Applications of Formal Verification

Functional Verification of Java Programs: Java Dynamic Logic

Prof. Dr. Bernhard Beckert • Dr. Vladimir Klebanov | SS 2012

(2) Sequent Calculus
(3) Rules for Programs: Symbolic Execution
4. A Calculus for 100% Java CaRD
(5) Loop Invariants

- Basic Invariant Rule

(2) Sequent Calculus

(3) Rules for Programs: Symbolic Execution
(4) A Calculus for 100% JAVA CARD
(5) Loop Invariants

- Basic Invariant Rule

Syntax and Semantics

Syntax

- Basis: Typed first-order predicate logic
- Modal operators $\langle p\rangle$ and $[p]$ for each (JAVA CARD) program p
- Class definitions in background (not shown in formulas)

$$
\text { Modal operators allow referring to the final state of } p \text { : }
$$

Syntax and Semantics

Syntax

- Basis: Typed first-order predicate logic
- Modal operators $\langle p\rangle$ and $[p]$ for each (JAVA CARD) program p
- Class definitions in background (not shown in formulas)

Semantics (Kripke)

Modal operators allow referring to the final state of p :

Syntax and Semantics

Syntax

- Basis: Typed first-order predicate logic
- Modal operators $\langle p\rangle$ and $[p]$ for each (Java CaRD) program p
- Class definitions in background (not shown in formulas)

Semantics (Kripke)

Modal operators allow referring to the final state of p :

- $[p] F$: If p terminates normally, then
F holds in the final state ("partial correctness")
$\langle p\rangle F$:
state
pterminates normally, and F holds in the final

Syntax and Semantics

Syntax

- Basis: Typed first-order predicate logic
- Modal operators $\langle p\rangle$ and $[p]$ for each (Java CaRD) program p
- Class definitions in background (not shown in formulas)

Semantics (Kripke)

Modal operators allow referring to the final state of p :

- $[p] F$: If p terminates normally, then
F holds in the final state ("partial correctness")
- $\langle p\rangle F$: $\quad p$ terminates normally, and F holds in the final state

Why Dynamic Logic?

- Transparency wrt target programming language
- Encompasses Hoare Logic
- More expressive and flexible than Hoare logic
- Symbolic execution is a natural interactive proof paradigm
- Programs are "first-class citizens"
- Real Java syntax

Why Dynamic Logic?

- Transparency wrt target programming language
- Encompasses Hoare Logic
- More expressive and flexible than Hoare logic
- Symbolic execution is a natural interactive proof paradigm

Hoare triple $\{\psi\} \alpha\{\phi\} \quad$ equiv. to DL formula $\psi \rightarrow[\alpha] \phi$

Why Dynamic Logic?

- Transparency wrt target programming language
- Encompasses Hoare Logic
- More expressive and flexible than Hoare logic
- Symbolic execution is a natural interactive proof paradigm

Not merely partial/total correctness:

- can employ programs for specification (e.g., verifying program transformations)
- can express security properties (two runs are indistinguishable)
- extension-friendly (e.g., temporal modalities)

Why Dynamic Logic?

- Transparency wrt target programming language
- Encompasses Hoare Logic
- More expressive and flexible than Hoare logic
- Symbolic execution is a natural interactive proof paradigm

Dynamic Logic Example Formulas

(balance $>=c \&$ amount >0) \rightarrow
\langle charge (amount) ; \rangle balance $>c$

$=1 ;\rangle([$ while (true) $\}]$ false $)$
 - Program formulas can appear nested

Dynamic Logic Example Formulas

(balance $>=c \&$ amount >0) \rightarrow
\langle charge (amount) ; \rangle balance $>c$

$$
\langle x=1 ;\rangle([\text { while }(\text { true }) \quad\}] f a l s e)
$$

Program formulas can appear nested

Dynamic Logic Example Formulas

(balance $>=c$ \& amount >0) \rightarrow
\langle charge (amount) ; \rangle balance $>c$

$$
\langle x=1 ;\rangle([\text { while }(\text { true }) \quad\}] f a l s e)
$$

- Program formulas can appear nested

Dynamic Logic Example Formulas

(balance $>=c \&$ amount >0) \rightarrow
\langle charge (amount) ; \rangle balance $>c$
$\langle\mathrm{x}=1$; $\rangle([$ while (true) $\}]$ false $)$

- Program formulas can appear nested
\forall int val; $((\langle\mathrm{p}\rangle \mathrm{x} \doteq v a l)<->(\langle\mathrm{q}\rangle \mathrm{x} \doteq v a l))$

Dynamic Logic Example Formulas

(balance $>=c \&$ amount >0) \rightarrow
\langle charge (amount) ; \rangle balance $>c$
$\langle x=1 ;\rangle([$ while (true) $\}]$ false $)$

- Program formulas can appear nested
\forall int val; $((\langle\mathrm{p}\rangle \mathrm{x} \doteq v a l)<->(\langle\mathrm{q}\rangle \mathrm{x} \doteq v a l))$
- p, q equivalent relative to computation state restricted to x

Dynamic Logic Example Formulas

```
    a ! = null
->
\(<\)
    int max \(=0\);
    if ( a.length > 0 ) max = a[0];
    int \(i=1\);
    while ( i < a.length ) \{
    if ( a[i] > max ) max = a[i];
        ++i;
    \}
\(>1\)
\forall int j; (j >= 0 \& j < a.length -> max >= a[j]) \&
(a.length > 0 ->
lexists int j; (j >= 0 \& j < a.length \& max = a[j]))
```


Variables

- Logical variables disjoint from program variables
- No quantification over program variables
- Programs do not contain logical variables
- "Program variables" actually non-rigid functions

Validity

A Java Card DL formula is valid iff it is true in all states.

