.11) by introducing a premise p, which disables the equality
claim on intentional changed behaviour. We can declare p to excludes certain traces or
states, for example the trace with the bug fix.

GppÑ o1 “ obq (3.12)

We state the equivalence more explicitly in first-order logic (FOL). But keep in mind, that
a lot of equivalence claims after Definition 3.3 can be expressed in LTL with some extension
on the signature.

40

3.2. Equivalence of Programs 41

Definition 3.3 (Equivalence of Programs) Let a, b two programs, than a is equal b to
a relaxation predicate φ and the input spaces Ia and Ib:

a uφ b iff @ ia P Iωa , ib P Iωb : (3.13)
@t ě 0: φpia, ib, fapiaq, f bpibq, tq Ñ fapiaq »t fbpibq

where Iωa,b denote the set of all infinite input sequences for program a, resp. b, fa the output
sequences from a (resp. b) and »tĎ Oa ˆOb be equivalence relation on the output space
depending on the turn (time) t.

In Equation (3.12) we quantify implicitly over both input spaces Iωa,b and the turn counter t.
The output from the current step fa,bpia,bqrts depends on the program state and the input
ia,b seen until turn t. Of course, the Definition 3.3 is not causal1 and for the implementation
with invariants, we restrict the sequence of input and output to the past and actual values.

The premise p becomes φp¨q, a predicate over the both input ia,b, both output sequences φp¨q

fa,b and the current turn t. φp¨q has the same role as p in Equation (3.12), it relaxes the
equivalence. See Section 3.4 for possible conditions on SMV level. Moreover, a LTL formula
for φp¨q is often enough expressive and can be translated into FOL. With the old output
values φp¨q is able to restrict the equivalence claim to physically and behavioural correct
inputs of the PLC. For example, imagine our introductory example from Figure 1.2. If
w1 is valid and the conveyor runs, then w2 will be valid eventually. This can be expressed
more formally as a LTL formula:

Gpw1 Ñ w1 WprunUw2qq (3.14)

where W is the weak until operator [BK08; Lam02]

aW b “def aU b_G a. (3.15)

Equation (3.14) claims, that if w1 recognizes a workpiece, and run keeps true, the workpiece
will arrive at w2. If a software revision starts and stops the conveyor belt between the
transportation process form w1 to w2, the input model is no longer a valid abstraction.
φp¨q has to handle disparity in input and output sequences from a, b itself. In this thesis we
often assume, that the common variables of both programs a, b are equal. Above, we draw
a picture of bisimulation of two PLC in the same environment, if the input spaces of both
revision are unequal Ia ‰ Ib, we have to adapt the input vector. Often, the new revision
just needs new sensor values, a projection is enough to derive the smaller input vector.
With increasing complexity of φp¨q, we need more to argue about the proved equivalence
statement and his soundness.

Another relaxation is the equivalence relation ». A simple symbolic-wise equivalence of »

both output vector is sufficient in simple cases. But often a new revision introduces output
variables for new actuators or removes output values, the relation » need to map between
both output vectors. For example we can define » by using to projection functions πa,b,
that maps the two output spaces Oa,b into a common space Oab:

pa1, . . . , ajq »t pb1, . . . , bkq iff πapa1, . . . , ajq “ πbpb1, . . . , bkq. (3.16)

1In system theory, a causal system does not know his future inputs.

41

42 3. Regression Verification

We can see πa,b as a selection of arbitrary position from the given vector. Moreover »t
can vary over time and use relations to map single scalars from the output vector. As an
example, assume a change in the units of a physical pressure tension actuator using bar
instead the previous mmhg:

p : mmhgˆ barÑ B (3.17)
ppx, yq “y ´ ε ď 750.061683 ¨ x ď y ` ε. (3.18)

We use a small ε to be aware of rounding errors. For the soundness, we have to consider,
why we can assume equivalent input for both PLC, if the output vectors may only partially
equivalent. This consideration needs knowledge over the environment, that is controlled by
the PLC.

φp¨q and » should be flexible to be suitable for wide range of equivalence statements, so
we make less restriction to the predicates. Later we have to ensure, that the predicates can
be expressed in the model checker (Section 3.4) and we need to consider the soundness of
the equivalence with respect of the both relaxation.

For our later use the following equivalence relation is sufficient.

Definition 3.4 (Equality of time steps) » is a predicate Oa ˆ Ob Ñ B, that decide
over the equality from the program outputs of one turn.

We derive from Definition 3.3 various simpler cases of equivalence, which we want to label.Equivalence
Templates We begin with the easiest one, the equivalence in every step under unrestricted and equal

input φ “ ia “ ib and no relaxation on the outputs.

Definition 3.5 (Perfect Equivalence) Two programs a, b are perfect equivalent a up b
iff

@i P Iω : @t ě 0: fapiqrts “ f bpiqrts (3.19)

or as LTL formulae:
Gpfapiqrts “ f bpiqrtsq (3.20)

The inputs are equal, because the output of both PLCs are equal, and we assume that
there is no other possible influence beside the PLC that modifies the system. Additionally,
we often talk about perfect equivalence if » is only a projection to the common variables
and we can assure the input equivalence.

If we exclude certain inputs or program states from the equivalence, we retrieve the
conditional equivalence.

Definition 3.6 (Conditional equivalence) Two programs a, b are conditional equiva-
lent a uc b iff

@i P Iω : @t ě 0: φpirts, fapiqrts, f bpiqrtsq Ñ fapiqrts »
π f bpiqrts (3.21)

where »π only uses projections.

42

3.2. Equivalence of Programs 43

The conditional equivalence comes often in two fashions. One fashion is to excludes all
ω-structures if a certain input occurs.

Gp ppiq Ñ fapiqrts “ fbpiqrts q, (3.22)

or we can state a stronger version with the until operator:

p fapiqrts “ fbpiqrts q U ppirtsq . (3.23)

Equation (3.23) includes equivalence for turns until the bad input happens.

Definition 3.3 allow more complex statements. For example we could disable the equivalence
for certain amount of steps. We could relax the equivalence in time by claiming

@i P Iω : @t ě 0: fapiqrt´ 1s » fbpiqrts (3.24)
_ fapiqrt´ 1s » fbpiqrt´ 1s (3.25)
_ fapiqrt´ 1s » fbpiqrt´ 2s . (3.26)

All equivalence statements, that doesn’t use a strong equivalence on the output and assumes
equality on the input variables, harbors a problem. This problem already occurs with
projection in ». The output from the both PLC may not be equal in the previous turns,
but we still assume that the both environment in the bisimulation behave the same and
give the PLCs the same input values. This assumption needs justification for keeping the
proof sound. We make justification for our proofs within the case study, that bases on
the separation of the influence between the not common output variables and the input
variables. Such a justification can be done automatically if an appropriate model of the
environment exists.

Models of the input space are costly to create. The input values at step t depend on input,
output and internal from the past. Additionally we need to model random events, like
errors or human interventions. It is easier not assume a specific input and allow every
possible value in an time step.

Theorem 3.7 (Restriction on input values) Let a, b be programs and φP p¨q a falsifi-
able condition, for example a physical input model. It holds

a uφP
bÛ a uJ b a uφP

bÐ a uJ b (3.27)

Proof 3.8 (Theorem 3.7) “Ð” If a, b are equal on all possible input, then they are equal
in the subset of input restricted by φP .

“Û” Assume φP p¨q :“ K and a and b are not equivalence pa ­uJ bq but a uφP
b holds. �

We learn from Theorem 3.7, that φp¨q “ J is the strongest proof in respect to the input
values. If we can proof the equivalence with all possible input values, the equivalence holds
in all input models. On the other side if we can not prove the equivalence with φp¨q “ J,
then the equivalence can still be valid in the real world. The equivalence a u b is transitive
under assumption, that » is a functional relation.

43

44 3. Regression Verification

Theorem 3.9 (Transitive equivalence) Let a, b, c be programs with a uφ b and b uψ c,
where the used » is a functional relation.

@x P Oa : Dy, z P Ob : x » y ^ x » z Ñ y » z. (3.28)

then

a uφ^ψ c (3.29)

holds.

Proof 3.10 (Theorem 3.9) We retrieve »a,bt and »b,ct after the assumption.

We choose a equivalence relation »a,ct

x »a,ct z “def Dy P Ob : x »a,b y ^ y »b,c z (3.30)

We know, that such y P Ob exists from the functional assumption of both » if we restrict
the equivalence to φ^ ψ.�

3.3 Generating SMV models
We transfer single ST0 programs into the SMV (Symbolic Model Verifier) input format.
The ST0 compute one scan cycle and one cycle becomes on transition in the model. Every
ST0 program becomes a SMV module, parameterized with input values from the sensors
and providing the output values.

An example of the introductory example is given in Appendix A.2.

3.3.1 SMV and IC3

Symbolic Model Verifier is a symbolic model checker (SMC) which represents the states in
a symbolic manner with binary decision diagrams (BDD) [Bur+92]. A BDD describes a
whole set of states. In contrast to traditional explicit model checking, where every state is
stored explicitly.

We cite [SB11]. A finite state system, S : pi, x, Ipxq, T pi, xf, x1qq, consists of inputs i,SMC
states variables x, initial states described by Ipxq and a propositional formula T pi, x, x1q for
describing the transition from states x to states x1. If we want to prove, that all reachable
states Rpxq from the initial states satisfied a safety property P pxq, we write

Rpxq Ñ P pxq. (3.31)

The set of reachable states Rpxq is developed inductively by apply the transition relation
T pi, x, x1q repeatedly until we hit the fix point.

Instead of finding the set of reachable states, we could prove P pxq by induction over S.Induction
First, we prove P pxq for every initial state Ipxq Ñ P pxq. Second, we show, that taking a
transition does not violate the safety property P pxq ^ T pi, x, x1q Ñ P px1q for every input i.
These two steps are called initiation and consecution.

P pxq is seldom a valid an inductional to S. IC3’s goal is to find a propositional formulaeIC3
F pxq, which is a valid invariant of S and F pxq implies the safety property P pxq [Bra11;
McM03]. The proof obligations are

44

3.3. Generating SMV models 45

• Ipxq Ñ F pxq

• F pxq ^ T pi, x, x1q Ñ F px1q

• F pxq Ñ P pxq,

where i, x, x1 are all-quantified. The idea is the search for a suitable F pxq. IC3 starts with an
over approximation of the reachable states, which are successive tighten by counterexamples
from bounded model checker instances. A counterexample can be spurious, caused by the
over approximation, or a real counterexample for the safety property P pxq. IC3 is aware of
this and guarantees termination with a suitable F pxq or an valid counterexample.

A SMV model contains several modules. A module declares variables with type and initial SMV model
values as long with the transition between states. For our purpose we need enumeration,
boolean and bit vector data types. The enumeration types covers the PLC’s enumeration
type completely. PLC’s signed and unsigned integers variables and values become a bit
vector in SMV. We used the nuXmv [Cav+14] model checker, which forces a strict typing
with no automatic promotion of variables and values. Hence, we have fixed the bit vector
length to an certain size, that is suitable for the case study, but dangerous if the PLC
software rely on overflows. A SMV module can be parameter variables from the outer scope.
The parameters get substituted at the instantiation of a module. The main module is the
entry module of the model checker. We define in the main module the sensor values as
SMV input variables (IVAR) and inject them into translated modules as module parameters.
Input variables choose every possible element of their domain non-deterministically. Hence,
every possible combination of input values are considered in the prove. For every state
variable can have an assignment for the initial value and the value in the next state. With
init(v):= x, the variable v becomes x in the initial state. Whereas next(v):= expr defines
the value of v in the following state. If we do not give an initial or next assignment, the
variable becomes undefined.

3.3.2 Symbolic Execution

We use symbolic execution to create the next assignments for every variable in the program
body. The init assignments are determined by the rules of the initial values from IEC61131-
3. The program body is in ST0, hence we need not to consider loops or function calls.
The downside are large program bodies. Normal symbolic execution, with creation of new
execution state for every branch, leads to unwieldy amount of execution state, caused by
the exponential blow up. In the case study, we reach over 13 billion different execution
paths for last revision. Instead we use the idea of single static assignment (SSA) with it’s
Φ nodes [Cyt+89]. As a prerequisite for SSA, every variable can only assigned once. This
requirement can easily be ensured with variable renaming and introducing new variables in
the program body. Φ nodes introduce the Φ function within the program flow chart. These
Φ function works like an if-else-expression:

Φpcond,A,Bq “def

#

A : cond
B : cond

(3.32)

The example in Figure 3.3 shows a simple code fragment in ST0. The new value of variable
b depends on a and c. After symbolic execution of the first if statement, we get three
different states: a “ 1 as condition and b :“ 3, resp. a “ 2, b :“ 5 and a ‰ 3 ^ a ‰ 5,
b :“ 7. In SSA we add a Φ node after the if statement (Node 7) and merge the three
reached states into one state by expressing b with the Φ-functions:

45

46 3. Regression Verification

1 IF a = 1 THEN
2 b := 3
3 ELSEIF a = 2 THEN
4 b := 5
5 ELSE
6 b := 7
7 END_IF ;
8 IF c = 1 THEN
9 b := b * 2;

10 b := b + 1;
11 ELSE
12 (* empty *)
13 END_IF ;
14 b := b + 1

0

2
4

6

7

9

10

12

14

Figure 3.3 Simple ST0 program fragment with visualized workflow

b7 :“Φpa “ 1, 3 (3.33)
Φpa “ 2, 5, 7qq .

