eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Deductive Verification of Information
Flow Properties of Java Programs

Christoph Scheben | July 13, 2011

INSTITUTE FOR THEORETICAL COMPUTER SCIENCE

KIT — University of the State of Baden-Wuerttemberg and WWwWWw. k“.ed u
National Laboratory of the Helmholtz Association — =
v o) = = = DAl

http://www.kit.edu

| Aim SKIT

Static verification of explicit and implicit flows in Java programs:
@ Program-level specification of information flow properties
a considered programming language: Java
m considered specification language: JML
@ Deductive verification of such properties without
approximation of information flow dependencies

a verification system: KeY
m low level specification: JavaDL (Java Dynamic Logic)

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
©0000 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 2/25

I Non-Interference AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Prominent information flow property: non-interference

Simple case:
® program P
m partion of the program variables of P in

m low security variables low and
m high security variables high

Definition (Non-interference — Version 1)

For program P the high variables high do not interfere with the
low variables low

&
when starting P with arbitrary values for low, then the values of
low after executing P, are independent of the choices of high.

[m] [l = =

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
08000 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 3/25

I Non-Interference AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Prominent information flow property: non-interference

Simple case:
® program P
m partion of the program variables of P in

m low security variables low and
m high security variables high

Definition (Non-interference — Version 1)

For program P the high variables high do not interfere with the
low variables low

&
when starting P with arbitrary values for low, then the values of
low after executing P, are independent of the choices of high.

Qv

[m] [l = =

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
08000 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 3/25

I Non-Interference AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Prominent information flow property: non-interference

Simple case:
® program P
m partion of the program variables of P in

m low security variables low and
m high security variables high

Definition (Non-interference — Version 1)

For program P the high variables high do not interfere with the
low variables low

&
when starting P with arbitrary values for low, then the values of
low after executing P, are independent of the choices of high.

[m] [l = =

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
08000 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 3/25

I Non-Interference AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Prominent information flow property: non-interference

Simple case:
® program P
m partion of the program variables of P in

m low security variables low and
m high security variables high

Definition (Non-interference — Version 1)

For program P the high variables high do not interfere with the
low variables low

&
when starting P with arbitrary values for low, then the values of
low after executing P, are independent of the choices of high.

Qv

[m] [l = =

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
08000 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 3/25

I Non-Interference AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Prominent information flow property: non-interference

Simple case:
® program P
m partion of the program variables of P in

m low security variables low and
m high security variables high

Definition (Non-interference — Version 1)

For program P the high variables high do not interfere with the
low variables low

&
when starting P with arbitrary values for low, then the values of
low after executing P, are independent of the choices of high.

o < = E = wac

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
08000 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 3/25

I Non-Interference AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Prominent information flow property: non-interference

Simple case:
® program P
m partion of the program variables of P in

m low security variables low and
m high security variables high

Definition (Non-interference — Version 1)

For program P the high variables high do not interfere with the
low variables low

&
when starting P with arbitrary values for low, then the values of
low after executing P, are independent of the choices of high.

Qv

[m] [l = =

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
08000 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 3/25

I Non-Interference AT

Prominent information flow property: non-interference
Simple case:

m program P

m partion of the program variables of P in

@ low security variables low and
m high security variables high

Definition (Non-interference — Version 2)

For program P the high variables high do not interfere with the
low variables low

&
running two instances of P, with equal values of the low
variables, and arbitrary values for the high variables result in the
low variables having equal values.

[m] [l = =

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
00@00 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 4/25

I Non-Interference AT

Prominent information flow property: non-interference
Simple case:

m program P

m partion of the program variables of P in

@ low security variables low and
m high security variables high

Definition (Non-interference — Version 2)

For program P the high variables high do not interfere with the
low variables low

&
running two instances of P, with equal values of the low
variables, and arbitrary values for the high variables result in the
low variables having equal values.

[m] [l = =

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
00@00 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 4/25

I Non-Interference AT

Prominent information flow property: non-interference
Simple case:

m program P

m partion of the program variables of P in

@ low security variables low and
m high security variables high

Definition (Non-interference — Version 2)

For program P the high variables high do not interfere with the
low variables low

&
running two instances of P, with equal values of the low
variables, and arbitrary values for the high variables result in the
low variables having equal values.