We need a calculus for checking validity of formulas

Validity

A Java Card DL formula is valid iff it is true in all states.

We need a calculus for checking validity of formulas

Teil

(1) Java Card DL

(2) Sequent Calculus
(3) Rules for Programs: Symbolic Execution
4. A Calculus for 100% JAVA CARD
(5) Loop Invariants

- Basic Invariant Rule

Teil

(1) Java Card DL

(2) Sequent Calculus

(3) Rules for Programs: Symbolic Execution
(4) A Calculus for 100% Java Card
(5) Loop Invariants

- Basic Invariant Rule

Sequents and their Semantics

Syntax

where the ϕ_{i}, ψ_{i} are formulae (without free variables)

Sequents and their Semantics

Syntax

where the ϕ_{i}, ψ_{i} are formulae (without free variables)

Semantics

Same as the formula

$$
\left(\psi_{1} \& \cdots \& \psi_{m}\right) \quad \rightarrow \quad\left(\phi_{1}|\cdots| \phi_{n}\right)
$$

Sequent Rules

General form

Soundness
 If all nremisses are valid, then the conclusion is valid

Use in practice
Goal is matched to conclusion

Sequent Rules

General form

($r=0$ possible: closing rules)

Soundness
 If all premisses are valid, then the conclusion is valid

Sequent Rules

General form

$$
\text { rule_name } \frac{\overbrace{\Gamma_{1} \Longrightarrow \Delta_{1} \cdots \Delta_{r} \cdots}^{\underbrace{\Gamma \Longrightarrow \Delta}_{\text {Conclusion }}}}{\text { Premisses }}
$$

($r=0$ possible: closing rules)

Soundness

If all premisses are valid, then the conclusion is valid

Sequent Rules

General form

$$
\text { rule_name } \frac{\overbrace{\Gamma_{1} \Longrightarrow \Delta_{1} \ldots \Gamma_{r} \Rightarrow \Delta_{r}}^{\text {Premisses }}}{\underbrace{\Gamma \Longrightarrow \Delta}_{\text {Conclusion }}}
$$

($r=0$ possible: closing rules)

Soundness

If all premisses are valid, then the conclusion is valid

Use in practice

Goal is matched to conclusion

Some Simple Sequent Rules

$$
\text { not_left } \frac{\Gamma \Longrightarrow A, \Delta}{\Gamma,!A \Longrightarrow \Delta}
$$

Some Simple Sequent Rules

$$
\begin{gathered}
\text { not_left } \frac{\Gamma \Longrightarrow A, \Delta}{\Gamma,!A \Longrightarrow \Delta} \\
\text { imp_left } \frac{\Gamma \Longrightarrow A, \Delta \quad \Gamma, B \Longrightarrow \Delta}{\Gamma, A \rightarrow B \Longrightarrow \Delta}
\end{gathered}
$$

Some Simple Sequent Rules

$$
\text { not_left } \frac{\Gamma \Longrightarrow A, \Delta}{\Gamma,!A \Longrightarrow \Delta}
$$

$$
\text { imp_left } \frac{\Gamma \Longrightarrow A, \Delta \quad \Gamma, B \Longrightarrow \Delta}{\Gamma, A \rightarrow B \Longrightarrow \Delta}
$$

close_goal

$$
\Gamma, A \Longrightarrow A, \Delta
$$

close_by_true

Some Simple Sequent Rules

$$
\begin{gathered}
\text { not_left } \frac{\Gamma \Longrightarrow A, \Delta}{\Gamma,!A \Longrightarrow \Delta} \\
\text { imp_left } \frac{\Gamma \Longrightarrow A, \Delta \quad \Gamma, B \Longrightarrow \Delta}{\Gamma, A \rightarrow B \Longrightarrow \Delta}
\end{gathered}
$$

close_goal

$$
\Gamma, A \Longrightarrow A, \Delta
$$

close_by_true

$$
\Gamma \Longrightarrow \text { true }, \Delta
$$

Some Simple Sequent Rules

$$
\begin{gathered}
\text { not_left } \frac{\Gamma \Longrightarrow A, \Delta}{\Gamma,!A \Longrightarrow \Delta} \\
\text { imp_left } \xrightarrow{\Gamma \Longrightarrow A, \Delta \quad \Gamma, B \Longrightarrow \Delta}
\end{gathered}
$$

close_goal

$$
\Gamma, A \Longrightarrow A, \Delta
$$

close_by_true

$$
\Gamma \Longrightarrow \text { true, } \Delta
$$

$$
\text { all_left } \frac{\Gamma, \backslash \text { forall } t x ; \phi,\{x / e\} \phi \Longrightarrow \Delta}{\Gamma, \backslash \text { forall } t x ; \phi \Longrightarrow \Delta}
$$

where e var-free term of type $t^{\prime} \prec t$

Sequent Calculus Proofs

Proof tree

- Proof is tree structure with goal sequent as root
- Rules are applied from conclusion (old goal) to premisses (new goals)
- Rule with no premiss closes proof branch
- Proof is finished when all goals are closed

```
Proof
0}\mathrm{ Proof Tree
    1:imp_right
    2:imp_left
9-0 Case 1
    3:double_not
    6:imp_right
    8:close_goal
    Z10:Closed goal
0-7 Case 2
```


Sequent Calculus Proofs

Proof tree

- Proof is tree structure with goal sequent as root
- Rules are applied from conclusion (old goal) to premisses (new goals)
- Rule with no premiss closes proof branch
- Proof is finished when all goals are closed

```
Proof
[9 Proof Tree
    1:imp_right
    2:imp_left
9-9 Case 1
    3:double_not
    6:imp_right
    8:close_goal
    Z 10:Closed goal
0-7 Case 2
```