We only need to evaluate the next if statement in one state, where b “ b7, instead of three
different states. If we encounter an already assigned variable on the right hand side, we
substitute it, with the Φ expression. Figure 3.4 gives the complete assignment of b after
symbolic execution of Figure 3.3. The Φ-function are replace by the case expression of SMV.
A case expression consists of semicolon separated entries with a guard and a expression.
The guard stands on the left of the colon, and determines if the right expression is evaluated
and substitutes the case expression. The case expression becomes the value from the first
entry, which guard is true. The guard TRUE denotes the default entry in a case expression.

In the classical symbolic execution we would have six possible states in which we evaluate
line 14. In general this construction is exponential but leads less complexity in guards and
expressions. SSA achieves linear time with the cost of more complex formula. In Node 14
b is

b14 :“Φpc “ 1, (3.34)
Φpa “ 1, 3,
Φpa “ 2, 5, 7qq ˚ 2` 1,

Φpa “ 1, 3,
Φpa “ 2, 5, 7qqq ` 1.

Figure 3.5 gives the algorithm for generating the expression of variable assignments from a
statement. We iteratively apply the algorithm on the program body. If a variable is not
assigned in a scan cycle, it keeps his value. Hence, we start the iteration with an identity
variable assignment

state : var ÞÑ var . (3.35)

The algorithm needs a symbolic replacement Epexpr, stateq for substituting each occurrence
of variable in expr with the assigned value in state. We use template matching for
determining the type of the statement and encode if statements IF pc0, s0, . . . , cn, snq as a
sequence of guards ci and list of statements si, where the else branch has TRUE as his guard.

46

3.3. Generating SMV models 47

1 next(b) :=
2 (case c = 1 :
3 ((case a = 1 : 3;
4 a = 2 : 5;
5 TRUE : 7;
6 esac) * 2) + 1;
7 TRUE :
8 (case a = 1 : 3;
9 a = 2 : 5;

10 TRUE : 7;
11 esac);
12 esac) + 1;

Figure 3.4 SMV assignment for variable b from Figure 3.3

Input: A ST0-allowed statement stmt and a variable mapping
state : Lpxnameyq Ñ Lpxexpryq.

Output: The updated variable map currentState.
begin

currentState :“ state;
if stmt matches IF pc0, s0, . . . , cn, snq then

for 0 ď i ď n do
statei :“ copypcurrentStateq;
di :“ evalpci, currentStateq /* Evaluate ci in currentState */;
statei :“ SymExpsi, stateiq /* Update statei with comparison in di */;

end
newState :“ copypcurrentStateq;
for var P DOMAINpstateiq do

/* If var is reassigned in statei */
if D 0 ď i ď n : stateipvarq ‰ currentStatepvarq then

newStatepvarq :“ Φpd0, state0pvarq,
Φpd1, state1pvarq, . . . Φpdn´1, staten´1pvarq, statenpvarqqqq;

end
end
currentState :“ newState;

end
if stmt matches ASSIGNpvar, exprq then

currentStatepvarq :“ evalpexpr, currentStateq;
end

end

Figure 3.5 SymExpstmt, stateq, symbolic execution of ST0 statements

47

48 3. Regression Verification

3.3.3 Optimizations

We present several techniques to reduce the number of variables and bits in our models.
Optimizations take place at several levels, during transformation from SFC and ST to ST0,
ST0 to SMV or in the model checker. We investigate the variables in the SMV model, find
differences in SFCs, split proves along the function blocks. Typical for these techniques in
regression verification is the exploitation of structure similarities. In a software evolution,
we separate the changed from the unchanged software parts to reduce effort for the prove.

Read-only variables

We categories variables in the program in several classes. Variables with write access, are
read-only, and we need not to store them into the state space. Instead we express these
variables as DEFINES in SMV. Input variables of function blocks or functions are substituted
during the symbolic execution. These are “written before read” variables overridden before
any read happens. In general every “written before read” variable disappears after the
symbolic execution. Additionally we remove variables, that have only write access, if they
are not used as output variable of the program.

Variable Slicing

We want to partitioning set of variables, into the changed and unchanged variables between
software revisions. The common unchanged variables can be shared between the two
revision in the SMV model. Figure 3.6 shows to software revisions in ST0 and SMV.
Figure 3.7 gives the computed variable dependency graph.

Let Var1 and Var2 be two sets of variables in revision one, resp. two. The set of shared
variable ShVar is a subset of both variable domains

ShVar Ď Var1 XVar2. (3.36)

This definition assumes name equality between both revisions. If this assumption does not
hold, we would define a mapping f : Var1 Ñ Var2 between the two variable domains. The
members of ShV ar are determined by search in the dependency graph of variables and the
mark of dirty variables.

Definition 3.11 (Variable dependency graph) A variable dependency graph is a di-
rected graph pV,Eq with V Ď pVar1 Y �q ˆ pVar2 Y �q and an edge e P E is a tuple
e P V ˆ V . An edge p pv1, v2q , pw1, w2q q P E exists only, if the computation of v1 depends
on w1 or v2 on w2.

Definition 3.12 (Dirty variable) A node pa, bq P V of a variable dependency graph
pV,Eq is in the set of dirty nodes DV , iff

• a “ � or b “ � or

• there exists a variable assignment, such that nextpv1q ‰ nextpv2q.

• or one of dependent variables are dirty, Ds, t P V : s “ pa, bq ^ ps, tq P E ^ t P DV

A variable v is dirty in a given variable dependency graph pV,Eq, iff pv, vq P DV

48

3.3. Generating SMV models 49

Definition 3.11 defines graph, where the edges denotes dependencies between variables. A
vertex pv1, v2q P V is a match of a variable v1 of the previous version with a variable v2 of
the next version. After definition of ShVar , we assume v1 “ v2. If no match exists, either
v1 or v2 is undefined �. The vertex p�,�q does not exists. Every variable w reachable
from a variable v is called successor of v, vice versa for predecessor. A node is dirty if
one of variables is missing, the next-expression of both variables evaluates different or the
node depends on another dirty node. The dirtiness property propagate reverse to the edge
direction, also in direction to the predecessor.

Obviously, this technique achieves good savings if the software change effects variables,
that have less predecessors. With the variable dependency graph we can show equivalence
on syntactical level for every single program output variable.

Lemma 3.13 (Equivalence of clean output variables) If an program output variable
is clean, the variables behaves the same in both revisions.

Lemma 3.13 follows immediately from the definition of clean variables.

Additionally cleaned variables are at the end of every path in the variable dependency
graph. Obviously, we split the graph into a partition of clean and dirty variables. Every
input value is clean2 and at some point all predecessors variables are dirty (Lemma 3.14).
Following lemma gives us a reasoning for splitting clean variables into a separated SMV
module.

Lemma 3.14 (Dirty End) Let p a path pv1, . . . , vkq, then

@ 1 ď i ď k : vi R VD Ñ @ i ď j ď k : vj R VD (3.37)

Lemma 3.14 states, if we reach a clean variable in an arbitrary path, then every successor
is clean, too. Obviously, this holds by definition, because the dirty flag effects only the
predecessors. If a variable is clean, then the node is locally identical in name and next
assignment, and every successor is clean. The equality of next assignments is a functional
equivalence like Equation (3.8). This equivalence can be solved in different ways. For
instance, a simple check for syntactical equivalence gives an over approximation. More
effort leads to investigation of the different cases in the expression or modelling this question
to SMT or SAT solvers. Checking of the equivalence is an over approximation as long as,
we do not know the exact input and state space for the specific variable. We may find a
spurious case of inequality in the two next definition, that does not occur at runtime.

With Lemma 3.14 we can argue a simple separation of clean variables from two SMV
modules into a new created module. Restate from previous chapter, there is one main
module, that instantiate the modules for each revision. We introduce a new module with
all shared variables ShVar , that is instantiated in the top level module. Every ShVar in the
revision modules becomes a module parameter and uses the instances from the common
module of shared variables.

Timer replacement

In this section we try make a timer forwarding for TON timer from Section 2.4.3. TON
timers are used to introduce delays into the control flow, by waiting a fix amount of
time. TON Timers are function blocks, that depends on the real hardware time and is

2In detail, this assumes equality on the sensor values

49

50 3. Regression Verification

1 FUNCTION_BLOCK main1
2 VAR_INPUT
3 i : boolean ; END_VAR ;
4 VAR a : boolean ;
5 b, c : USINT ;
6 END_VAR ;
7
8 c := b * 2;
9 IF a THEN b := 1 ELSE b:= 3;

10 a := NOT i;
11
12 END_FUNCTION_BLOCK

(a)

1 FUNCTION_BLOCK main2
2 VAR_INPUT
3 i : boolean ; END_VAR ;
4 VAR a : boolean ;
5 b, c, z : USINT ;
6 END_VAR ;
7
8 c := z * 2;
9 z := b + 1;

10 IF a THEN b := 1 ELSE b:= 3;
11 a := NOT i;
12 END_FUNCTION_BLOCK

(b)
1 init(c) := 0;
2 next(c) := b * 2;
3
4
5
6
7 init(b) := 0;
8 next(b) := case a : 1;
9 TRUE : 3; esac;

10
11 init(a) := FALSE;
12 next(a) := ! i;

(c)

1 init(c) := 0;
2 next(c) := z * 2;
3
4 init(z) := 0;
5 next(z) := b + 1;
6
7 init(b) := 0;
8 next(b) := case a : 1;
9 TRUE : 3; esac;

10
11 init(a) := FALSE ;
12 next(a) := ! i;

(d)

Figure 3.6 Example of common variables in two ST0 programs. The variables a and b are equal.
c is changed. Figure 3.7 shows the graph.

i a1, a2 b1, b2 c1, c2

K, z2

Figure 3.7 Graphical dependency between variables of Figure 3.6. We mark c as dirty, because
it depends of a new variable z2.

50

3.3. Generating SMV models 51

waiting time

(a) Fix waiting time

(b) Non-deterministically chosen waiting time.

(c) Non-deterministically choice if the waiting should end or not.

Figure 3.8 Visualization of timer abstraction. The white marks the waiting nodes. The black
node is the entry in the waiting time, and grey the first node after the waiting time.

independent of the function block calls. In Section 2.4.3 we implemented as a counter, that
is decremented on every call. We have to ensure that the function block is at most called
once in a scan cycle. Others timers may claim different abstraction techniques. We want
to fast forward his waiting time.

Restating TON’s behaviour, the caller calls an instance of the TON function block, with a
waiting time PT and a switch IN . After the call, the caller can retrieve the flag Q from
the function block. Q is true, if the IN stayed true over PT seconds.

In our case study, the waiting PT is often a high value, that leads to waiting times and
causes disadvantage in the model checking. For the reduction of the waiting time PT
we first need to identify the corresponding timers in both software revision. Both timer
instances have to be called in the same turns with the same input arguments3. Additionally
we could claim the equivalence of the internal timer state, because both timers use the same
implementation from the preamble. The checks take place in the syntax of the program
ST0 or can be added as a proof-obligation to the model checker. If the assumptions hold we
have to possibilities. First we let PT a fix non-deterministically chosen variable, hence the
assumption, that we can wait a undefined finite time in both programs (Figure 3.8b). This
is a over approximation of one fixed waiting time. We can get rid of the time completely by
choosing the Q output non-deterministically. The second approach (Figure 3.8c) is an over
approximation of the first one, because it allow infinite waiting times. Figure 3.8 visualize
this.

Function block replacing

The abstraction of timers can be extended to abstract whole function blocks. If we find the
corresponding function blocks in both revisions and we ensure the same activation in both
revisions. Same activation means, that both instances are called at the same turn with
the same input arguments. Additionally we need to prove the equivalence of the functions
blocks. The function block equivalence is not necessary for timers, because they are defined
in the preamble.

If the same activation and function block equivalence holds, we are able to extract the
function into a mutual used SMV module. Furthermore, we can make an over approximation
of the function block, that returns non-deterministically chose output values.

