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Stating Correctness Properties
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Correctness properties can be stated syntactically within or outside
the model.

stating properties within model using
assertion statements
meta labels

end labels
accept labels
progress labels

stating properties outside model using
never claims
temporal logic formulas
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Correctness properties can be stated syntactically within or outside
the model.

stating properties within model using
assertion statements
meta labels

end labels
accept labels
progress labels

stating properties outside model using
never claims
temporal logic formulas (today’s main topic)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 3/26



Model Checking of Temporal
Properties

many correctness properties not expressible by assertions

today:

model checking of properties formulated in temporal logic

Remark:
in this course, “temporal logic” is synonymous to “linear temporal logic” (LTL)
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Beyond Assertions

Assertions only talk about the state ‘at their own location’ in the code.

Example: mutual exclusion expressed by adding assertion into each
critical section.

critical++;
assert( critical <= 1 );
critical--;

Drawbacks:

no separation of concerns (model vs. correctness property)
changing assertions is error prone (easily out of synch)
easy to forget assertions:
correctness property might be violated at unexpected locations
many interesting properties not expressible via assertions
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Temporal Correctness Properties

properties more conveniently expressed as global properties,
rather than assertions:

Mutual Exclusion
“critical <= 1 holds throughout the run”

Array Index within Bounds (given array a of length len)
“0 <= i <= len-1 holds throughout the run”

properties impossible to express via assertions:

Absence of Deadlock
“If some processes try to enter their critical section,
eventually one of them does so.”

Absence of Starvation
“If one process tries to enter its critical section,
eventually that process does so.”

all these are temporal properties ⇒ use temporal logic
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Boolean Temporal Logic

talking about numerical variables (like in critical <= 1 or
0 <= i <= len-1) requires variation of propositional temporal logic
which we call Boolean temporal logic:

Boolean expressions (over PROMELA variables),
rather than propositions,
form basic building blocks of the logic
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Boolean Temporal Logic over
PROMELA

Set ForBTL of Boolean Temporal Formulas (simplified)
all PROMELA variables and constants of type bool/bit are
∈ ForBTL

if e1 and e2 are numerical PROMELA expressions, then all of
e1==e2, e1!=e2, e1<e2, e1<=e2, e1>e2, e1>=e2 are ∈ ForBTL

if P is a process and l is a label in P, then P@l is ∈ ForBTL
(“P is at l”, also available as P[pid]@l)

if φ and ψ are formulas ∈ ForBTL, then all of
!φ, φ && ψ, φ || ψ, φ −> ψ, φ <−> ψ

[ ]φ, <>φ, φUψ

are ∈ ForBTL
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Semantics of Boolean Temporal
Logic

A run σ through a PROMELA model M is a chain of states

L0, I0 L1, I1 L2, I2 L3, I3 L4, I4 · · ·

Lj maps each running process to its current location counter.
From Lj to Lj+1, only one of the location counters has advanced

(exception: channel rendezvous).
Ij maps each variable in M to its current value.

Arithmetic and relational expressions are interpreted in states as
expected; e.g., Lj , Ij |= x<y iff Ij(x) < Ij(y)

Lj , Ij |= P@l iff Lj(P) is the location labeled with l.

Evaluating other formulas ∈ ForBTL in a run σ: as usual (see the book
/ “Formale Systeme”).
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Boolean Temporal Logic Support in
SPIN

SPIN supports Boolean temporal logic

but

arithmetic operators (+,-,*,/, ...),
relational operators (==,!=,<,<=, ...),

label operators (@)
cannot appear directly in TL formulas given to SPIN

instead

Boolean expressions must be abbreviated using #define
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Temporal Logic Quiz

What does the following LTL formula mean?
[](( Q & !R & <>R) −> (P −> (!R U (S & !R))) U R)

P triggers S between Q (e.g., end of system initialization) and R (start
of system shutdown).
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Safety Properties

Safety properties are formulas for which a finite prefix of a run
suffices as counterexample.