Sequent Calculus Proofs

Proof tree

- Proof is tree structure with goal sequent as root
- Rules are applied from conclusion (old goal) to premisses (new goals)
- Rule with no premiss closes proof branch
- Proof is finished when all goals are closed

```
Proof
0}\mathrm{ Proof Tree
    1:imp_right
    2:imp_left
9-0 Case 1
    3:double_not
    6:imp_right
    8:close_goal
    Z 10:Closed goal
O--1
```


Sequent Calculus Proofs

Proof tree

- Proof is tree structure with goal sequent as root
- Rules are applied from conclusion (old goal) to premisses (new goals)
- Rule with no premiss closes proof branch
- Proof is finished when all goals are closed

```
Proof
0}\mathrm{ Proof Tree
    1:imp_right
    2:imp_left
9-0 Case 1
    3:double_not
    6:imp_right
    8:close_goal
    Z 10:Closed goal
O--1
```


Teil

(1) Java Card DL

(2) Sequent Calculus

(3) Rules for Programs: Symbolic Execution
(4) A Calculus for 100% Java Card
(5) Loop Invariants

- Basic Invariant Rule

Teil

(1) Java Card DL

(2) Sequent Calculus

(3) Rules for Programs: Symbolic Execution
(4) A Calculus for 100% Java Card
(5) Loop Invariants

- Basic Invariant Rule

Proof by Symbolic Program Execution

- Sequent rules for program formulas?
- What corresponds to top-level connective in a program?

Proof by Symbolic Program Execution

- Sequent rules for program formulas?
- What corresponds to top-level connective in a program?

The Active Statement in a Program

$$
l:\{\operatorname{try}\{i=0 ; j=0 ;\} \text { finally\{ } k=0 ;\}\}
$$

Proof by Symbolic Program Execution

- Sequent rules for program formulas?
- What corresponds to top-level connective in a program?

The Active Statement in a Program

$$
l:\{\operatorname{try}\{i=0 ; j=0 ;\} \text { finally\{ } k=0 ;\}\}
$$

Proof by Symbolic Program Execution

- Sequent rules for program formulas?
- What corresponds to top-level connective in a program?

The Active Statement in a Program

$$
\underbrace{l:\{t r y\{ }_{\pi} i=0 ; \underbrace{j=0 ; \quad\} \text { finally }\{k=0 ; \quad\}\}}_{\omega}
$$

passive prefix	π
active statement	$i=0 ;$
rest	ω

- Sequent rules execute symbolically the active statement

Proof by Symbolic Program Execution

- Sequent rules for program formulas?
- What corresponds to top-level connective in a program?

The Active Statement in a Program

$$
\underbrace{l:\{t r y\{ }_{\pi} i=0 ; \underbrace{j=0 ; \quad\} \text { finally }\{k=0 ; \quad\}\}}_{\omega}
$$

passive prefix π
active statement
$i=0$;
rest
ω

- Sequent rules execute symbolically the active statement

Rules for Symbolic Program Execution

If-then-else rule

$$
\frac{\Gamma, B=\text { true } \Rightarrow\langle p \omega\rangle \phi, \Delta \quad \Gamma, B=\text { false } \Rightarrow\langle q \omega\rangle \phi, \Delta}{\Gamma \Rightarrow\langle\text { if }(B)\{p\} \text { else }\{q\} \omega\rangle \phi, \Delta}
$$

Rules for Symbolic Program Execution

If-then-else rule

$$
\frac{\Gamma, B=\text { true } \Rightarrow\langle p \omega\rangle \phi, \Delta \quad \Gamma, B=\text { false } \Rightarrow\langle q \omega\rangle \phi, \Delta}{\Gamma \Rightarrow\langle\text { if }(B)\{p\} \text { else }\{q\} \omega\rangle \phi, \Delta}
$$

Complicated statements/expressions are simplified first, e.g.

$$
\frac{\Gamma \Rightarrow\langle\mathrm{v}=\mathrm{y} ; \mathrm{y}=\mathrm{y}+1 ; \quad \mathrm{x}=\mathrm{v} ; \omega\rangle \phi, \Delta}{\Gamma \Rightarrow\langle\mathrm{x}=\mathrm{y}++; \omega\rangle \phi, \Delta}
$$

Rules for Symbolic Program Execution

If-then-else rule

$$
\frac{\Gamma, B=\text { true } \Rightarrow\langle p \omega\rangle \phi, \Delta \quad \Gamma, B=\text { false } \Rightarrow\langle q \omega\rangle \phi, \Delta}{\Gamma \Rightarrow\langle\text { if }(B)\{p\} \text { else }\{q\} \omega\rangle \phi, \Delta}
$$

Complicated statements/expressions are simplified first, e.g.

$$
\frac{\Gamma \Rightarrow\langle v=y ; y=y+1 ; \quad \mathrm{x}=\mathrm{v} ; \omega\rangle \phi, \Delta}{\Gamma \Rightarrow\langle\mathrm{x}=\mathrm{y}++; \omega\rangle \phi, \Delta}
$$

Simple assignment rule

$$
\frac{\Gamma \Rightarrow\{l o c:=v a l\}\langle\omega\rangle \phi, \Delta}{\Gamma \Rightarrow\langle l o c=v a l ; \quad \omega\rangle \phi, \Delta}
$$

Treating Assignment with "Updates"

Updates

explicit syntactic elements in the logic

\square

no dependency between the n components (but 'right wins'

Treating Assignment with "Updates"

Updates

explicit syntactic elements in the logic

Elementary Updates

$$
\{l o c:=v a l\} \phi
$$

where (roughly)

- loc is a program variable x, an attribute access o.attr, or an array access a[i]
- val is same as loc, or a literal, or a logical variable
\square

no dependency between the n components (but 'right wins'

Treating Assignment with "Updates"

Updates

explicit syntactic elements in the logic

Elementary Updates

$$
\{l o c:=v a l\} \phi
$$

where (roughly)

- loc is a program variable x, an attribute access o.attr, or an array access a[i]
- val is same as loc, or a literal, or a logical variable

Parallel Updates

$$
\left\{l o c_{1}:=t_{1}\|\cdots\| l o c_{n}:=t_{n}\right\} \phi
$$

no dependency between the n components (but 'right wins' semantics)

Why Updates?