3A relaxation is possible for resets of the timer instances, not considered here

51

52 3. Regression Verification

a)

b)

c)

d)

UNTIL
φ φ φ φ

AFTER
α

WITHIN
α ω

EXCEPT
αω

Figure 3.9 Behaviour of the different claims. The black states claims the equivalence, the white
states not. a) UNTIL claims equivalence as long as φ is true. b) AFTER claims the equivalence,
after α was true once. c) WITHIN marks a section of equivalence claim. d) EXCEPT is opposite
to WITHIN.

3.4 Equivalence as Invariant
We check the equivalence with IC3, a inductive method for proving invariants, so we need
to encode proof obligation for the equivalence Definition 3.3 as an invariant. The main
effort is to encode the condition for the equivalence. The relation » often compares the
output of both programs from the same turn. Otherwise we store old values in between if
needed. We give templates for the encoding of the equivalence in SMV.

Let E be a formulae, that describes equivalence within a turn, E encodes ». E compares
the same outputs 1 ď i ď n from both programs A,B:

E :“
ľ

1ďiďn
Ei, (3.38)

where Ei describe the equivalence between two output variable. For a strong equivalence
we choose Ei :“ A.oi “ B.oi. A relaxation is possible by adding functions or making a
disjunction, for example

Ei :“A.oi “ 5 ˚B.oi or Ei :“pA.oi “ B.oi _A.oi “ 0q. (3.39)

Remember, a relaxation of the equivalence between output variables, requires a investigation
if the equality of input variables is sound.

We present four cases of conditional equivalence. We introduce operators, encoded in SMV,
on ω-structures for claiming the equivalence in regions of the ω-structure. We call these
operators claims, for avoiding confusing with existing LTL operators. Figure 3.9 gives an
overview about the claims. In the black states we claim the equivalence E, in the white
states E need not to be satisfied. The formula α activates the claim and ω marks the end
of the equivalence. The evaluation α and ω has a delay of one step, this can be avoided
using nextpαq or nextpωq. If α becomes true in step t, the equivalence claim begins t` 1.

The first claim is a derivate of the LTL’s weak until operator.UNTIL

Definition 3.15 (UNTIL claim) UNTILφpψq is true iff ψ is true as long as φ is true.

UNTILφpψq is defined in LTL as

UNTILφpψq “def ψ ^ pXψ W φq. (3.40)

52

3.4. Equivalence as Invariant 53

The until claim has a slightly different behaviour on the border, than the LTL until operator.
The until operator ψUφ in LTL does not require, that ψ is true, if φ is true in the first
turn, and if φ is true, ψ can be arbitrary. At this point we want to ensure ψ is still valid.
This behaviour is inspired from simple exclusion of transition in SFC. We exclude every
ω-structure at this point, where φ marks the forbidden transitions. The evaluation of
transition takes place in turn t, but the excluded steps becomes active in the next t` 1.
Moreover, we evaluate φ in turn t and the updated condition is available in t` 1. The LTL
next operator in Definition 3.15 ensures this behaviour on the border. If φ never becomes
false, the equivalence is claimed over all states.

In SMV we maintain a boolean variable claim, that is initialize with true and becomes
false in the next turn, if φ is false (Figure 3.10). We use this scheme for all defined claims

claimÑ E. (3.41)

The second claim is similar to the negation of the until claim. We claim, that the equivalence AFTER
E holds after α was true once.

Definition 3.16 (After claim) AFTERαpφq is true if and only if φ is true in every step
after α was once true.

We can express AFTERαpφq in LTL as

GpαÑ G Xφq. (3.42)

If α becomes never true, we does not ensure equivalence. The SMV code is similar, but
the initialization of the claim bit is false and we use a disjunction (Figure 3.10). The
after claim is useful, to skip the initialization of a plant and claim equivalence in normal
production cycle.

In the within claim, we want to ensure the equivalence with region on the ω-structure. WITHIN
Formula α detects the beginning of the region and ω the end.

Definition 3.17 (Within claim) WITHINω
αpφq is true iff φ is valid in all states σ after

α and before ω iff the following formula holds within an ω-structure σ0, σ1, σ2,

@s P N : (3.43)
pDt ă s : pσt |ù α^ @u ą t : σu * ωqq Ñ σs |ù φ (3.44)

Definition 3.17 is equivalent to

WITHINω
αpφq ” GpαÑ Xφ W ωq. (3.45)

If α is never true, we do not claim equivalence, otherwise we claim the equivalence until ω
becomes true or until infinity. The decoding (Figure 3.10) distinguish between the cases,
if we are within or outer the claim. If the claim severe, we wait for α to enter the block.
Within the region we wait ω to leave it.

The opposite of within claim is except claim. It disables the claim within a region of states. EXCEPT
The decoding is the same as within, only the initial value for the claim is different.

53

54 3. Regression Verification

1 MODULE UNTIL(φ, ψ)
2 VAR claim : boolean
3 ASSIGN init(claim) := TRUE;
4 next(claim) := claim & φ;
5 DEFINE INV = claim -> ψ;
6
7 AFTER(α)
8 VAR claim : boolean ;
9 ASSIGN init(claim) := FALSE ;

10 next(claim) := claim | α;
11 DEFINE INV = claim -> ψ;
12
13
14 MODULE WITHIN (α, ω)
15 VAR claim : boolean ;
16 ASSIGN init(claim) := FALSE ;
17 next(claim) := case claim: ! ω;
18 ! claim: α;
19 esac;
20 DEFINE INV = claim -> ψ;
21
22 MODULE EXCEPT (α, ω)
23 VAR claim : boolean ;
24 ASSIGN init(claim) := TRUE;
25 next(claim) := case claim: ! ω;
26 ! claim: α;
27 esac;
28 DEFINE INV = claim -> ψ;

Figure 3.10 Claims encoded in SMV as separate modules. The claim variable can be used as a
premise, see Equation (3.41)

Definition 3.18 (Except claim) Let σ0, σ1, . . . be an ω-structure, then EXCEPTω
αpφq is

true iff

@s P N : σs |ù φ_ pDt ă s : σt |ù ω ^ Du : t ă u ă s´ 1^ σu |ù αq (3.46)

Definition 3.18 we can express EXCEPTω
α in LTL.

EXCEPTω
αpφq ” pφWωq ^GpαÑ XφWωq (3.47)

In general we can reduce until to except claim, respective the after claim to within claim, by
setting an unsatisfiable α, resp. ω. We grasp these claims for the describing the conditionals
needed in the case study in Chapter 4.

3.5 Finding conditions of equivalence
The scenarios in the case study (Chapter 4) show a pattern for finding the condition φ for
showing the equivalence. We find changes between two SFC (left and right) by traversing
both SFC simultaneously, like a bisimulation. We regard difference between both SFC in
the condition. The difference can be changed, new or deleted steps, transitions or actions.
This was the ways, how we derived manually the conditions for the case study. We want to
algorithmize our observation. We need similar structures like Definition 3.11. First, let
every reached node in the simultaneously traversing of left and right SFC be called a twin
step.

54

3.5. Finding conditions of equivalence 55

Definition 3.19 (Twin Step (TS)) Let Sl “def pSl, s0,l, Tl, al,<l,ălq and
Sr “def pSr, s0,r, Tr, ar,<r,ărq be two SFC, then a twin state of Sl and Sr is a tuple
pl, rq P Sl ˆ Sl.

Note, every twin step has entry, active and exit action from the left and right SFC. We
create, during the traversing of the left and right SFC, a directed graph of twin steps and
twin transitions between them.

Definition 3.20 (Twin Step Graph (TSG)) A Twin Step Graph (TSG) is a graph
pV,Eq, where V “def pS1 Y�q ˆ pSs Y�q and E “ V ˆ V .

An edge e P E exists, iff there exists a transition in one of the SFC. Every edge e is mapped
with two guards γlpeq, γrpeq.

� denotes a non-matched step. We denote an edge as a twin transition referring to
transition in SFC. There are several ways to generate a TSG. For example following is
imaginable:

• Simultaneously traversing both SFC and try to match steps and transition in traversing
order.

• Matching of steps with respect to step name, without referring to position and
transition.

We consider the first approach. Figure 3.12 shows the algorithm for traversing both SFC.
The algorithm is similar to breadth-first search. A queue holds twin states that needed to
be explored and visited prevented loops. The main part of Figure 3.12 is the matching
between the outgoing transitions, by the comparison pgl, l1q « pgr, r1q. The relation « use
in our implementation the guard or name of the target step:

pgl, l
1q « pgr, r

1q “def gl “ gr _ namepl1q “ namepr1q (3.48)

Figure 3.11 shows the TSG for the introductory example from Section 1.1 and figure 2.17
with revision I and IIa. The new branch in revision IIa is part of the TSG. The left side
(revision I) in this branch is completely undefined (�). The TSG is good base to give
algorithms of finding φ for proving the equivalence. We see directly, that a until claim with
φ “ pw2 ^ dq would resolve in equivalent behaviour.

We give to algorithms. The first one targets twin transition with unequal guards. Let Unequal
Transitionst “ p pl, rq, pl1, r1q q be a twin transition from pl, rq to pl1, r1q with unequal guards gl ‰ gr.

Then we conjoin following formulae to the condition

pstatel “ l ^ stater “ rq Ñ pgl Ø grq, (3.49)

where statel is the SMV state variable the corresponding left SFC (resp. stater). The
formula tie gl and gr together. If we take the transition in the left SFC, then we need to
take appropriate transition in the right SFC and vice versa. The created formula can be
inconsistent and unsatisfiable. This may depend on logical environment, too.

Our second algorithm addresses differences in branches, like in Figure 3.11. Let t “ Unequal
States

55

56 3. Regression Verification

Wait
run :“ K

run :“ K
d :“ K

Run
run :“ J
Run

run :“ J
d :“ d_D

Pick
run :“ K
pickup

Pick
run :“ K
pickup

�
Reject

w1{w2

w2{w2 ^ d �{w2 ^ d

 w2{ w2
�{ w2

Figure 3.11 Twin State Graph of the introductory example between revision I and IIa from
Section 1.1 and SFC from Figure 2.17

ppl, rq, pl1, r1qq be a twin transition where the left guard gl “ � is undefined (w.l.g.). We
conjoin the following formulae to the condition, for excluding this transition

pstatel “ l ^ stater “ rq Ñ gr. (3.50)

Proceeding, the TSG is a help for humans for given a equivalence condition. The graph canEnrich TSG
be enriched with more information, for example about assumption of the variable values or
environmental states. We can try to determine the value for every variable in each step, bySymbolic

Execution symbolic execution of the SFC. It is possible, that not every variable reaches a fixed point.
For example, loops in SFC are allowed and counting of these loop would be unbound in
general. In our example Figure 3.11 this approach would find the variable assignments for
the Reject step.

Another extension for TSG is an approach of guarantees. We want to gather informationGuarantees
from the transition guards into the local step. An example explains the intention. Figure 3.13
shows a simple state automata, where the nodes G, H and I was introduced in a revision.
For example, the author detected a waiting time in step B and decided to use the waiting
for other operations (G, H, I). If we can prove, that the relevant parts of the SFC state and
of the environment are equal after leaving step B and step I, we can consider the effects of
the changes as local. Hence, we can take the branch in the bisimulation and argue, that the
input is still equal in step C. The relevant parts covers knowledge from the environment.
We have to known which influence the actuator values and sensor values have to each other.

Previously, we execute the actions of the steps symbolic. Now, we consider the transition
guards of the SFC. Both are coupled together, because the actions set the actuator values
and the transition guards checks the sensor values. We want to carry the information of
the sensor values given by satisfying a guards as long as possible to the successor steps.

But if a guard holds in a scan cycle, it does not need to hold in the next scan cycles. A
guarantee describes the knowledge, that sensor value holds until an event, like certain
actuator values, occur. Such a guarantee is revoked under circumstances described by an
propositional formula. Back to our introductory example Figures 2.17 and 3.11, we can

56

3.5. Finding conditions of equivalence 57

Input: Two SFC0 Sl “ pSl, s0,l, Tl, al,<l,ălq and Sr “ pSr, s0,r, Tr, ar,<r,ărq

Output: A twin state graph pV,Eq with γl, γr as mapping from edge to left and right
guard

begin
visited :“ tu;
queue :“ t ps0,l, s0,lq u;
while queue ‰ H do

pl, rq :“ pollpqueueq;
sucl :“ tpg, l1q | @pl, g, l1q P Tlu;
sucr :“ tpg, r1q | @pr, g, r1q P Tru;
suc :“ tu;
if |sucl| “ 1^ |sucr then
tpgl, l

1qu :“ sucl;
tpgr, r

1qu :“ sucr;
suc :“ t pgl, gr, l1, r1q u

else
for pgl, l1q P sucl do

for pgr, r1q P sucr do
if pgl, l1q « pgr, r1q then

suc` “ pgl, gr, l
1, r1q;

Remove pgl, l1q from sucl;
Remove pgr, r1q from sucr;

end
end

end
end
for pgl, gr, l1, r1q P suc do

e :“ p pl, rq, pl1, r1q q;
E “ E Y t e u;
γlpeq :“ gl;
γrpeq :“ gr;
queue “ queueY tpl1, r1qu;

end
end

end

Figure 3.12 Creating of TSG by simultaneously traversing

A
A

B
B

G
�

H
�

I
�

C
C

D
D

E
E

γ1 γ2

γ3

α γ5 γ6

γ7

γ8

β

γ9

Figure 3.13 Guarantee example with a sketch of a TSG. G, H, I are introduced to bypass a
waiting time between B and C.