Often have the form [ ]φ:
something good, φ, is guaranteed throughout each run resp.
something bad, ¬φ, never happens

example: ‘[](critical <= 1)’

“it is guaranteed throughout each run that at most one process is in
its critical section”

or equivalently:
“more than one process being in its critical section will never happen”
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Applying Temporal Logic to Critical
Section Problem

We want to verify ‘[](critical<=1)’ as correctness property of:

active proctype P() {
do :: /* non-critical activity */

atomic {
!inCriticalQ;
inCriticalP = true

}
critical++;
/* critical activity */
critical--;
inCriticalP = false

od
}

/* similarly for process Q */
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Model Checking a Safety Property
with JSPIN

1 add ‘#define mutex (critical <= 1)’ to PROMELA file
2 open PROMELA file
3 enter []mutex in LTL text field
4 select Translate to create a ‘never claim’, corresponding to the

negation of the formula
5 ensure Safety is selected
6 select Verify
7 (if necessary) select Stop to terminate too long verification
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Never Claims

you may ignore them, but if you are interested:

a never claim tries to show the user wrong
it defines, in terms of PROMELA, all violations of a wanted
correctness property
it is semantically equivalent to the negation of the wanted
correctness property
JSPIN adds the negation for you
using SPIN directly, you have to add the negation yourself
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Model Checking a Safety Property
with SPIN directly

Command Line Execution
make sure ‘#define mutex (critical <= 1)’ is in
safety1.pml

> spin -a -f "!([] mutex)" safety1.pml
> gcc -DSAFETY -o pan pan.c
> ./pan
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Temporal MC Without Ghost
Variables

We want to verify mutual exclusion without using ghost variables

#define mutex !(P@cs && Q@cs)

bool inCriticalP = false, inCriticalQ = false;

active proctype P() {
do :: atomic {

!inCriticalQ;
inCriticalP = true

}
cs: /* critical activity */

inCriticalP = false
od

}
/* similarly for process Q */
/* with same label cs: */

Verify ‘[]mutex’ with JSPIN.
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Liveness Properties

Liveness properties are formulas where potential counterexamples
are necessarily infinite runs.

Often of the form <>φ:
something good, φ, eventually happens in each run

example: ‘<>csp’

(with csp a variable only true in the critical section of P)

“in each run, process P visits its critical section eventually”
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Applying Temporal Logic to
Starvation Problem

We want to verify ‘<>csp’ as correctness property of:

active proctype P() {
do :: /* non-critical activity */

atomic {
!inCriticalQ;
inCriticalP = true

}
csp = true;
/* critical activity */
csp = false;
inCriticalP = false

od
}

/* similarly for process Q */
/* here using csq */
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Model Checking a Liveness Property
with JSPIN

1 open PROMELA file
2 enter <>csp in LTL text field
3 select Translate to create a ‘never claim’, corresponding to the

negation of the formula
4 ensure that Acceptance is selected

(SPIN will search for accepting cycles through the never claim)
5 for the moment uncheck Weak Fairness (see discussion

below)
6 select Verify
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Verification Fails

Verification fails.

Why?

The liveness property on one process ‘had no chance’.
The scheduler can unfairly select the other process all the time.
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Fairness
Does the following PROMELA model necessarily terminate?

byte n = 0;
bool flag = false;

active proctype P() {
do :: flag -> break;

:: else -> n = 5 - n;
od

}
active proctype Q() {
flag = true

}

Termination guaranteed only if scheduling is (weakly) fair!

Definition (Weak Fairness)
A run is called weakly fair iff the following holds:
each continuously executable statement is executed eventually.
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Model Checking Liveness with Weak
Fairness!

Always switch Weak Fairness on when checking for liveness!
1 open PROMELA file
2 enter <>csp in LTL text field
3 select Translate to create a ‘never claim’, corresponding to the

negation of the formula
4 ensure that Acceptance is selected

(SPIN will search for accepting cycles through the never claim)
5 ensure Weak Fairness is checked
6 select Verify
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Model Checking Liveness with SPIN

directly

Command Line Execution

> spin -a -f "!csp" liveness1.pml
> gcc -o pan pan.c
> ./pan -a -f
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Verification Fails

Verification fails again.

Why?

Weak fairness is still too weak.

Note that !inCriticalQ is not continuously executable!

Designing a fair mutual exclusion algorithm is complicated.
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Literature for this Lecture

Ben-Ari Chapter 5
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