Updates are:
 - lazily applied (i.e., substituted into postcondition)
 - eagerly parallelised + simplified

Advantages
 - no renaming required
 - delayed/minimized proof branching (efficient aliasing treatment)

Why Updates?

Updates are:

- lazily applied (i.e., substituted into postcondition)
- eagerly parallelised + simplified

Advantages

- no renaming required
- delayed/minimized proof branching (efficient aliasing treatment)

Symbolic Execution with Updates (by Example)

$$
\Longrightarrow x<y \rightarrow\langle\text { int } t=x ; x=y ; \quad y=t ;\rangle y<x
$$

Symbolic Execution with Updates (by Example)

Symbolic Execution with Updates (by Example)

$$
\begin{gathered}
x<y \Longrightarrow\{t:=x\}\{x:=y\}\langle y=t ;\rangle y<x \\
\vdots \\
x<y \Rightarrow\{t:=x\}\langle x=y ; y=t ;\rangle y<x \\
\vdots \\
\Rightarrow x<y \rightarrow\langle\text { int } t=x ; x=y ; y=t ; y<x
\end{gathered}
$$

Symbolic Execution with Updates (by Example)

$$
\begin{gathered}
x<y \Longrightarrow\{t:=x \| x:=y\}\{y:=t\}\langle \rangle y<x \\
\vdots \\
x<y \Longrightarrow\{t:=x\}\{x:=y\}\langle y=t ;\rangle y<x \\
\vdots \\
x<y \Longrightarrow\{t:=x\}\langle x=y ; y=t ;\rangle y<x \\
\vdots \\
\Rightarrow x<y \rightarrow\langle i n t \quad t=x ; x=y ; \quad y=t ;\rangle y<x
\end{gathered}
$$

Symbolic Execution with Updates (by Example)

$$
\begin{gathered}
x<y \Longrightarrow\{t:=x\|x:=y\| y:=x\}\langle \rangle y<x \\
\vdots \\
x<y \Longrightarrow\{t:=x \| x:=y\}\{y:=t\}\langle \rangle y<x \\
\vdots \\
x<y \Longrightarrow\{t:=x\}\{x:=y\}\langle y=t ;\rangle y<x \\
\vdots \\
x<y \Longrightarrow\{t:=x\}\langle x=y ; y=t ;\rangle y<x \\
\vdots \\
\Rightarrow x<y \rightarrow\langle i n t \quad t=x ; x=y ; \quad y=t ;\rangle y<x
\end{gathered}
$$

Symbolic Execution with Updates (by Example)

$$
\begin{gathered}
x<y \Rightarrow\{x:=y \| y:=x\}\langle \rangle y<x \\
\vdots \\
x<y \Rightarrow\{t:=x\|x:=y\| y:=x\}\langle \rangle y<x \\
\vdots \\
x<y \Rightarrow\{t:=x \| x:=y\}\{y:=t\}\langle \rangle y<x \\
\vdots \\
x<y \Longrightarrow\{t:=x\}\{x:=y\}\langle y=t ;\rangle y<x \\
\vdots \\
x<y \Rightarrow\{t:=x\}\langle x=y ; y=t ;\rangle y<x \\
\vdots \\
\Rightarrow \\
x<y \rightarrow\langle i n t \quad t=x ; x=y ; y=t ;\rangle y<x
\end{gathered}
$$

Symbolic Execution with Updates (by Example)

$$
\begin{gathered}
x<y \Rightarrow x<y \\
\vdots \\
x<y \Rightarrow\{x:=y \| y:=x\}\langle \rangle y<x \\
\vdots \\
x<y \Rightarrow\{t:=x\|x:=y\| y:=x\}\langle \rangle y<x \\
\vdots \\
x<y \Rightarrow\{t:=x \| x:=y\}\{y:=t\}\langle \rangle y<x \\
\vdots \\
x<y \Rightarrow\{t:=x\}\{x:=y\}\langle y=t ;\rangle y<x \\
\vdots \\
x<y \Rightarrow\{t:=x\}\langle x=y ; y=t ;\rangle y<x \\
\vdots \\
\Rightarrow
\end{gathered}
$$

Handling Abrupt Termination

- Abrupt termination handled by program transformations
- Changing control flow = rearranging program parts

Example

TRY-THROW

$$
\Gamma \Longrightarrow\langle\text { try }\{\text { throw exc; } q\} \operatorname{catch}(\mathrm{T} \text { e) }\{r\} \text { finally }\{\mathrm{s}\} \omega\rangle \phi, \Delta
$$

Handling Abrupt Termination

- Abrupt termination handled by program transformations
- Changing control flow = rearranging program parts

Example

TRY-THROW

$$
\begin{aligned}
& \Gamma \Longrightarrow\left\langle\begin{array}{c}
\text { if (exc instanceof T) } \\
\left.\begin{array}{c}
\text { \{try }\{\text { e=exc; r\} finally }\{s\}\} \\
\text { else }\{s \text { throw exc } ;\}
\end{array}\right\rangle \phi, \Delta
\end{array}\right\rangle \\
& \Gamma \Longrightarrow\langle t r y\{t h r o w ~ e x c ; ~ q\} ~ c a t c h(T e)\{r\} ~ f i n a l l y\{s\} ~ \omega\rangle \phi, \Delta
\end{aligned}
$$