57

58 3. Regression Verification

easily give the guarantees for the sensor values w1 and w2. We start with a definition in
LTL.

 runÑ w1 “ Xw1 (3.51)
 runÑ w2 “ Xw2. (3.52)

Equation (3.51) connects the actuator command run with the immutability of sensor values
w1 and w2. The sensors can only changed if conveyor belt moves, regardless of human
interaction.

We can propagate the sensor values from the guards to the states with these guarantees
(Figure 3.11):

GpWaitq :“ w2 ^ w1 (3.53)
GpRunq :“ � (3.54)

GpRejectq :“ � (3.55)
GpPickq :“ w2 ^ w1 (3.56)

The guarantee approach need a model, which sensor value is constant under some conditions.
Normally, the physical input model pim (Definition 3.2) contains this information. A proof
for guarantee with the pim needs to consider, that the physical input model has a internal
state, too.

For some cases, a physical model would be too much effort. As end note of this section,
we state an simpler restriction. There is similarity between the guarantees and default
logic. Default logic offers a way to apply rules, if nothing is in conflict with them. We say,
that the sensor value does not changed until we have conflict caused by an actuator. For
a reminder, default logic [Wik13] uses rules in the manner p1, . . . , pn implies q1, . . . , qn as
long as the justification j1, . . . , jn is consistent. The rule can applied if the justification
evaluates to false or is unknown. The justification makes the default non-monotonic as it
might prohibit to apply the rule if more new knowledge is available. The rule is written as
follows:

p1, . . . , pn : j1, . . . , jn
q1, . . . , qn

. (3.57)

We can state our Equations (3.51) and (3.52) in default logic Equation (3.57):

w1 : run_ w11
w11

 w1 : run_ w11
 w11

(3.58)

w2 : run_ w12
w12

 w2 : run_ w12
w12

. (3.59)

You can read the first rule: w1 implies w1 in the next turn is true, as long run is not true4

or contrary is known about w11. If no above rules apply, w11,2 are arbitrary.

4false or unknown

58

4. Case Study

[VH+14] describes the Pick and Place Unit1 (PPU) case study. The main focus of the
case study is the software engineering within the evolution of software, hardware and
requirements (Figure 4.1) and not (regression) verification. We make some adaption in
the source code to lower the complexity for the equivalence proves. There is one kind of
change, that causes inequalities and brings complexity.

The developers of the case study introduced empty steps in SFCs. These empty step have Drift
no assigned actions or outgoing transition guard differing from TRUE. This step introduce
a delay of one scan cycle for the SFC. The difference is not observable for a human in
the running plant, because the scan cycle takes four milliseconds in the case study. If the
empty step is within a loop in the SFC, the delay accumulates in each iteration, hence the
delay is not fixed. We call this behaviour a drift, then both simulations drifts apart and
are not in synchronized. There are two simple solutions: Introducing a delay step in the
old revision, or removing the delay step in the new revision. We choose the first approach,
after consulting the developers of the case study. Another often change is the bringing
forward of actions, in which certain actions, especially assignments, are executed some steps
earlier in the new revision than in the old revision. The effect is the same as for drifts, but
only for some variables. For solving this problem, we can relax the equivalence for these
affected variables in certain time windows. Like every equivalence weakening this requires
considerations about the soundness and the assumption input variables equivalence. To
apply this solution on drifts, we need to argue why we can resynchronize both simulations
at a certain point of time.

In the rest of this section we introduce the PPU with it’s components and process workflow. Outline
In Section 4.1 we give the differences of hardware and software between the revision, as
well as explanation of the equivalence condition and source code adaptions. In Section 4.2
we represents runtime of nuXmv proofing the equivalence.

Not every revision in Figure 4.1 impacts the PLC software changes. The considered
scenarios are in the central ladder, excluding scenarios are 4a, 4b and 6 in Figure 4.1.

The PPU consists of two to five SFCs, depending on the scenario, and one program Main. PPU
The PLC triggers the program every four milliseconds in all scenarios. Table 4.1 gives
an overview when introduction and changes on the SFC function blocks. We distinguish
between changes, that intentionally introduce new behaviour (N) in SFC, other changes

1https://www.ais.mw.tum.de/ppu/

59

https://www.ais.mw.tum.de/ppu/

60 4. Case Study

Figure 4.1 Scenarios of the case study from [VH+14] with the major change and association.
Every scenario step includes a software change, except scenario 4a, 4b and 6.

with effects on equivalence (C), without effects (�C) or only addition new sensors or actuator
variables (NS). If the behaviour is not comparable between revision, we set the X mark
and = denotes equivalent function blocks. This comparison bases on the syntax of the
function blocks and program.

In the center of the PPU is a crane (corresponds to the Crane function block), thatHardware
transports workpieces between magazine, stamp and conveyor belt (Figure 4.2c). The
stack (function block Magazine) provides fresh workpieces. The stamp imprints a logo on
workpieces and corresponds to Stamp function block. The conveyor belt, introduced in

Scenario Main Crane Magazine Stamp Conveyor Pusher

Sc0 I I I
Sc1 = = �C
Sc2 NS N �C
Sc3 = = = I
Sc5 �C N = G
Sc7 NS N = =
Sc8 �C N = =
Sc9 C N = = I
Sc10 C �C = = N I
Sc11 NS �C = = �C X
Sc12 = �C = = = X
Sc13 C G = = = =

Table 4.1 Function block changes during the evolution. Symbols: function block introduced (I),
equal to predecessor (=), different behaviour (N), change (C), changes do not effect behaviour (�C),
new sensor (NS), complete new behaviour (X).

60

4.1. Scenarios 61

evolution Sc9, brings workpieces to a ramp. In the previous scenarios, the conveyor belt
is just a mechanical ramp, where the workpieces slides down. The pusher components
enhance the conveyor and provide sorting functionality during the transportation on the
conveyor belt (Figure 4.2b).

The normal processing sequence contains following steps for metallic or white workpieces. Workflow

1. Stack provides a new workpiece.

2. Crane picks up the workpiece and delivers it to stamp or ramp.

3. Since Sc3, the Stamp imprints and provides the imprinted workpiece for pickup by
the crane.

4. Until Sc9, the crane delivers the workpiece from the stamp to a mechanical ramp.

5. Since Sc9, the crane delivers the workpiece to the conveyor, that delivers it to the
ramp.

6. Since Sc10, the pusher can sort the workpiece onto different ramps.

The only difference for black workpieces, they are not stamped and get directly delivered
to the ramp or conveyor belt. The behaviour becomes more specialized and optimized
during the evolution, often by introducing new branches in SFCs. The user interaction is
limited to an emergency stop and a start button for each hardware component. The start
buttons take place in the initialization of the system. Each function block has a barrier
step, in which it keeps active until every function block has reached his barrier step and
the operator has pressed all start buttons. This is the only common synchronization point
of the system. Every other synchronizations or communications between the instances of
the function blocks are done via the physical environment in form of waiting for sensors
values and setting actuators variables.

4.1 Scenarios

In this section we present the scenarios with software changes. For every scenario we explain
the intention of the revision, the differences in the soft- and hardware, along with the
invariant formula and his explanation. If the equivalence does not span all output variable,
we consider the justification for the assumption of the equivalence on input variables. We
shorten the concrete program variables in the formula accordingly to Appendix B. We
introduce a short notation for the equivalence of variables between two programs, similar
to equivalence of vectors

ľ

0ďkďm
vak “ vbk ” xv0, v1, . . . , vmya,b, (4.1)

where ak denotes output variables. For example, xx, yya,b claims the equivalence of the
variables x and y in both software revisions a, b

xa “ xb ^ ya “ yb. (4.2)

The software revision a, b of the output variable should be clear in the coming contexts,
hence we omit the index.

61

62 4. Case Study

(a) Overview of all hardware components and arrangement of the full PPU (Sc10 or higher)

(b) Conveyor belt with two pushers on the right side. Three ramps store the processed workpieces.

(c) From left to right: Stamp, Crane and Stack. Stamp has a slider for getting and giving workpieces
from the crane. The slider from stack provides workpieces from the magazine to the crane. At the
bottom edge begins the conveyor belt.

Figure 4.2 Components of the PPU from [VH+14]

62

4.1. Scenarios 63

Sc0 u Sc1

The change between the Sc0 and Sc1 is an Y-ramp, a mechanical hardware part. The
software change corrects a typo in a variable name in the SFC Crane. The variable is
intern and not a sensor value, so the effect is limited to the function block. We do not need
a condition to prove the equivalence and equivalence spans over every output variable.

Inv0,1 “ xclA, ctcA, ctccA,mglA,msA,mvonA,mvoffAy (4.3)

Sc1 u Sc2

A new capacitive sensor is introduced for detecting metallic workpieces. Preparation for
the next evolution is made in the SFC Crane. A new branch, with checks for metallic
workpieces, is introduced, but the behaviour is copied from the other branch. We need
to remove two unnecessary steps in Sc2 to bypass drifts. With the change both scenarios
behaves the same with no equivalence condition and in every output variable. The invariant
is the same as in (4.3).

Sc2 u Sc3

The plant starts to imprint every metallic workpiece. The behaviour for plastic workpieces
stays the same. A stamp introduces new sensors and actuators variables. The SFC Crane
decides with capacity sensor, introduced in Sc2, if the crane jib moves to the stamp. The
stamps retrieves the metallic workpieces, imprints a logo and provides it back to the crane.
During the stamping the crane waits. Afterwards the crane delivers the workpiece onto the
ramp. The scenario effects the behaviour within SFC Crane, the f common synchronization
barrier and introduces a new SFC Stamp. We need to add the following conditions to cut
out the changes, justified by the requirements description.

• There is no metallic workpiece (4.4) and (4.5).

• The StartVar (synchronization variable) are the same in both revisions (4.6).

• If the new emergency stop at the stamp is pressed, an emergency stop must occur in
Sc2, too. Be aware of the negative logic of the emergency stops in (4.7).

Additionally, there is a bug fix in Sc3. The bug could cause a moving crane jib, while the
hook moves, too. For this fix the developers set the actuators ctcA and ctccA one step
earlier in Sc3 than in Sc2. We relax both variables with the except claim. For readable we
introduce a statep¨q for determining the current step of a SFC. In Section 2.4.2 we decode
the current active step into the _state variable. The index denotes the software revision.

φ1 :“ mcsS (4.4)
^ pstatepCrane2q “ statepCrane3q “ Interstep_Check_Workpieceq Ñ wps (4.5)
^ xCrane.StartVar ,Mag.StartVary (4.6)
^ p sesS Ñ mesSq (4.7)

α2 :“ statepCrane2q “ Interstep_Check_Workpiece (4.8)
ω2 :“ statepCrane2q “ Step0 (4.9)

Inv2,3 :“ UNTILφ1pxacpA, clA,mglA,msA,mvoffA,mvonAy (4.10)
^ EXCEPTω2

α2pxctcA, ctccAyqq

63

64 4. Case Study

Every stamp’s actuator variable has no corresponding variable in Sc2. We assume the
equivalence of the input variables, because the stamp is never used, excluded by the φ1.

Sc3 u Sc5

Sc5 introduces an optimization for reducing waiting time during stamping. In Sc3 the crane
waits at the stamp until the stamp has finished. Sc5 uses the waiting time for delivering
plastic workpiece from the magazine to the ramp. This is possible as long as the magazine
offers plastic workpieces. The main change is a new branch in the SFC Crane. A minor,
but indirectly necessary, change takes place in transition guard in SFC Stamp, that we
discuss later. We give multiple invariant for the equivalence. The new behaviour can only
appear if plastic and metallic workpieces are available. (4.11) prohibits plastic workpieces
and (4.12) metallic workpieces, by forcing the magazine capacitive sensor mcsS to a certain
state in every step. The second term is for the change in the SFC Stamp.