[m] [l = =

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
00@00 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 4/25

I Non-Interference AT

Prominent information flow property: non-interference
Simple case:

m program P

m partion of the program variables of P in

@ low security variables low and
m high security variables high

Definition (Non-interference — Version 2)

For program P the high variables high do not interfere with the
low variables low

&
running two instances of P, with equal values of the low
variables, and arbitrary values for the high variables result in the
low variables having equal values.

[m] [l = =

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
00@00 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 4/25

I Non-Interference AT

Prominent information flow property: non-interference
Simple case:

m program P

m partion of the program variables of P in

@ low security variables low and
m high security variables high

Definition (Non-interference — Version 2)

For program P the high variables high do not interfere with the
low variables low

&
running two instances of P, with equal values of the low
variables, and arbitrary values for the high variables result in the
low variables having equal values.

[m] [l = =

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
00@00 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 4/25

I Non-Interference AT

Prominent information flow property: non-interference
Simple case:

m program P

m partion of the program variables of P in

@ low security variables low and
m high security variables high

Definition (Non-interference — Version 2)

For program P the high variables high do not interfere with the
low variables low

&
running two instances of P, with equal values of the low
variables, and arbitrary values for the high variables result in the
low variables having equal values.

[m] [l = =

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
00@00 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 4/25

I Non-Interference AT

Prominent information flow property: non-interference
Simple case:

m program P

m partion of the program variables of P in

@ low security variables low and
m high security variables high

Definition (Non-interference — Version 2)

For program P the high variables high do not interfere with the
low variables low

&
running two instances of P, with equal values of the low
variables, and arbitrary values for the high variables result in the
low variables having equal values.

[m] [l = =

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
00@00 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 4/25

I Examples AT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Which methods are save?

class MiniExamples {

2 public int |; 14
private int h;
4 16
void m_1() { void m3() {
6 | = h; 18 if h>0) {I=1;}
} else {1=2;};
8 20 }
void m2() {
10 if (I>0) {h=1;} 22 void m4() {
else {h=2;}; h=0; I=h;
12} 24}

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
0000 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 5/25

I Examples AT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Which methods are save?

class MiniExamples {

2 public int |; 14
private int h;
4 16
void m_1() { void m3() {
6 | = h; 18 if h>0) {I=1;}
} else {1=2;};
8 20 }
void m2() {
10 if (1>0) {h=1;} 22 void m4() {
else {h=2;}; h=0; I=h;
12} 24}

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
00080 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 5/25

I Examples AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Which methods are save?

class MiniExamples {

2 public int |; 14
private int h;
4 16
void m_1() { void m3() {
6 | = h; 18 if h>0) {I=1;}
} else {1=2;};
8 20 }
void m2() {
10 if (1>0) {h=1;} 22 void m4() {
else {h=2;}; h=0; I=h;
12} 24}

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
00080 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 5/25

I Examples AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Which methods are save?

class MiniExamples {

2 public int |; 14
private int h;
4 16
void m_1() { void m3() {
6 | = h; 18 if (h>0) {1=1;}
} else {1=2;};
8 20 }
void m2() {
10 if (1>0) {h=1;} 22 void m4() {
else {h=2;}; h=0; I=h;
12} 24}

[m] [l = =

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
00080 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 5/25

I Examples AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Which methods are save?

class MiniExamples {

2 public int |; 14
private int h;
4 16
void m_1() { void m3() {
6 | = h; 18 if (h>0) {1=1;}
} else {1=2;};
8 20 }
void m2() {
10 if (1>0) {h=1;} 22 void m4() {
else {h=2;}; h=0; I=h;
12} 24}

[m] [l = =

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
00080 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 5/25

| Examples ST

stitute of Technology

Which methods are save?

void m5() { 30 void m6() {
26 I=h; I=I-h; if (false) I=h;
} 2 }
28
34 }

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
0000® 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 6/25

I Examples

Which methods are save?
void m5() { 40
36 =h; I=1-h;
}
38

void m6() {
if (false) I=h;
42 }
44 3

[e]e]e]e])

F
00000000

o
Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
Christoph Scheben — Deductive Verification of Information Flow Properties

July 13, 2011

6/25

I Examples

AT

stitute of Technoloay

Which methods are save?
void m._5(
46

50 void m6() {

: if (false) I=h;
52 }

48

54 }

[e]e]e]e])

F
00000000

o
Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
Christoph Scheben — Deductive Verification of Information Flow Properties

= T 9ac

July 13, 2011

6/25

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Definition (Non-interference)

For program P the high variables high do not interfere with the
low variables low

&

running two instances of P, with equal values of the low
variables, and arbitrary values for the high variables result in the
low variables having equal values.