Handling Abrupt Termination

- Abrupt termination handled by program transformations
- Changing control flow = rearranging program parts

Example

TRY-THROW

$$
\begin{aligned}
& \Gamma \Longrightarrow\left\langle\begin{array}{r}
\pi \text { if (exc instanceof } T \text {) } \\
\left.\begin{array}{l}
\text { \{try }\{\text { e=exc; r\} finally }\{s\}\} \\
\text { else }\{s \text { throw exc; }\}
\end{array}\right\rangle \phi, \Delta
\end{array}\right. \\
& \Gamma \Longrightarrow\langle\pi \text { try\{throw exc; } q\} \operatorname{catch}(T \quad e)\{r\} \text { finally }\{s\} \omega\rangle \phi, \triangle
\end{aligned}
$$

Teil

(1) Java Card DL

(2) Sequent Calculus

(3) Rules for Programs: Symbolic Execution
(4) A Calculus for 100% Java Card
(5) Loop Invariants

- Basic Invariant Rule

Teil

(1) Java Card DL

(2) Sequent Calculus
(3) Rules for Programs: Symbolic Execution
(4) A Calculus for 100% JAVA CARD
(5) Loop Invariants

- Basic Invariant Rule

Supported Java Features

- method invocation with polymorphism/dynamic binding
- object creation and initialisation
- arrays
- abrupt termination
- throwing of NullPointerExceptions, etc.
- bounded integer data types
- transactions

All Java CaRD language features are fully addressed in KeY

Supported Java Features

- method invocation with polymorphism/dynamic binding
- object creation and initialisation
- arrays
- abrupt termination
- throwing of NullPointerExceptions, etc.
- bounded integer data types
- transactions

All Java CaRD language features are fully addressed in KeY

Java-A Language of Many Features

Ways to deal with Java features
 - Program transformation, up-front
 - Local program transformation, done by a rule on-the-fly
 - Modeling with first-order formulas
 - Special-purpose extensions of program logic

Pro: Feature needs not be handled in calculus
Contra: Modified source code
Example in KeY: Very rare: treating inner classes

Java-A Language of Many Features

Ways to deal with Java features

- Program transformation, up-front
- Local program transformation, done by a rule on-the-fly
- Modeling with first-order formulas
- Special-purpose extensions of program logic

Pro: Flexible, easy to implement, usable Contra: Not expressive enough for all features Example in KeY: Complex expression eval, method inlining, etc., etc.

Java-A Language of Many Features

Ways to deal with Java features

- Program transformation, up-front
- Local program transformation, done by a rule on-the-fly
- Modeling with first-order formulas
- Special-purpose extensions of program logic

Pro: No logic extensions required, enough to express most features
Contra: Creates difficult first-order POs, unreadable antecedents
Example in KeY: Dynamic types and branch predicates

Java-A Language of Many Features

Ways to deal with Java features

- Program transformation, up-front
- Local program transformation, done by a rule on-the-fly
- Modeling with first-order formulas
- Special-purpose extensions of program logic

Pro: Arbitrarily expressive extensions possible
Contra: Increases complexity of all rules
Example in KeY: Method frames, updates

Components of the Calculus

KarIsruhe institute of Technology
(1) Non-program rules

- first-order rules
- rules for data-types
- first-order modal rules
- induction rules
(2) Rules for reducing/simplifying the program (symbolic execution) Replace the program by
(3) Rules for handling loops

44 Rules for replacing a method invocations by the method's contract

Components of the Calculus

(1) Non-program rules

- first-order rules
- rules for data-types
- first-order modal rules
- induction rules
(2) Rules for reducing/simplifying the program (symbolic execution)
Replace the program by
- case distinctions (proof branches) and
- sequences of updates
(3) Rules for handling loops

44 Rules for replacing a method invocations by the method's
contract

Components of the Calculus

(1) Non-program rules

- first-order rules
- rules for data-types
- first-order modal rules
- induction rules
(2) Rules for reducing/simplifying the program (symbolic execution)
Replace the program by
- case distinctions (proof branches) and
- sequences of updates
(3) Rules for handling loops
- using loop invariants
- using induction

44 Rules for replacing a method invocations by the method's contract

Components of the Calculus

(1) Non-program rules

- first-order rules
- rules for data-types
- first-order modal rules
- induction rules
(2) Rules for reducing/simplifying the program (symbolic execution)
Replace the program by
- case distinctions (proof branches) and
- sequences of updates
(3) Rules for handling loops
- using loop invariants
- using induction
(4) Rules for replacing a method invocations by the method's contract

Components of the Calculus

(1) Non-program rules

- first-order rules
- rules for data-types
- first-order modal rules
- induction rules
(2) Rules for reducing/simplifying the program (symbolic execution)
Replace the program by
- case distinctions (proof branches) and
- sequences of updates
(3) Rules for handling loops
- using loop invariants
- using induction
(4) Rules for replacing a method invocations by the method's contract
(5) Update simplification

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Rightarrow \mathcal{U}[\pi \text { if }(\mathrm{b})\{\mathrm{p} ; \text { while (b) } \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Rightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with.

- 0 iterations? Unwind 1
- 10 iterations? Unwind 11×
- 10000 iterations? Unwind 10001× (and don't make any plans for the rest of the day)
- an unknown number of iterations?

We need an invariant rule (or some other form of induction)

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Rightarrow \mathcal{U}[\pi \text { if }(\mathrm{b}) \quad\{\mathrm{p} ; \text { while (b) } \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with...

- 0 iterations?
- 10 iterations? Unwind 11
- 10000 iterations? Unwind $10001 \times$
(and don't make any plans for the rest of the day)
- an unknown number of iterations?