φ1
3,5 :“mcsS ^ pstatepStamp5q “ Step2q Ñ pssf S ‰ cocSq (4.11)
φ2

3,5 :“ mcsS ^ pstatepStamp5q “ Step2q Ñ pssf S ‰ cocSq (4.12)

We can tighten (4.11) and (4.12). The behaviour only occur, if a metallic workpiece is
currently imprinted at the stamp and a plastic workpiece is provided by the magazine.
This situation is represented by a transition within the SFC Crane.

φ3
3,5 :“pstatepCrane5q “ Crane_Go_UpÑ mgsS^ (4.13)

pstatepStamp5q “ Step2Ñ pcocS ^ ssf Sq “ cocSq (4.14)

A change in the SFC Stamp forces the second term (4.14). In Sc3 we observe the stamp is
always empty if the crane leaves the stamp position and is over the conveyor belt. Hence,
it is sufficient to test if the crane is over the conveyor to check if the stamp is empty

cocS Ñ ssf S . (4.15)

This statement is no longer valid in Sc5 and the developers tighten the corresponding
transition guard in SFC Stamp by adding ssf S . In our over approximation we have
decoupled the input variables and the second term rectifies this. We could leave out the
second term, if we model the physical environment. The equivalence holds for every φ1,2,3

3,5

Invi3,5 :“ UNTILφi
3,5
pxacpA, clA, ctcA, ctccA,msA,mvoffA, (4.16)

mvonA, spA, ssmiA, ssmoA, swlAyq. (4.17)

The equivalence holds in very output variable. We removed and merged steps to avoid
drifts.

64

4.1. Scenarios 65

Sc5 u Sc7

In preparation for next evolution a new sensor for dividing black and white workpieces,
both non-metallic, is introduced. Some smaller changes in the guards of the SFC Crane
need to be considered in the equivalence condition.

We have to enforce certain sensor values on multiple transition to avoid divergence between
both SFCs Crane in (4.18), (4.19) and (4.20). With (4.21) we ensure equivalence of the
capacitive and optical sensor if the crane is in Crane_Go_Up or Step0 step. Additionally,
we have to adapt both scenarios to avoid drifts. Between both scenarios, every output
variable is equivalent, except mvoffA, which has a different in initialization value. The
assumption of equivalence is not effected, because the counter variable mvonA is still
equivalent. The creators of the case study attest the equivalence on the hardware and
the observable behaviour. The initialization value of mvoffA is alternating within next
revisions and is not part of the equivalence.

φ5,7 :“ pstatepCrane7q “ TimeDelayÑ wpSq (4.18)
^ pstatepCrane7q “ Magazin_StopÑ wpSq (4.19)
^ pstatepCrane7q “ Crane_Go_UpÑ wpSq (4.20)
^ pstatepCrane7q “ Crane_Go_Up_ statepCrane7q “ Step0q (4.21)
Ñ mcsS “ mosSq

Inv5,7 :“UNTILφ5,7pxacpA, clA, ctcA, ctccA,mglA,msA,mvonA, (4.22)
sglA, spA, ssminA, ssmoutA, swlAyq (4.23)

Sc7 u Sc8

This evolution brings new behaviour for white workpieces. The sensors and most branches
were introduced in the previous evolution. In Sc8 the white workpieces becomes an imprint
at the stamp, like metallic ones, but we have different pressures. The new branch for white
workpieces is a duplicate from the metallic behaviour, only with a different pressure value.
Both white and metallic branches received a new step for setting different acpA. We merge
the new additional steps with the corresponding successor step to remove the drift. We
can give two restrictions, first we exclude the appearance of white workpieces:

φ1
7,8 :“statepCrane8q “ Step0Ñ (4.24)

p mcsS ^ mosSq _ pmcsS ^mosSq, (4.25)

then we can prove equivalence for every output variable, except mvoffA
2.

Inv1
7,8 :“ UNTILφ1

7,9
pxacpA, clA, ctcA, ctccA,mglA,msA, (4.26)

mvonA, sglA, spA, ssminA, ssmoutA, swlAyq (4.27)

If we allow white workpieces

φ2
7,9 :“statepCrane8q “ Step0Ñ (4.28)

p mcsA ^ mosAq _ pmcsA ^mosAq _ p mcsA ^mosAq, (4.29)
2See the argumentation of soundness in Sc5 u Sc7.

65

66 4. Case Study

we need to exclude acpA from the equivalence.

Inv2
7,8 :“ UNTILφ2

7,9
pxclA, ctcA, ctccA,mglA,msA,mvonA, (4.30)

sglA, spA, ssminA, ssmoutA, swlAyq (4.31)

acpA has no influence on the sensor values, hence the equivalence on the input variables in
both revision is sound.

Sc8 u Sc9

Before the evolution, the crane delivers processed workpieces onto a ramp. In this evolution
a new hardware part, the conveyor belt, is introduced. The crane delivers processed
workpieces now on the conveyor belt, which transports the workpieces to the ramp. The
only interference between the SFC of the conveyor and the other function blocks is the
common synchronization step at the beginning of each SFC. So the new function block can
disturb the initialization, and the system stutters forever. After the barrier is passed by
all function blocks, the equivalence of all output variable holds. In this equivalence the
premise is different to the previous ones. We use the after claim.

AFTERα8,9pxclA, ctcA, ctccA,mglA,msA, (4.32)
mvonA, sglA, spA, ssminA, ssmoutA, swlAyqq, (4.33)

where α8,9 describes the passing of the synchronization steps in every common SFCs.

α8,9 :“ statepCrane8q “ Interstep_2 (4.34)
^ statepCrane9q “ Interstep_2 (4.35)
^ statepMag8q “ Green_Lamp (4.36)
^ statepMag9q “ Green_Lamp (4.37)
^ statepStamp8q “ Green_Lamp (4.38)
^ statepStamp9q “ Green_Lamp (4.39)

mvoffA is not excluded in the equivalence, because of a different initialization value.
The soundness of input equivalence assumption still holds for the same reason as above.
New actuator variables sctcA, sctsA, sglcA and swlcA, for the controlling the conveyor are
excluded, too. But they does not impact the input variables.

Sc9 u Sc10

New behaviour for the conveyor belt and a new SFC Pusher takes place in the evolution.
The conveyor belt now runs only if a workpiece needs transportation and stops after a fix
amount of time. The previous version keeps the conveyor running.

The pusher takes place within the conveyor belt and consists of two mechanical rods. With
each rod a workpiece can be moved off onto a separate ramp. All in all, there are now
three ramps, one for each rod and one ramp at the of the belt. New sensors take care
if a workpiece appears at the beginning of the conveyor belt and for the position of the
pneumatic rods. The pusher’s task is to fill all ramps with workpieces without forcing a

66

4.1. Scenarios 67

sorting, hence just an increased storage for processed workpieces. The SFC Pusher is not
part of the common synchronization barrier at the system initialization.

We does not need any adaption and can show the equivalence without any condition. But
the equivalence does not cover the two pusher pneumatic rods actuators py1A, py2A and
for the conveyor belt the sctsA actuator. The justification for input variable equivalence is
the missing feedback of these output variables to the input variables. Everything after the
delivering of a workpiece to the conveyor belt is hid to the system. mvoff is also excluded
from the reasons above.

Inv9,10 :“ xacpA, clA, ctcA, ctccA,mglA,mlA,mvonA, sctcA, (4.40)
sglcA, swlcA, sglA, spA, ssminA, ssmoutA, swlAy (4.41)

Sc10 u Sc11

SFC Pusher begins the sorting of workpieces into white, black and metallic with different
ramps. The program passes new sensor variables, for detecting color and metallic properties
of workpieces on the conveyor to the SFC Pusher. The SFC is completely rewritten, so
there is no common behaviour of the pneumatic rods (actuator variables py1A, py2A)
Everything else is equivalent without adaptions from our side.

Inv10,11 :“ xacpA, clA, ctcA, ctccA,mglA,mvoffA, (4.42)
mvinA, sctsA, swlcA, sglA, spA, ssminA, ssmoA, swlAy (4.43)

The assumption for the equivalence holds, because py1A and py2A does not effect any
input variables.

Sc11 u Sc12

The SFC Pusher has a complete different behaviour, again. Now he tries to bring a white,
black and metallic workpiece in every ramp. Previous behaviour reserves for each workpiece
kind an own ramp. Equivalence and condition is the same as in Sc11 u Sc12.

Inv11,12 :“ xacpA, clA, ctcA, ctccA,mglA,mvoffA, (4.44)
mvinA, sctsA, swlcA, sglA, spA, ssminA, ssmoA, swlAy (4.45)

Sc12 u Sc13

The evolution brings new an angular sensor for the crane position. Until Sc12, three
micro switches on disjoint position determines the position of the crane jib. We need a
relation between the three boolean sensor values and the angle position. The relation R12,13
describes the dependency between the old input variables cocS , comS and cpsS and the
new angular input acpS .

67

68 4. Case Study

1 DEFINE
2 Sensor_CranePositionStamp := Sensor_AnalogCranePosition > 0 ud16_8160
3 & Sensor_AnalogCranePosition < 0

ud16_8260 ;
4 Sensor_CraneOnConveyor := Sensor_AnalogCranePosition > 0 ud16_16160
5 & Sensor_AnalogCranePosition < 0

ud16_16260 ;
6 Sensor_CraneOnMagazin := Sensor_AnalogCranePosition > 0 ud16_24290
7 & Sensor_AnalogCranePosition < 0

ud16_24390 ;

Figure 4.3 SMV code for emulate the three boolean sensor variables from the new angular
position.

R12,13 Ď B3 ˆ rα, βs (4.46)

pcocS , comS , cpsSqR12,13acpS “def

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

acpS P rα, βszra, bszrc, dszre, f s : cocS ^ comS ^ cpsS
acpS P ra, bs : cocs
acpS P rc, ds : comS

acpS P re, f s : cpsS
acpS “ � : pcocS ^ comSq

_pcomS ^ cpsSq
_pcocS ^ cpsSq

(4.47)

where cocS is the position over the conveyor, resp. comS for magazine and cpsS for stamp.
acpS denotes the angle in some interval rα, βs. If one of the switches is true, the acpS has
to be in the corresponding interval, non-deterministically. If no switch is triggered, the
crane is at a arbitrary position, except in the switch intervals. If two of the boolean micro
switches are true, acpS is undefined. There multiple possibilities for modelling R12,13 into
SMV. First, we have the three boolean sensor values comS , cocS , cpsS and the angular
position acpS as input variables in SMV and exclude every ω-structure, that violates the
relation R12,13.

φ12,13 :“ pcocs Ñ a ď acpS ď b^ comS ^ cpsSq (4.48)
^ pcoms Ñ c ď acpS ď d^ cocS ^ cpsSq (4.49)
^ pcpss Ñ e ď acpS ď f ^ comS ^ cocSq (4.50)

Inv12,13 :“ UNTILφ12,13pxacpA, clA, ctcA, ctccA,mglA,mvoffA,mvinA, sctsA, (4.51)
swlcA, sglA, spA, ssminA, ssmoA, swlA, py1A, py2Ayq. (4.52)

Second, the relation R12,13 is a function in the direction from right to left, also from acpS
to the three boolean variables. We can use SMV’s defines to model this. Figure 4.3 shows
the SMV code with the concrete intervals taken from Sc13.

The equivalence between Sc12 and Sc13 covers every actuator value. Additionally we
encounter a typo in the interval borders within the SFC Crane, that we fixed for the proof.

4.2 Results
We discuss the model sizes and runtimes from the nuXmv [Cav+14] in version 1.0. The
case names consists from the both compared revisions, e.g. “03.05” is the comparison of the

68

4.2. Results 69

Scenario #INT #USINT #BOOL Enum [bit] Total [bit]

0 1 2 60 8 100
1 1 2 60 8 100
2 1 2 70 9 111
3 5 6 116 13 257
5 5 6 117 14 259
7 5 6 117 14 259
8 6 6 117 14 275
9 7 8 140 17 333
10 12 16 173 23 516
11 12 16 185 23 528
12 28 26 199 24 879
13 32 26 197 24 941

Table 4.2 Number of variables in each scenario. The column Enum describes the number of bits
consumed by the enumeration type variables, correlating with number of SFC states. Column Total
is the estimation of used bits by the program, where INT takes 16 bits, USINT 8 bits, BOOL 1 bit.

Sc03 against Sc05. An additional tag gives further information about the case. “TA” stands
for the application of timer abstraction. We chose first variant of timer abstraction with the
guaranteed end of the waiting time (Figure 3.8b). “PM” signals the use of a appropriate
logical model of physical environment, that we do not discuss further in this thesis. We
have different conditions and proves for the equivalence between “03.05”. “03.05+OM”
considers only metallic workpieces, “03.05+OP” only plastic workpiece and “03.05+PMr”
uses a physical model, so we do not need Equation (4.14). The results are in Tables 4.2
and 4.3.