VivhI e 2({low := I || high := h}}M[Pllow = [} ,;
A {low := I, || high := h2}[Pllow = 2,

1 _ 2
_>lout_lout)

=] (=)

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
00000 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 7/25

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Definition (Non-interference)

For program P the high variables high do not interfere with the
low variables low

&

running two instances of P, with equal values of the low
variables, and arbitrary values for the high variables result in the
low variables having equal values.

VivhI e 2({low := I || high := h}}M[Pllow = [} ,;
A {low := I, || high := h2}[Pllow = 2,

1 _ 2
_>lout_lout)

=} (=)

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
00000 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 7/25

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Definition (Non-interference)

For program P the high variables high do not interfere with the
low variables low

&

running two instances of P, with equal values of the low
variables, and arbitrary values for the high variables result in the
low variables having equal values.

VivhI e 2({low := I || high := h}}M[Pllow = [} ,;
A {low := I, || high := h2}[Pllow = 2,

1 _ 2
_>lout_lout)

=} (=)

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
00000 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 7/25

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Definition (Non-interference)

For program P the high variables high do not interfere with the
low variables low

&

running two instances of P, with equal values of the low
variables, and arbitrary values for the high variables result in the
low variables having equal values.

ViiYhI e 2 {low := I || high := AL} Pllow = [} ,;
A {low := I, || high := h2}[Pllow = 2,

1 _ 2
_>lout_lout)

=} (=)

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
00000 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 7/25

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Definition (Non-interference)

For program P the high variables high do not interfere with the
low variables low

&

running two instances of P, with equal values of the low
variables, and arbitrary values for the high variables result in the
low variables having equal values.

VI YhEY Rl {low = I, || high := hL}[Pllow = I},
A {low = I, || high := h2}[Pllow = 2,
— /;ut = lgut)

] = =

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
00000 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 7/25

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Definition (Non-interference)

For program P the high variables high do not interfere with the
low variables low

&

running two instances of P, with equal values of the low
variables, and arbitrary values for the high variables result in the
low variables having equal values.

Vi hl v h2 2 {low := Iy || high == h! }M[Pllow = I} ;
A {low := Iy, || high := h}[Pllow = I2,,
— /;ut = lgut)

] = =

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
00000 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 7/25

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Definition (Non-interference)

For program P the high variables high do not interfere with the
low variables low

&

running two instances of P, with equal values of the low
variables, and arbitrary values for the high variables result in the
low variables having equal values.

Vivhivhe il o2, {low := Iy || high := R} MPllow = [},
A {low := I, || high := h2}[P]low = I

out
1 _ 2
? /out - /out)

[m] [l = =

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
00000 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 7/25

I Simple Example A“(IT

class SecurePasswordFile {
2 private int[] names, passwords;
//@ invariant names.length == passwords.length;
4 public boolean check(int user, int password) {
//@ loop_invariant

6 for (int i = 0; i < names.length; i++) {

if (names[i] == user &&
8 passwords[i] == password) {

return true;

10 }
12 return false;
14 }
Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte

00000 00000000
Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 8/25

I Simple Example IT

stitute of Technology

class SecurePasswordFile { /—\high variables
2 private int[] names%
//@ invariant names.le ==passwords. length;

4 public boolean check(int user, int password) {
//@ loop_invariant

6 for (int i = 0; i < names.length; i++) {

if (names[i] == user &&
8 passwords[i] == password) {

return true;

10 }
12 return false;
14 }
Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte

00000 00000000
Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 8/25

I Simple Example T

stitute of Technology

class SecurePasswordFile { /—\high variables
2 private int[] namesmiﬁ/
//@ invariant names. ==passwords. length;
{

4 public boolean check(int user, int password)
//@ loop_invariant

6 for (int i = 0; i < name i++) {
if (names[i] == user &&
8 passwords[i] == password) {
return true;
10 }
}
12 return false; low variables

14 } .