We need an invariant rule (or some other form of induction)

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Rightarrow \mathcal{U}[\pi \text { if }(\mathrm{b})\{\mathrm{p} ; \text { while (b) } \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Rightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with...

- 0 iterations? Unwind $1 \times$
- 10 iterations? Unwind 11
- 10000 iterations? Unwind $10001 \times$
(and don't make any plans for the rest of the day)
- an unknown number of iterations?

We need an invariant rule (or some other form of induction)

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Rightarrow \mathcal{U}[\pi \text { if }(\mathrm{b})\{\mathrm{p} ; \text { while }(\mathrm{b}) \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Rightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with...

- 0 iterations? Unwind $1 \times$
- 10 iterations?
- 10000 iterations? Unwind 10001×
(and don't make any plans for the rest of the day)
- an unknown number of iterations?

We need an invariant rule (or some other form of induction)

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Rightarrow \mathcal{U}[\pi \text { if }(\mathrm{b})\{\mathrm{p} ; \text { while (b) } \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Rightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with...

- 0 iterations? Unwind $1 \times$
- 10 iterations? Unwind $11 \times$
- 10000 iterations? Unwind 10001×
(and don't make any plans for the rest of the day)
- an unknown number of iterations?

We need an invariant rule (or some other form of induction)

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Rightarrow \mathcal{U}[\pi \text { if }(\mathrm{b})\{\mathrm{p} ; \text { while (b) } \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Rightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with...

- 0 iterations? Unwind $1 \times$
- 10 iterations? Unwind $11 \times$
- 10000 iterations?
(and don't make any plans for the rest of the day)
- an unknown number of iterations?

We need an invariant rule (or some other form of induction)

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Rightarrow \mathcal{U}[\pi \text { if }(\mathrm{b})\{\mathrm{p} ; \text { while }(\mathrm{b}) \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with...

- 0 iterations? Unwind $1 \times$
- 10 iterations? Unwind $11 \times$
- 10000 iterations? Unwind 10001× (and don't make any plans for the rest of the day)
- an unknown number of iterations?

We need an invariant rule (or some other form of induction)

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Rightarrow \mathcal{U}[\pi \text { if }(\mathrm{b})\{\mathrm{p} ; \text { while }(\mathrm{b}) \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with...

- 0 iterations? Unwind $1 \times$
- 10 iterations? Unwind $11 \times$
- 10000 iterations? Unwind $10001 \times$ (and don't make any plans for the rest of the day)
- an unknown number of iterations?

We need an invariant rule (or some other form of induction)

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { unwindLoop } \frac{\Gamma \Rightarrow \mathcal{U}[\pi \text { if }(\mathrm{b})\{\mathrm{p} ; \text { while }(\mathrm{b}) \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Rightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with...

- 0 iterations? Unwind $1 \times$
- 10 iterations? Unwind $11 \times$
- 10000 iterations? Unwind 10001× (and don't make any plans for the rest of the day)
- an unknown number of iterations?

We need an invariant rule (or some other form of induction)

Loop Invariants Cont'd

Idea behind loop invariants

- A formula Inv whose validity is preserved by loop guard and body
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- If the loop terminates at all, then Inv holds afterwards
- Encode the desired postcondition after loop into Inv

Loop Invariants Cont'd

Idea behind loop invariants

- A formula Inv whose validity is preserved by loop guard and body
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- If the loop terminates at all, then Inv holds afterwards
- Encode the desired postcondition after loop into Inv

Basic Invariant Rule

Loop Invariants Cont'd

Idea behind loop invariants

- A formula Inv whose validity is preserved by loop guard and body
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- If the loop terminates at all, then Inv holds afterwards
- Encode the desired postcondition after loop into Inv

Basic Invariant Rule

$$
\Gamma \Longrightarrow \mathcal{U} \ln v, \Delta
$$

(initially valid) (preserved) (use case)

Loop Invariants Cont'd

Idea behind loop invariants

- A formula Inv whose validity is preserved by loop guard and body
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- If the loop terminates at all, then Inv holds afterwards
- Encode the desired postcondition after loop into Inv

Basic Invariant Rule

$$
\begin{gathered}
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta \\
\operatorname{Inv}, b \doteq \mathrm{TRUE} \Longrightarrow[\mathrm{p}] \ln v
\end{gathered}
$$

(initially valid) (preserved)
(use case)

Loop Invariants Cont'd

Idea behind loop invariants

- A formula Inv whose validity is preserved by loop guard and body
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- If the loop terminates at all, then Inv holds afterwards
- Encode the desired postcondition after loop into Inv

Basic Invariant Rule

$$
\begin{array}{cl}
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta & \text { (initially valid) } \\
\text { Inv, } b \doteq \operatorname{TRUE} \Longrightarrow[\mathrm{p}] \operatorname{lnv} & \text { (preserved) } \\
\text { Inv, } b \doteq \mathrm{FALSE} \Longrightarrow[\pi \omega] \phi & \text { (use case) }
\end{array}
$$

Loop Invariants Cont'd

Basic Invariant Rule: Problem

$$
\begin{aligned}
& \Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta \\
& \operatorname{Inv}, b \doteq \text { TRUE } \Rightarrow[\mathrm{p}] \ln v \\
& \text { loopInvariant } \frac{\operatorname{Inv}, b \doteq \text { FALSE } \Rightarrow[\pi \omega] \phi}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta} \\
& \text { (initially valid) } \\
& \text { (preserved) } \\
& \text { (use case) } \\
& \text { - Context } \Gamma, \Delta, \mathcal{U} \text { must be omitted in 2nd and 3rd premise } \\
& \text { - But: context contains (part of) precondition and class } \\
& \text { invariants } \\
& \text { - Required context information must be added to loop } \\
& \text { invariant Inv }
\end{aligned}
$$