The case study introduces with every evolution step additional hardware or complexity Spaces and
Variablesto the behaviour. This lead to an increasing state and input space. Figure 4.5 shows the

growth of bits in the model checker. Another influence of the growth is the promotion
every integer variable to a global fixed bit width, due to the typing in nuXmv. SMV
is very strict in data types, in despite to IEC61131-3, the promotion makes the various
expression compatible. Of course, this solution is not applicable if the origin software relies
on overflows. We needed a higher bit width in the later scenarios, to due a higher fixed bit
width. For this reason we give in Figure 4.4 and Table 4.2 a view on the declared variables.
The “TA” implementation reduces some bits, because the internal variables storing the
waiting time are not needed.

We measured the CPU time consumed by nuXmv to prove the equivalence between the Performance
scenarios. The used computer has a Intel® Core™ i7-860 with 2.80GHz on four physical

0 1 2 3 5 7 8 9 10 11 12 130

200

400

600

800

1,000

Needed Space [bit]

Sc
en

ar
io

INT
USINT
BOOL
Enums

Figure 4.4 The visualization of Table 4.2 in number of bits: integer variables , unsigned small
integers , boolean and enumerations .

69

70 4. Case Study

00
.0
1

00
.0
1+

PM 01
.0
2

02
.0
3

02
.0
3+

TA
03

.0
5

03
.0
5+

O
M

03
.0
5+

O
P

03
.0
5+

PM
03

.0
5+

PM
r

03
.0
5+

TA
05

.0
7

05
.0
7+

TA
07

.0
8

07
.0
8+

TA
07

.0
8a

+
TA

08
.0
9

08
.0
9+

TA
09

.1
0

09
.1
0+

TA
10

.1
1

10
.1
1+

TA
11

.1
2

11
.1
2+

TA
12

.1
3

12
.1
3+

TA

0

500

1,000

1,500

2,000

Equivalence Proofs

M
od

el
Si
ze

[b
its

]

State Variables
Frozen Variables
Input Variables

Figure 4.5 Number of bits for state , frozen and input variables in the model checker
nuXmv. This correlates with size of the declared variables in Figure 4.4 and the running times of
the model checker in Figure 4.6.

00
.0
1

00
.0
1+

PM 01
.0
2

02
.0
3

02
.0
3+

TA
03
.0
5

03
.0
5+

O
M

03
.0
5+

O
P

03
.0
5+

PM
03
.0
5+

PM
r

03
.0
5+

TA
05
.0
7

05
.0
7+

TA
07
.0
8

07
.0
8+

TA
07
.0
8a
+
TA

08
.0
9

08
.0
9+

TA
09
.1
0

09
.1
0+

TA
10
.1
1

10
.1
1+

TA
11
.1
2

11
.1
2+

TA
12
.1
3

12
.1
3+

TA
100

101

102

103

104

Figure 4.6 Diagram of the CPU time from Table 4.3. Please note that the y axis has a logarithmic
scale.

cores and 8 gigabytes of memory. For the benchmark we set a timeout of 10 hours and
disable the address randomization. The address randomization causes non-deterministic
performances of nuXmv on our systems. Sometimes a run, that completed in half hour,
needed several hours to complete. Disabling address randomization gives reproducible
performance, but the runtimes in Figure 4.6 are not the best run we had. Some proves did
not finish under the 10 hours timeout. Additionally to the mean µ and standard derivation
σ inTable 4.3 we give minimum and maximum runtimes with address randomization from a
different system, Intel® Dual Core E5400 with 2.70 GHz and 4 GB memory. These results
show the range of the runtimes in practise and how runtimes can diverge between the same
model (Figure 4.7).

70

4.2. Results 71

Used Bits CPU Time
Case Frozen Input State Total µ σ min max

00.01 0 10 140 150 0m 7s 0m 0s 0m 4s 0m 7s
00.01+PM 0 12 146 158 0m 12s 0m 0s 0m 6s 0m 12s
01.02 0 11 141 152 0m 7s 0m 0s 0m 4s 0m 7s
02.03 0 19 246 265 0m 15s 0m 0s 0m 9s 0m 17s
02.03+TA 26 19 207 252 0m 27s 0m 0s 0m 15s 0m 28s
03.05 0 19 284 303 161m 42s 0m 29s 15m 7s 9325m 44s
03.05+OM 0 19 284 303 14m 12s 0m 15s 8m 55s 544m 30s
03.05+OP 0 19 284 303 62m 4s 0m 29s 18m 8s 779m 3s
03.05+PM 0 11 299 310 – – 25m 41s 6246m 48s
03.05+PMr 0 11 299 310 3m 58s 0m 0s 1m 57s 21m 2s
03.05+TA 18 19 284 321 1m 34s 0m 0s 0m 59s 1m 42s
05.07 0 20 289 309 20m 14s 0m 27s 13m 42s 20m 51s
05.07+TA 18 20 253 291 1m 33s 0m 0s 0m 45s 1m 39s
07.08 0 20 305 325 75m 29s 0m 26s 50m 31s 78m 56s
07.08+TA 18 20 269 307 4m 29s 0m 6s 2m 51s 5m 5s
07.08a+TA 18 20 269 307 2m 4s 0m 3s 1m 19s 2m 19s
08.09 0 23 365 388 0m 21s 0m 0s 0m 13s 0m 24s
08.09+TA 18 23 329 370 0m 16s 0m 0s 0m 10s 0m 19s
09.10 0 28 576 604 376m 24s 2m 24s 212m 17s 379m 9s
09.10+TA 18 28 540 586 6m 13s 0m 0s 3m 38s 6m 54s
10.11 0 34 860 894 – – 1330m 8s 3382m 13s
10.11+TA 91 34 678 803 8m 35s 0m 9s 4m 26s 9m 47s
11.12 0 34 1225 1259 – – 1311m 59s 1311m 59s
11.12+TA 91 34 1056 1181 25m 45s 0m 6s 11m 40s 27m 42s
12.13 0 47 1663 1710 – – 1327m 26s 1327m 26s
12.13+TA 91 47 1507 1645 – – 15m 40s 33m 51s

Table 4.3 Equivalence with the number of needed bits (frozen, input and state variables) and
the consumed cpu time for proofing the equivalence with nuXmv and IC3.

00
.0
1

00
.0
1+

PM 01
.0
2

02
.0
3

02
.0
3+

TA
03

.0
5

03
.0
5+

O
M

03
.0
5+

O
P

03
.0
5+

PM
03

.0
5+

PM
r

03
.0
5+

TA
05

.0
7

05
.0
7+

TA
07

.0
8

07
.0
8+

TA
07

.0
8a

+
TA

08
.0
9

08
.0
9+

TA
09

.1
0

09
.1
0+

TA
10

.1
1

10
.1
1+

TA
11

.1
2

11
.1
2+

TA
12

.1
3

12
.1
3+

TA

101

102

103

104

105

Figure 4.7 Minimum and maximum runtime with address randomization from Table 4.3. Please
note that the y axis has a logarithmic scale.

71

72 4. Case Study

72

5. Conclusion

This is the first work on regression verification on automation system. We presented Summary
formalization and operational semantics for a subset of Structured Text (ST) and Sequential
Function Chart (SFC). The subset is determined on the used IEC61131 elements in the
case study [VH+14]. SFC with simultaneously divergence and convergence (fork and
join) are reducible to multiple SFC without the use of fork and joins, we reached SFC0.
We translated ST and SFC0 into an intermediate representation ST0, with a limitation
to assignments and if statement as long with boolean and integer variables. ST0 does
not contain loops or function block calls, just one large program body. Especially, the
translation is possible if every loop in ST code or SFC actions are unwindable. ST0 is
our intermediate language and the base for the translation into SMV. The equivalent big
ST0 programs were translated into separate SMV modules, which these modules were
bisimulated. We described the equivalence obligation as invariants for solving with IC3
technique. The advantage of IC3 is his performance in relation to explicit state model
checker. IC3 just tries to find a inductive clauses, that supports the safety property and
forces us to write the equivalence obligation as an invariant, hence we are not allowed to
verify arbitrary LTL formulae.

We introduced four claims, UNTIL, AFTER, WITHIN and EXCEPT, with correspond-
ing SMV code for modelling the conditional equivalences in the case study. The case
study [VH+14] was our playground for the developing and testing of general techniques for
the regression verification in the PLC context. We proved the equivalence between eleven
evolution steps of the case study. Every proof has his own condition for the restriction of
input and states values. The complexity of the condition is a factor in the performance
of the model checker. The results shows acceptable runtime durations and potentials of
timer abstractions. In the theoretical section we discuss the embedding the PLC within a
cyber-physical system. This leaded to different perspectives on equivalence.

Our developed techniques are suitable for the case study. They should be applicable for Limitation
a width spectrum of automation code, or at least extensible for support more language
features. We didn’t solve the drifts satisfactorily. Our solution is the removing of the
delayed steps, after consulting the PPU authors. The delayed step are normally not desired
and considered as bad programming habit. With a scan cycle of four milliseconds the
drifts are not observable by humans, but in the detail there is a different triggering of the
actuators. Our techniques are applicable if the changes are relative small. Bigger changes
lead to more restrict conditions and the equivalence loose significance. For example we
failed in the equivalence of SFC Pusher in the case study. His behaviour is not describable

73

74 5. Conclusion

on his both output variables, we need to talk about quantity and kind of workpieces at the
ramps.

Drifts are an open question. They lead to a fuzzyfication of the time, that means theFuture Work
comparison between output variables it not limited within one turn. Instead the comparison
talks about output variables from previous and next turns with increasing distance in
time. Independent of the used approach for solving drifts, the discussion of the approach’s
soundness will be central point in his justification.

We can try to find a common behaviour on a higher level, such as the external observable
state of the plant. This is always possible as an abstraction, but hard to realize and the
equivalence formulation can be weak. For example, the SFC Pusher within the case study
was not part of the equivalence. Every revision changed the sorting order of the workpiece,
but all revisions try to fill the ramps evenly in best effort.. In general the equivalence on
the observable behaviour seems more comprehensible and understandable for engineers.

Our presented equivalence conditions were not understandable from the case study’s
authors. There is a gap between the formal verification on the software level and the
perspective of the requirement changes. One way is the computation the weakest condition
for an equivalence and the check if this condition meets the engineer expectations. We
showed a simple syntactical approach for finding a equivalence condition between two SFC.
Furthermore, the model checker returns counterexamples if the equivalence is not valid.
The counterexamples contains information of the critical and unequal paths. We excluded
these paths by given manual derived conditions. However, IC3 uses the counterexamples to
strengthen his induction and we could infer from the induction an equivalence condition.

Another way will be to give the engineer high level syntactical tools for the comparison to
describe the equivalence between to scenario, maybe in a guided manner. Our intention
with four equivalence claims goes in this direction of bringing the verification nearer to
the software or requirements level of the developing process. One big topic will be the
useability of verification methods for the engineers.

Nevertheless this thesis shows, that the regression verification of PLC is feasible, and gives
a foundation for future work in this area.