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
00000 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 8/25

I Simple Example AT

10

12

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

// General assumtions + class invariants //
wellFormed (heap1) A

/!l Symbolic execution //

{ heap := heapl }

\[{ r = pwf.check(user, password); }\]
r = outR1

{ heap := heap2 }

\[{ r = pwf.check(user, password); }\]
r = outR2

/! Comparision of the low variables //

— outR1 = outR2

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte

00000

00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 9/25

I Simple Example A“(IT

class SecurePasswordFile {
2 private int[] names, passwords;
//@ invariant names.length == passwords.length;
4 public boolean check(int user, int password) {
//@ loop_invariant

6 for (int i = 0; i < names.length; i++) {

if (names[i] == user &&
8 passwords[i] == password) {

return true;

10 }
12 return false;
14 }
Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte

00000 00000000
Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 10/25

I JML - Security levels

stitute of Technology

level.

How to define low and high variables in JML?
a Definition of Jow and high with respect to some security

Definition (Security level)

A security level is a set of heap locations.

m All heap locations of a security level are low with respect to
that level, all other high.

a Definition of security levels in JML via model fields of type
“location set”.

00000

= =
@0000000

o
Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
Christoph Scheben — Deductive Verification of Information Flow Properties

July 13, 2011

11/25

I JML — Security levels

/+*@ model \locset pwdFileManager;
2

@ accessible pwdFileManager:
@ represents pwdFileManager
@ names, names[x*],
@x/

footprint;
passwords

passwords [*];
Informal semantics:

m Set of locations defined by the evaluation of the model field
in the current heap.

00000

a Might evaluate to different security levels in different heaps.

= =
0@000000

o
Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
Christoph Scheben — Deductive Verification of Information Flow Properties

E DAl
July 13, 2011

12/25

I JML - Preserving Security Levels

/+@ normal_behavior
2 @
@

respects
@x/

anyUser;
boolean check(int user,

int password) {
Informal semantics:

m Set of security levels for which a method fulfills the
non-interference property.

&5 =
O0O@00000

o
Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
Christoph Scheben — Deductive Verification of Information Flow Properties

Da

July 13, 2011

13/25

I JML — Parameter Dependencies AT

stitute of Technology

/*@ normal_behavior
2 @ .
@ secure_for checkUser,checkUser:checkUser;
4 @x/

boolean check(int user, int password) {

Informal semantics:

m Parameter pre-condition: the value which is passed to the
method depends at most on the specified locations.

m Return value post-condition: the return value depends at
most on the specified locations.

o (=) = E PN G
Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
00000 000®0000
Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 14/25

I JML - Declassification (T

Karlsruhe Institute of Technology

/+@ normal_behavior

2 @
@ declassify (\exists int i;

4 @ 0 <= i & i < names.length;
@ names[i] == user

6 @ && passwords[i] == password
@)

8 @ \from pwdFileManager
@ \to checkUser

10 @ \if true;

@/
12 boolean check(int user, int password) {

[m] [l = =

Da

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
00000 0000@000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 15/25

I JML — Declassification T

Informal semantics:
m Information to be declassified in form of a term or formula.
a May depend at most on the locations specified in the “from*®
part.
a May flow at most to the locations specified in then “to” part.
a Declassification only if the “if” part evaluates to true (in the
pre-heap).
Semantic form of declassification:
a Declassification is part of the method contract.

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
00000 00000800

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 16/25

| Full Example — JML Specification AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

class SecurePasswordFile {

2
/@ model \locset checkUser;
4 @ accessible checkUser: footprint;
@ represents checkUser \such_that
6 @ \subset(checkUser, footprint);
@
8 @ model \locset anyUser;
@ accessible anyUser: footprint;
10 @ represents anyUser \such_that
@ \subset(anyUser, footprint);
12 @
@ invariant names.length == passwords.length;
14 @/

private int[] names, passwords;m

E DAl
Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
00000 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 17/25

| Full Example — JML Specification AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

16 /@ normal_behavior

@ modifies \nothing;
18 @ secure_for checkUser,checkUser:checkUser;
@ respects anyUser;
20 @ declassify (\exists int i;
@ 0 <= i & i < names.length;
22 @ names[i] == user
@ && passwords[i] == password
24 @)
@ \to checkUser;
26 @/
public boolean check(int user, int password) {
28
}
30 }

o> S = = T 9ac

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
00000 00000008

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 18/25

I Generalising the JavaDL Formalisation T

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Simple version for program variables partitioned into high and

low variables:

ViV Y21, R {low := Iy || high := h]}[P)low = /;ut
A {low := I, || high := R2}[Pllow = [2,,
— Lot = ot)

Generalised version for arbitrary (definable) similarity relations
~in and ~oy defined over program variables (heaps) h' and h?:
VHIV R by 1h2u({heap := h},}[Plheap = hly

A {heap = h2\[Plheap = h2,
A b ~in B2,

1 2
- hout ~out hout)

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
00000 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 19/25

I Generalising the JavaDL Formalisation T

Where hl. ~;, h2 has the form:
a All elements of the respects clause are low variables,

VObject o : VField f : (o, f) € {heap := h},} respects
— {heap := h} }o.f = {heap := h2}o.f

a all parameters with dependencies C respects are low and

A\ ({heap:= hj,}(secure_for; C respects) — par, = par?)
ie{1..npar}

m all declassifications with to-part C respects are known.

n N ({heap:= h}}(to; C respects)
fe{1..Ngeq}
— ({heap := h}.}decl; +» {heap := hZ }decl;))
Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte

00000 00000000
Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 20/25

I Generalising the JavaDL Formalisation T

1 2 :
Where h;,; ~out h5,; has the form:

a All elements of the respects clause are low variables,
VObject o : VField f : (o, f) € {heap := h} }respects
— {heap := h},;}o.f = {heap .= W2, }o.f

a all parameters with dependencies C respects are low and

n N\ ({heap = h},}(secure_for; C respects) — par; = par?)
/’E{‘l.‘npa(}

a if the return dependencies C respects, then return is low.

A ({heap := h}}(secure_foriewm C respects) — return' = return®)

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
00000 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 21/25

| Full Example — JavaDL Formalisation AT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

// General Assumtions + Class Invariants
2 wellFormed (heapAtPrel) A

N

/! Symbolic Execution
A {heap:=heapAtPre1} \[{

/! Input—Relation
8 A equalsAtLocs(heapAtPre1, heapAtPre2,
{heap:=heapAtPrel1}self.anyUser n {})

10
A ({heap:=heapAtPrel1}self.passwordFileUser
12 C {heap:=heapAtPrel1}self.anyUser
— userl = user2)
14

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
00000 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 22/25

| Full Example — JavaDL Formalisation AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

16 /! Input—Relation — Declassification
A ({heap:=heapAtPrel1}self.passwordFileUser
18 C {heap:=heapAtPrel1}self.anyUser
— ({heap:=heapAtPrel}
20 J int i0;
(0 < i0 A i0 < self.names.length
22 A inlnt (i0)
A self.names[i0] = user1
24 A self.passwords[i0] = passwordl)
< {heap:=heapAtPre2}
26 J int i1;
(0 < i1t A i1 < self.names.length
28 A inlnt(i1)
A self.names[i1] = userl
30 A self.passwords[i1] = passwordil)))

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
00000 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 23/25

| Full Example — JavaDL Formalisation AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

/1 Output—Relation
32 — equalsAtLocs (heapAtPost1, heapAtPost2,
{heap:=heapAtPrel1}self.anyUser n {})
34
A ({heap:=heapAtPrel1}self.passwordFileUser
36 C {heap:=heapAtPrei1}self.anyUser
— resultl = result2)
38
A ({heap:=heapAtPre1}self.passwordFileUser
40 C {heap:=heapAtPrel}self.anyUser
— userl = user2)
42

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
00000 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 24/25

I Not tackled A“(IT

a Comparison of objects.
a How to use information flow contracts.
a Quantitative analysis of specifications.

Introduction Formalising Non-Interference in JavaDL Extending JML for Non-Interference Specifications Generalising the Non-Inte
00000 00000000

Christoph Scheben — Deductive Verification of Information Flow Properties July 13, 2011 25/25

	Introduction
	Aim
	Non-Interference

	Formalising Non-Interference in JavaDL
	Extending JML for Non-Interference Specifications
	Security levels
	Preserving Security Levels
	Parameter Dependencies
	Declassification

	Generalising the Non-Interference Formalisation
	Full Example
	Summary