Loop Invariants Cont'd

Basic Invariant Rule: Problem

$$
\begin{array}{cl}
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta & \text { (initially valid) } \\
\text { Inv, } b \doteq \operatorname{TRUE} \Longrightarrow[\mathrm{p}] \ln v & \text { (preserved) } \\
\text { IoopInvariant } \frac{\operatorname{Inv}, b \doteq \mathrm{FALSE} \Longrightarrow[\pi \omega] \phi}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta} & \text { (use case) }
\end{array}
$$

- Context $\Gamma, \Delta, \mathcal{U}$ must be omitted in 2nd and 3rd premise
- But: context contains (part of) precondition and class invariants
- Required context information must be added to loop invariant Inv

Loop Invariants Cont’d

Basic Invariant Rule: Problem

$$
\begin{array}{cl}
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta & \text { (initially valid) } \\
\text { Inv, } b \doteq \operatorname{TRUE} \Longrightarrow[\mathrm{p}] \operatorname{Inv} & \text { (preserved) } \\
\text { loopInvariant } \frac{\ln v, b \doteq \operatorname{FALSE} \Rightarrow[\pi \omega] \phi}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta} & \text { (use case) }
\end{array}
$$

- Context Г, Δ, \mathcal{U} must be omitted in 2nd and 3rd premise
- But: context contains (part of) precondition and class invariants
- Required context information must be added to loop invariant Inv

Loop Invariants Cont'd

Basic Invariant Rule: Problem

$$
\begin{array}{cl}
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta & \text { (initially valid) } \\
\text { Inv, } b \doteq \operatorname{TRUE} \Longrightarrow[\mathrm{p}] \ln v & \text { (preserved) } \\
\text { IoopInvariant } \frac{\operatorname{Inv}, b \doteq \mathrm{FALSE} \Longrightarrow[\pi \omega] \phi}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta} & \text { (use case) }
\end{array}
$$

- Context $\Gamma, \Delta, \mathcal{U}$ must be omitted in 2nd and 3rd premise
- But: context contains (part of) precondition and class invariants
- Required context information must be added to loop invariant Inv

Example

```
int i \(=0\);
while(i < a.length) \{
    a[i] = 1;
    i++;
\}
```


Example

Precondition: $a \neq$ null

```
int i \(=0\);
while(i < a.length) \{
    a[i] = 1;
    i++;
\}
```


Example

Precondition: a \neq null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x<a$. length $\rightarrow a[x] \doteq 1)$

Example

Precondition: a \neq null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x<a$. length $\rightarrow \mathrm{a}[x] \doteq 1)$

Loop invariant: $0 \leq i \quad \& \quad i \leq a . l e n g t h$

Example

Precondition: a \neq null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x<a$. length $\rightarrow \mathrm{a}[x] \doteq 1)$

Loop invariant: $0 \leq i \& i \leq a . l e n g t h$

$$
\& \forall \text { int } x ;(0 \leq x<i \rightarrow a[x] \doteq 1)
$$

Example

Precondition: $a \neq$ null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x<a$. length $\rightarrow \mathrm{a}[x] \doteq 1)$

Loop invariant: $0 \leq i \& i \leq a . l e n g t h$

$$
\& \forall \text { int } x ;(0 \leq x<i \rightarrow a[x] \doteq 1)
$$

\& $a \neq$ null

Example

Precondition: a \neq null \& ClassInv

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x<a$. length $\rightarrow a[x] \doteq 1)$

Loop invariant: $0 \leq i \& i \leq a . l e n g t h$
\& \forall int $x ;(0 \leq x<i \rightarrow a[x] \doteq 1)$
\& $a \neq$ null
\& ClassInv'

Keeping the Context

- Want to keep part of the context that is unmodified by loop
- assignable clauses for loops can tell what might be modified

Keeping the Context

- Want to keep part of the context that is unmodified by loop
- assignable clauses for loops can tell what might be modified
@ assignable i, $a[*]$;

Keeping the Context

- Want to keep part of the context that is unmodified by loop
- assignable clauses for loops can tell what might be modified
@ assignable i, $a[*]$;

Example with Improved Invariant Rule

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```


Example with Improved Invariant Rule

Precondition: $a \neq$ null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```


Example with Improved Invariant Rule

Precondition: $a \neq$ null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x<a$. length $\rightarrow a[x] \doteq 1)$

Example with Improved Invariant Rule

Precondition: a \neq null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x<a$. length $\rightarrow a[x] \doteq 1)$

Loop invariant: $0 \leq i \& i \leq a$. length

Example with Improved Invariant Rule

Precondition: a \neq null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x<a$. length $\rightarrow \mathrm{a}[x] \doteq 1)$

Loop invariant: $0 \leq i \& i \leq a . l e n g t h$

$$
\& \forall \text { int } x ;(0 \leq x<i \rightarrow a[x] \doteq 1)
$$

Example with Improved Invariant Rule

Precondition: $a \neq$ null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x<a$. length $\rightarrow a[x] \doteq 1)$

Loop invariant: $0 \leq i \& i \leq a . l e n g t h$

$$
\& \forall \text { int } x ;(0 \leq x<i \rightarrow a[x] \doteq 1)
$$

Example with Improved Invariant Rule

Precondition: a \neq null \& ClassInv

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x<a$. length $\rightarrow a[x] \doteq 1)$