74

A. Introductory Example

A.1 Software
1 PROGRAM main
2 VAR cbc : ConveyorBeltExample_I ;
3 EmergencyStop : bool;
4 Sensor_w1 : bool;
5 Sensor_w2 : bool;
6 Actuator_run : bool;
7 Actuator_pickup : bool;
8 END_VAR
9 (* passing sensors to SFC *)

10 cbc.w1 := Sensor_w1 ;
11 cbc.w2 := Sensor_w2 ;
12
13 IF EmergencyStop
14 THEN (* panic! resetting the system *)
15 Actuator_pickup := FALSE;
16 Actuator_run := FALSE;
17 cbc. SFCReset := TRUE;
18 ELSE (* setting actuators from SFC *)
19 cbc ();
20 Actuator_Pickup := cbc. pickup ;
21 Actuator_Conveyor := cbc.run;
22 END_IF
23 END_PROGRAM

Figure A.1 Example program for handling emergency stops, sensor and actuator values for
the SFC in Figure 2.17a and Figure A.2

1 TYPE ConveyorBeltExample_I_TYPE : {Wait , Run , Pick}; END_TYPE
2 FUNCTION_BLOCK ConveyorBeltExample_I
3 VAR _state : ConveyorBeltExample_I_TYPE ;
4 _transit : bool;
5 run : bool;
6 pickup : bool;
7 END_VAR
8
9 CASE _state OF

10 Wait:
11 IF _transit THEN (* empty *) END_IF ;
12 _transit := FALSE;
13 run = FALSE;

75

76 A. Introductory Example

14 IF w1 THEN
15 _transit := TRUE;
16 _state := Run
17 END_IF
18
19 Run:
20 IF _transit THEN (* empty *) END_IF ;
21 _transit := FALSE;
22 run = true;
23 IF w2 THEN
24 _transit := TRUE;
25 _state := Pick
26 END_IF
27
28 Pick:
29 IF _transit THEN (* empty *) END_IF ;
30 _transit := FALSE;
31 run = FALSE;
32 pickup = TRUE;
33 IF NOT w2 THEN
34 _transit := TRUE;
35 _state := Wait
36 END_IF
37 END_IF
38 END_FUNCTION_BLOCK

Figure A.2 Structured Text for the SFC in figure 2.17a

1 PROGRAM main
2 VAR EmergencyStop : bool;
3 Sensor_w1 : bool;
4 Sensor_w2 : bool;
5 Actuator_run : bool;
6 Actuator_pickup : bool;
7 cbc$_state : ConveyorBeltExample_I_TYPE ;
8 cbc$_transit : bool;
9 cbc$run : bool;

10 cbc$pickup : bool;
11 END_VAR
12 cbc$w1 := Sensor_w1 ;
13 cbc$w2 := Sensor_w2 ;
14
15 IF EmergencyStop
16 THEN (* panic! resetting the system *)
17 Actuator_pickup := FALSE;
18 Actuator_run := FALSE;
19 cbc$SFCReset := TRUE;
20 ELSE (* setting actuators from SFC *)
21 IF cbc$_state = Wait THEN
22 cbc$run = FALSE;
23 cbc$pickup = FALSE ;
24 IF cbc$w1 THEN
25 cbc$_state := Run
26 END_IF
27 ELSEIF cbc$_state = Run THEN
28 cbc$run = TRUE;
29 IF cbc$w2 THEN
30 cbc$_state := Pick
31 END_IF
32 ELSEIF cbc$_state = Pick THEN
33 cbc$run = FALSE;
34 cbc$pickup = TRUE;
35 IF NOT cbc$w2 THEN
36 cbc$_state := Wait

76

A.2. SMV 77

37 END_IF
38 END_IF
39
40 Actuator_Pickup := cbc$pickup ;
41 Actuator_Conveyor := cbc$run ;
42 END_IF
43 END_PROGRAM

Figure A.3 The complete introductory example in ST0

A.2 SMV
1 MODULE main
2
3 IVAR
4 w1 : boolean ; w2 : boolean ; Bad : boolean ;
5
6 VAR
7 v1 : V1(w1 ,w2);
8 v2 : V2(w1 ,w2 ,Bad);
9 premise : boolean ;

10
11 ASSIGN
12 init(premise) := TRUE;
13 next(premise) := premise & {{ phi }} ;
14
15 INVARSPEC premise -> v1. pickup = v2. pickup & v1.run = v2.run;
16
17 LTLSPEC G (premise -> v1. pickup = v2. pickup & v1.run = v2.run);
18
19 MODULE V1(w1 , w2)
20 VAR
21 _state : {Wait , Run , Pick };
22 run : boolean ;
23 pickup : boolean ;
24
25 ASSIGN
26 init(_state) := Wait;
27 next(_state) := case
28 _state = Wait & w1 : Run;
29 _state = Run & w2 : Pick;
30 _state = Pick & ! w2 : Wait;
31 TRUE : _state ;
32 esac;
33
34 init(run) := FALSE;
35 next(run) := case
36 _state = Run : TRUE;
37 TRUE : FALSE;
38 esac;
39
40 init(pickup) := FALSE ;
41 next(pickup) := case
42 _state = Pick : TRUE;
43 TRUE : FALSE;
44 esac;
45
46 MODULE V2(w1 , w2 , Bad)
47 VAR
48 _state : {Wait , Run , Pick , Reject };
49 b : boolean ;
50 run : boolean ;
51 pickup : boolean ;

77

78 A. Introductory Example

52
53 ASSIGN
54 init(_state) := Wait;
55 next(_state) := case
56 _state = Wait & w1 : Run;
57 _state = Run & w2 & !b : Pick;
58 _state = Run & w2 & b : Reject ;
59 _state = Pick & !w2 : Wait;
60 _state = Reject & !w2 : Wait;
61 TRUE : _state ;
62 esac;
63
64 init(run) := FALSE;
65 next(run) := case
66 _state = Run | _state = Reject : TRUE;
67 TRUE : FALSE ;
68 esac;
69
70 init(pickup) := FALSE ;
71 next(pickup) := case
72 _state = Pick : TRUE;
73 TRUE : FALSE;
74 esac;
75
76 init(b) := FALSE;
77 next(b) := case
78 _state = Run : b | Bad;
79 _state = Wait : FALSE ;
80 TRUE : b;
81 esac;

Figure A.4 SMV modules for the introductory example in Section 1.1.

78

B. Abbreviation for Variables

Complete Name Abbreviation
Actuator_AnalogCranePressure acpA
Actuator_CraneLower alA
Actuator_CraneTurnClockwise ctcA
Actuator_CraneTurnCounterclockwise ctccA
Actuator_MagazinGreenLamp mglA
Actuator_MagazinSlider msA
Actuator_MagazinVacuumOff mvoffA
Actuator_MagazinVacuumOn mvonA
Actuator_PusherY1 py1A
Actuator_PusherY2 py2A
Actuator_SorterConveyorTowardsCrane sctcA
Actuator_SorterConveyorTowardsStacker sctsA
Actuator_SorterGreenLampConveyor sglcA
Actuator_SorterWhiteLampConveyor swlcA
Actuator_StampGreenLamp sglA
Actuator_StampPusher spA
Actuator_StampSliderMovedIn ssmiA
Actuator_StampSliderMovedOut ssmoA
Actuator_StampWhiteLamp swlA
Sensor_AnalogCranePosition acpS
Sensor_CraneDown cdS
Sensor_CraneOnConveyor cocS
Sensor_CraneOnMagazin comS
Sensor_CranePositionStamp cpsS
Sensor_CraneSucked csS
Sensor_CraneUp cuS
Sensor_MagazinCapacitiveSensor mcsS
Sensor_MagazinEmergencyStop mesS
Sensor_MagazinOpticalSensor mosS
Sensor_SliderMovedOut smoS
Sensor_SliderNotMovedOut snmoS
Sensor_SorterCapacitiveSensorPusher1 scsp1S
Sensor_SorterCapacitiveSensorPusher2 scsp2S

79

80 B. Abbreviation for Variables

Sensor_SorterEmergencyStop sesS
Sensor_SorterLightbarrierCraneInterface slciS
Sensor_SorterLightnessSensorPusher1 slsp1S
Sensor_SorterLightnessSensorPusher2 slsp2S
Sensor_SorterLightnessSensorPusher3 slsp3S
Sensor_SorterLightnesssensorCraneInterfaceInverse slciiS
Sensor_SorterPusher1MovedIn sp1miS
Sensor_SorterPusher1MovedOut sp1moS
Sensor_SorterPusher2MovedIn sp2miS
Sensor_SorterPusher2MovedOut sp2moS
Sensor_SorterStartButton ssbS
Sensor_SorterSwitchManuellAutomatic ssmaS
Sensor_StampEmergencyStop sesS
Sensor_StampLowered slS
Sensor_StampSliderFilled ssfS
Sensor_StampSliderSensorMovedIn sssmiS
Sensor_StampSliderSensorMovedOut sssmoS
Sensor_StampStartButton ssbS
Sensor_StampUp suS
Sensor_StartButtonMagazin sbmS
Sensor_WorkpieceReady wpS

Table B.1 Abbreviation for sensor and actuator variables for the equivalence conditions of the
PPU case study

80

Bibliography

[BK08] Christel Baier and Joost-Pieter Katoen. “Principles of Model Checking”. In:
MIT press Cambridge, 2008. Chap. Linear Temporal Logic, pp. 229–312.

[Bau+04a] Nanette Bauer, Ralf Huuck, Ben Lukoschus, and Sebastian Engell. “A Uni-
fying Semantics for Sequential Function Charts”. English. In: Integration of
Software Specification Techniques for Applications in Engineering. Ed. by
Hartmut Ehrig, Werner Damm, Jörg Desel, Martin Große-Rhode, Wolfgang
Reif, Eckehard Schnieder, and Engelbert Westkämper. Vol. 3147. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2004, pp. 400–418.
isbn: 978-3-540-23135-6. doi: 10 . 1007 / 978 - 3 - 540 - 27863 - 4 _ 22. url:
http://dx.doi.org/10.1007/978-3-540-27863-4_22.

[Bau+04b] Nanette Bauer, Sebastian Engell, Ralf Huuck, Sven Lohmann, Ben Lukoschus,
Manuel Remelhe, and Olaf Stursberg. “Verification of PLC Programs Given as
Sequential Function Charts”. English. In: Integration of Software Specification
Techniques for Applications in Engineering. Ed. by Hartmut Ehrig, Werner
Damm, Jörg Desel, Martin Große-Rhode, Wolfgang Reif, Eckehard Schnieder,
and Engelbert Westkämper. Vol. 3147. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2004, pp. 517–540. isbn: 978-3-540-23135-6. doi:
10.1007/978-3-540-27863-4_28. url: http://dx.doi.org/10.1007/978-
3-540-27863-4_28.

[Bor+00] Sébastien Bornot, Ralf Huuck, and Ben Lukoschus. “Verification of Sequential
Function Charts Using SMV”. In: PDPTA. Ed. by Hamid R. Arabnia. CSREA
Press, 2000.

[Bra11] Aaron R. Bradley. “SAT-Based Model Checking without Unrolling”. English.
In: Verification, Model Checking, and Abstract Interpretation. Ed. by Ranjit
Jhala and David Schmidt. Vol. 6538. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2011, pp. 70–87. isbn: 978-3-642-18274-7. doi:
10.1007/978-3-642-18275-4_7. url: http://dx.doi.org/10.1007/978-
3-642-18275-4_7.

[Bri+02] Ed Brinksma, Angelika Mader, and Ansgar Fehnker. “Verification and Opti-
mization of a PLC Control Schedule”. English. In: International Journal on
Software Tools for Technology Transfer 4.1 (2002), pp. 21–33. issn: 1433-2779.
doi: 10.1007/s10009-002-0079-0. url: http://dx.doi.org/10.1007/
s10009-002-0079-0.

[Bur+92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. “Symbolic
model checking: 1020 States and beyond”. In: Information and Computation
98.2 (1992), pp. 142 –170. issn: 0890-5401. doi: http://dx.doi.org/10.
1016/0890- 5401(92)90017- A. url: http://www.sciencedirect.com/
science/article/pii/089054019290017A.

81

http://dx.doi.org/10.1007/978-3-540-27863-4_22
http://dx.doi.org/10.1007/978-3-540-27863-4_22
http://dx.doi.org/10.1007/978-3-540-27863-4_28
http://dx.doi.org/10.1007/978-3-540-27863-4_28
http://dx.doi.org/10.1007/978-3-540-27863-4_28
http://dx.doi.org/10.1007/978-3-642-18275-4_7
http://dx.doi.org/10.1007/978-3-642-18275-4_7
http://dx.doi.org/10.1007/978-3-642-18275-4_7
http://dx.doi.org/10.1007/s10009-002-0079-0
http://dx.doi.org/10.1007/s10009-002-0079-0
http://dx.doi.org/10.1007/s10009-002-0079-0
http://dx.doi.org/http://dx.doi.org/10.1016/0890-5401(92)90017-A
http://dx.doi.org/http://dx.doi.org/10.1016/0890-5401(92)90017-A
http://www.sciencedirect.com/science/article/pii/089054019290017A
http://www.sciencedirect.com/science/article/pii/089054019290017A

82 Bibliography

[Cav+14] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio,
Alessandro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano
Tonetta. “The nuXmv Symbolic Model Checker”. In: CAV. Ed. by Armin
Biere and Roderick Bloem. Vol. 8559. Lecture Notes in Computer Science.
Springer, 2014, pp. 334–342. isbn: 978-3-319-08866-2.

[Com02a] International Electrotechnical Commission. IEC 60848: GRAFCET spec-
ification language for sequential function charts. Tech. rep. International
Electrotechnical Commission, 2002.

[Com02b] International Electrotechnical Commission. IEC 61131: Programmable con-
trollers – Part 3: Programming languages. Tech. rep. International Electrotech-
nical Commission, Feb. 2002.

[Cyt+89] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
“An Efficient Method of Computing Static Single Assignment Form”. In:
Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. POPL ’89. Austin, Texas, USA: ACM, 1989,
pp. 25–35. isbn: 0-89791-294-2. doi: 10.1145/75277.75280. url: http:
//doi.acm.org/10.1145/75277.75280.