Loop invariant: $0 \leq i \& i \leq a . l e n g t h$

$$
\& \forall \text { int } x ;(0 \leq x<i \rightarrow a[x] \doteq 1)
$$

Example in JML/Java - Loop. java

public int[] a;
/*@ public normal_behavior
@ ensures (\backslash forall int $x ; 0<=x \& \& x<a . l e n g t h ; ~ a[x]==1$);
@ diverges true;
@*/
public void m() \{
int i = 0;
/*@ loop_invariant
@ ($0<=$ i $\& \&$ i $<=$ a.length $\& \&$
© (\backslash forall int $\mathrm{x} ; 0<=\mathrm{x} \& \& \mathrm{x}<\mathrm{i}$; $\mathrm{a}[\mathrm{x}]==1$));
@ assignable i, $a[*]$;
@*/
while(i < a.length) \{
a[i] = 1;
i++;
\}

Example

```
\(\forall\) int \(x\);
    \((\mathrm{n} \doteq x \wedge x>=0 \rightarrow\)
    [i = 0; r = ;
        while (i<n) \{ i = i + 1; r = r + i; \}
        \(r=r+r-n\);
    \(] r \doteq\) ?)
```

How can we prove that the above formula is valid (i.e., satisfied in all states)?
 @ assignable i, r;
\qquad

Example

```
\(\forall\) int \(x\);
    \((\mathrm{n} \doteq x \wedge x>=0 \rightarrow\)
    [i = 0; r = ;
        while (i<n) \{ i = i + 1; r = r + i; \}
        \(r=r+r-n\);
    ] \(\mathrm{r} \doteq x * x)\)
```

How can we prove that the above formula is valid (i.e., satisfied in all states)?
 @ assignable i, r;
\qquad

Example

\forall int x;

$$
\begin{aligned}
& (\mathrm{n} \doteq x \wedge x>=0 \rightarrow \\
& \quad\left[\begin{array}{l}
i=0 ; r=0 ; \\
\quad \text { while }(i<n) \quad\{i=i+1 ; r=r+i ;\} \\
r=r+r-n ;
\end{array}\right. \\
& \quad] r \doteq x * x)
\end{aligned}
$$

How can we prove that the above formula is valid (i.e., satisfied in all states)?

Solution:
@ loop_invariant
@ $i>=0 \& \& 2 \star r==i *(i+1) \& \& i<=n$;
@ assignable i, r;

Example

\forall int x;

$$
\begin{aligned}
& (\mathrm{n} \doteq x \wedge x>=0 \rightarrow \\
& \text { [i = 0; r = 0; } \\
& \text { while (i<n) \{ i = i + 1; r = r + i; \} } \\
& \mathrm{r}=\mathrm{r}+\mathrm{r}-\mathrm{n} \text {; } \\
& \text {] } \mathrm{y} \doteq x * x)
\end{aligned}
$$

How can we prove that the above formula is valid (i.e., satisfied in all states)?

Solution:
@ loop_invariant
© $i>=0 \& \& 2 \star r==i *(i+1) \& \& i<=n$;
@ assignable i, r;
File: Loop2. java

Hints

Proving assignable

- The invariant rule assumes that assignable is correct E.g., with assignable \nothing; one can prove nonsense
- Invariant rule of KeY generates proof obligation that ensures correctness of assignable
- Loop treatment: Invariant
- Quantifier treatment: No Splits with Progs
- If program contains

Arithmetic treatment: DefOps

- Is search limit hiah enough (time out, rule apps.)?
- When proving partial correctness, add diverges true;

Hints

Proving assignable

- The invariant rule assumes that assignable is correct E.g., with assignable \nothing; one can prove nonsense
- Invariant rule of KeY generates proof obligation that ensures correctness of assignable

Setting in the KeY Prover when proving loops

- Loop treatment: Invariant
- Quantifier treatment: No Splits with Progs
- If program contains *, /: Arithmetic treatment: DefOps
- Is search limit high enough (time out, rule apps.)?
- When proving partial correctness, add diverges true;

Total Correctness

Find a decreasing integer term v (called variant)
Add the following premisses to the invariant rule:

- $v \geq 0$ is initially valid
- $v \geq 0$ is preserved by the loop body
- v is strictly decreased by the loop body
\square
\square

[^0]
Total Correctness

Find a decreasing integer term v (called variant)

Add the following premisses to the invariant rule:

- $v \geq 0$ is initially valid
- $v \geq 0$ is preserved by the loop body
- v is strictly decreased by the loop body

Proving termination in JML/Java

- Remove directive diverges true;
- Add directive decreasing v; to loop invariant
- KeY creates suitable invariant rule and PO (with $\langle\ldots\rangle \phi$)

[^1]
Total Correctness

Find a decreasing integer term v (called variant)

Add the following premisses to the invariant rule:

- $v \geq 0$ is initially valid
- $v \geq 0$ is preserved by the loop body
- v is strictly decreased by the loop body

Proving termination in JML/Java

- Remove directive diverges true;
- Add directive decreasing v; to loop invariant
- KeY creates suitable invariant rule and PO (with $\langle\ldots\rangle \phi$)

Example: The array loop

@ decreasing

Total Correctness

Find a decreasing integer term v (called variant)

Add the following premisses to the invariant rule:

- $v \geq 0$ is initially valid
- $v \geq 0$ is preserved by the loop body
- v is strictly decreased by the loop body

Proving termination in JML/Java

- Remove directive diverges true;
- Add directive decreasing v; to loop invariant
- KeY creates suitable invariant rule and PO (with $\langle\ldots\rangle \phi$)

Example: The array loop
@ decreasing a.length - i;

Total Correctness

Find a decreasing integer term v (called variant)

Add the following premisses to the invariant rule:

- $v \geq 0$ is initially valid
- $v \geq 0$ is preserved by the loop body
- v is strictly decreased by the loop body

Proving termination in JML/Java

- Remove directive diverges true;
- Add directive decreasing v; to loop invariant
- KeY creates suitable invariant rule and PO (with $\langle\ldots\rangle \phi$)

Files:

- LoopT.java
- Loop2T.java

[^0]: (A decreasing

[^1]: @ decreasing