[Fel+14] Dennis Felsing, Sarah Grebing, Vladimir Klebanov, Philipp Rümmer, and Mat-
tias Ulbrich. “Automating Regression Verification”. In: Proceedings of the 29th
ACM/IEEE International Conference on Automated Software Engineering.
ASE ’14. ACM, 2014, pp. 349–360.

[GS08] Benny Godlin and Ofer Strichman. “Inference rules for proving the equivalence
of recursive procedures”. English. In: Acta Informatica 45.6 (2008), pp. 403–
439. issn: 0001-5903. doi: 10.1007/s00236-008-0075-2. url: http://dx.
doi.org/10.1007/s00236-008-0075-2.

[GS09] Benny Godlin and Ofer Strichman. “Regression Verification”. In: Proceedings
of the 46th Annual Design Automation Conference. DAC ’09. San Francisco,
California: ACM, 2009, pp. 466–471. isbn: 978-1-60558-497-3. doi: 10.1145/
1629911.1630034. url: http://doi.acm.org/10.1145/1629911.1630034.

[GS13] Benny Godlin and Ofer Strichman. “Regression Verification: Proving the
Equivalence of similar Programs”. In: Software Testing, Verification and
Reliability 23.3 (2013), pp. 241–258. issn: 1099-1689. doi: 10.1002/stvr.1472.
url: http://dx.doi.org/10.1002/stvr.1472.

[Hol97] Gerard J Holzmann. “The model checker SPIN”. In: IEEE Transactions on
software engineering 23.5 (1997), pp. 279–295.

[LC+99] S. Lampérière-Couffin, O. Rossi, J.-M. Roussel, and J.-J. Lesage. “Formal
Validation of PLC programs: a survey”. In: European Control Conference
1999, ECC’99, Karlsruhe (Germany), 1999, CD–ROM paper n°741.

[Lam02] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hard-
ware and Software Engineers. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2002. isbn: 032114306X.

[McM03] K.L. McMillan. “Interpolation and SAT-Based Model Checking”. English. In:
Computer Aided Verification. Ed. by Jr. Hunt WarrenA. and Fabio Somenzi.
Vol. 2725. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2003, pp. 1–13. isbn: 978-3-540-40524-5. doi: 10.1007/978-3-540-45069-
6_1. url: http://dx.doi.org/10.1007/978-3-540-45069-6_1.

82

http://dx.doi.org/10.1145/75277.75280
http://doi.acm.org/10.1145/75277.75280
http://doi.acm.org/10.1145/75277.75280
http://dx.doi.org/10.1007/s00236-008-0075-2
http://dx.doi.org/10.1007/s00236-008-0075-2
http://dx.doi.org/10.1007/s00236-008-0075-2
http://dx.doi.org/10.1145/1629911.1630034
http://dx.doi.org/10.1145/1629911.1630034
http://doi.acm.org/10.1145/1629911.1630034
http://dx.doi.org/10.1002/stvr.1472
http://dx.doi.org/10.1002/stvr.1472
http://dx.doi.org/10.1007/978-3-540-45069-6_1
http://dx.doi.org/10.1007/978-3-540-45069-6_1
http://dx.doi.org/10.1007/978-3-540-45069-6_1

Bibliography 83

[Nar+10a] Flor Narciso, Addison Rios-Bolivar, Francisco Hidrobo, and Olga Gonzalez.
“A syntactic specification for the programming languages of the IEC 61131-
3 standard”. In: Proceedings of the 9th WSEAS international conference
on computational intelligence, man-machine systems and cybernetics. World
Scientific, Engineering Academy, and Society (WSEAS). 2010, pp. 171–176.

[Nar+10b] Flor Narciso, Addison Rios-Bolivar, Francisco Hidrobo, and Olga Gonzalez.
“A syntactic specification for the programming languages of the IEC 61131-
3 standard”. In: Proceedings of the 9th WSEAS international conference
on computational intelligence, man-machine systems and cybernetics. World
Scientific, Engineering Academy, and Society (WSEAS). 2010, pp. 171–176.

[Neu+00] Peter Neumann, Eberhard E. Grötsch, Christoph Lubkoll, and Rene Simon.
“SPS-Standard: IEC61131”. German. In: vol. 3. Oldenbourg, 2000. Chap. 4
Programmiersprachen, pp. 125–264.

[Sme+00] O. De Smet, S. Couffin, O. Rossi, G. Canet, J.-J. Lesage, P. Schnoebelen, and
H. Papini. “Safe programming of PLC using formal verification methods”. In:
4th International PLCopen conference on Industrial Control Programming,
ICP’2000. Utrecht (The Netherlands), 2000, pp. 73–78.

[SB11] Fabio Somenzi and Aaron R Bradley. “IC3: Where Monolithic and Incremental
Meet”. In: FMCAD. 2011, pp. 3–8.

[Str09] Ofer Strichman. “Regression Verification: Proving the Equivalence of Similar
Programs”. English. In: Computer Aided Verification. Ed. by Ahmed Bouajjani
and Oded Maler. Vol. 5643. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2009, pp. 63–63. isbn: 978-3-642-02657-7. doi: 10.1007/978-3-
642-02658-4_8. url: http://dx.doi.org/10.1007/978-3-642-02658-
4_8.

[TJ09] Michael Tiegelkamp and Karl Heinz John. SPS-Programmierung mit IEC
61131-3. German. 4., neubearbeitete Auflage. VDI-Buch. Springer Berlin
Heidelberg, 2009. doi: 10.1007/978-3-642-00269-4.

[VH+14] Birgit Vogel-Heuser, Christoph Legat, Jens Folmer, and Stefan Feldmann.
Researching Evolution in Industrial Plant Automation: Scenarios and Docu-
mentation of the Pick and Place Unit. Tech. rep. Institute of Automation and
Information Systems, Technische Universität München, 2014. url: https:
//mediatum.ub.tum.de/node?id=1208973.

[Wik13] Wikipedia. Default Logic. [Online; accessed 05-Nov-2014]. 2013. url: http:
//en.wikipedia.org/wiki/Default_logic.

[YF03] M Bani Younis and Georg Frey. “Formalization of existing PLC programs: A
survey”. In: Proceedings of CESA. 2003, pp. 0234–0239.

83

http://dx.doi.org/10.1007/978-3-642-02658-4_8
http://dx.doi.org/10.1007/978-3-642-02658-4_8
http://dx.doi.org/10.1007/978-3-642-02658-4_8
http://dx.doi.org/10.1007/978-3-642-02658-4_8
http://dx.doi.org/10.1007/978-3-642-00269-4
https://mediatum.ub.tum.de/node?id=1208973
https://mediatum.ub.tum.de/node?id=1208973
http://en.wikipedia.org/wiki/Default_logic
http://en.wikipedia.org/wiki/Default_logic

84 Bibliography

84

List of Figures

1.1 Overview over the verification process . 2
1.2 First revision of the introductory example. 4
1.3 Second revision of the introductory example. 4

2.1 Structure of the programming language contstructs 8
2.2 Example of cyclic variable instantiation . 10
2.3 Declaration of types . 12
2.4 SFC with annotations from [Bau+04a] . 19
2.5 Types of possible transitions, from [Bau+04a; Bor+00] 20
2.6 TurnS,VpS, newq : This algorithm evaluates one turn for a SFC S 21
2.7 Turn1SpV, S, newq Turn algorithm with controllabe flow 22
2.8 A not well-formed SFC from [Bau+04a] . 23
2.9 Unsafe SFC with restriction of token amount 24
2.10 Token Partitions of a schematic SFC. α is the outer partition of β and γ. . 24
2.11 This algorithm finds token partition in an SFC. 26
2.12 Preprocessing for ST0 . 27
2.13 Generation of the Figure 2.6 for a specific Sequential Function Chart 0

S “ pS, s0, T, a,<,ăq with a macro language. 34
2.14 Unwinding pattern for for loops . 34
2.15 Preamble for some built-in IEC61131-3 data types. Time is often encoded

as one integer value. 35
2.16 Function block for simulating TON component 35
2.17 Revision of the SFC for our example . 36

3.1 Illustration of the components in a cyber-physical system controlled by a PLC 37
3.2 Timing and communication behaviour of CPS PLC model 38
3.3 Simple ST0 program fragment with visualized workflow 46
3.4 SMV assignment for variable b from Figure 3.3 47
3.5 SymExpstmt, stateq, symbolic execution of ST0 statements 47
3.6 Example of common variables in two ST0 programs. The variables a and b

are equal. c is changed. Figure 3.7 shows the graph. 50
3.7 Example of Variable Dependency Graph . 50
3.8 Comparison of timer abstraction . 51
3.9 Behaviour of the different claims. 52
3.10 Claims encoded in SMV as separate modules. The claim variable can be

used as a premise, see Equation (3.41) . 54
3.11 Twin State Graph of the introductory example between revision I and IIa

from Section 1.1 and SFC from Figure 2.17 56
3.12 Creating of TSG by simultaneously traversing 57
3.13 Guarantee example with a sketch of a TSG. G, H, I are introduced to bypass

a waiting time between B and C. 57

85

86 List of Figures

4.1 Scenarios of the case study from [VH+14] 60
4.2 Components of the PPU from [VH+14] . 62
4.3 SMV code for emulate the three boolean sensor variables from the new

angular position. 68
4.4 Visualization of Table 4.2 . 69
4.5 Number of bits for state , frozen and input variables in the model checker

nuXmv. This correlates with size of the declared variables in Figure 4.4 and
the running times of the model checker in Figure 4.6. 70

4.6 Diagram of the CPU time from Table 4.3. Please note that the y axis has a
logarithmic scale. 70

4.7 Minimum and maximum runtime with address randomization from Table 4.3.
Please note that the y axis has a logarithmic scale. 71

A.1 Example program for handling emergency stops, sensor and actuator values
for the SFC in Figure 2.17a and figure A.2 75

A.2 Structured Text for the SFC in figure 2.17a 76
A.3 The complete introductory example in ST0 77
A.4 SMV modules for the introductory example in Section 1.1. 78

86

List of Definitions and Theorems

1.1 Proposition (Equivalence of Introductory Example) 4

2.1 Definition (Memory) . 9
2.2 Definition (Memory Update) . 9
2.3 Definition (Evaluation) . 9
2.4 Definition (Declaration grammar) . 10
2.5 Definition (Grammar of Type Declaration) 11
2.6 Definition (Execution Configuration) . 12
2.7 Definition (Grammar of Expression) . 13
2.8 Definition (Operator Precedence) . 13
2.9 Definition (Semantics of expressions) . 13
2.10 Definition (Grammar of Statements) . 14
2.11 Definition (Semantics of statements) . 15
2.12 Definition (evalST) . 18
2.13 Definition (State) . 19
2.14 Definition (Guard) . 19
2.15 Definition (Action, action sequences) . 19
2.16 Definition (Sequential Function Chart) . 19
2.17 Definition (evalSFC) . 22
2.19 Definition (Token Partition) . 24
2.21 Definition (ST0) . 26
2.22 Proposition (Elimination of simultaneous constructs) 28
2.24 Definition (SFC0) . 30

3.1 Definition (Cyber-physical Model) . 39
3.2 Definition (Physical Input Model) . 39
3.3 Definition (Equivalence of Programs) . 41
3.4 Definition (Equality of time steps) . 42
3.5 Definition (Perfect Equivalence) . 42
3.6 Definition (Conditional equivalence) . 42
3.7 Theorem (Restriction on input values) . 43
3.9 Theorem (Transitive equivalence) . 44
3.11 Definition (Variable dependency graph) . 48
3.12 Definition (Dirty variable) . 48
3.15 Definition (UNTIL claim) . 52
3.16 Definition (After claim) . 53
3.17 Definition (Within claim) . 53
3.18 Definition (Except claim) . 54
3.19 Definition (Twin Step (TS)) . 55
3.20 Definition (Twin Step Graph (TSG)) . 55

87

	Contents
	1 Introduction
	1.1 Introductory example
	1.2 Related Work

	2 Formalisation of PLC software
	2.1 Variables and Data types
	2.2 Structured Text
	2.3 Sequential Function Chart
	2.4 ST0
	2.4.1 SFC0
	2.4.2 Transformation of SFC0 into ST
	2.4.3 Transformation of ST into ST0

	2.5 Software for Introductory Example

	3 Regression Verification
	3.1 PLC as cyber-physical systems
	3.2 Equivalence of Programs
	3.3 Generating SMV models
	3.3.1 SMV and IC3
	3.3.2 Symbolic Execution
	3.3.3 Optimizations

	3.4 Equivalence as Invariant
	3.5 Finding conditions of equivalence

	4 Case Study
	4.1 Scenarios
	4.2 Results

	5 Conclusion
	A Introductory Example
	A.1 Software
	A.2 SMV

	B Abbreviation for Variables
	Bibliography
	List of Figures
	List of Definitions and Theorems

