
KIT – INSTITUT FÜR THEORETISCHE INFORMATIK

Applications of Formal Verification
Model Checking with Temporal Logic

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov | SS 2012

KIT – University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

Model Checking with SPIN

SPIN

model
name.pml

correctness
properties

correctness
properties

verifier
pan.c

C
compiler

executable
verifier

pan

“errors: 0”
failing

run
name.pml.trail

interactive /random/ guided
simulation

-a

oreit
he

r
Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 2/26

Stating Correctness Properties

model
name.pml

correctness
properties

correctness
properties

Correctness properties can be stated syntactically within or outside
the model.

stating properties within model using
assertion statements
meta labels

end labels
accept labels
progress labels

stating properties outside model using
never claims
temporal logic formulas

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 3/26

Stating Correctness Properties

model
name.pml

correctness
properties

correctness
properties

Correctness properties can be stated syntactically within or outside
the model.

stating properties within model using
assertion statements

meta labels
end labels
accept labels
progress labels

stating properties outside model using
never claims
temporal logic formulas

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 3/26

Stating Correctness Properties

model
name.pml

correctness
properties

correctness
properties

Correctness properties can be stated syntactically within or outside
the model.

stating properties within model using
assertion statements
meta labels

end labels
accept labels
progress labels

stating properties outside model using
never claims
temporal logic formulas

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 3/26

Stating Correctness Properties

model
name.pml

correctness
properties

correctness
properties

Correctness properties can be stated syntactically within or outside
the model.

stating properties within model using
assertion statements
meta labels

end labels
accept labels
progress labels

stating properties outside model using
never claims
temporal logic formulas

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 3/26

Stating Correctness Properties

model
name.pml

correctness
properties

correctness
properties

Correctness properties can be stated syntactically within or outside
the model.

stating properties within model using
assertion statements
meta labels

end labels
accept labels
progress labels

stating properties outside model using
never claims
temporal logic formulas (today’s main topic)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 3/26

Model Checking of Temporal
Properties

many correctness properties not expressible by assertions

today:

model checking of properties formulated in temporal logic

Remark:
in this course, “temporal logic” is synonymous to “linear temporal logic” (LTL)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 4/26

Model Checking of Temporal
Properties

many correctness properties not expressible by assertions

today:

model checking of properties formulated in temporal logic

Remark:
in this course, “temporal logic” is synonymous to “linear temporal logic” (LTL)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 4/26

Model Checking of Temporal
Properties

many correctness properties not expressible by assertions

today:

model checking of properties formulated in temporal logic

Remark:
in this course, “temporal logic” is synonymous to “linear temporal logic” (LTL)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 4/26

Beyond Assertions

Assertions only talk about the state ‘at their own location’ in the code.

Example: mutual exclusion expressed by adding assertion into each
critical section.

critical++;
assert(critical <= 1);
critical--;

Drawbacks:

no separation of concerns (model vs. correctness property)
changing assertions is error prone (easily out of synch)
easy to forget assertions:
correctness property might be violated at unexpected locations
many interesting properties not expressible via assertions

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 5/26

Beyond Assertions

Assertions only talk about the state ‘at their own location’ in the code.

Example: mutual exclusion expressed by adding assertion into each
critical section.

critical++;
assert(critical <= 1);
critical--;

Drawbacks:

no separation of concerns (model vs. correctness property)
changing assertions is error prone (easily out of synch)
easy to forget assertions:
correctness property might be violated at unexpected locations
many interesting properties not expressible via assertions

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 5/26

Beyond Assertions

Assertions only talk about the state ‘at their own location’ in the code.

Example: mutual exclusion expressed by adding assertion into each
critical section.

critical++;
assert(critical <= 1);
critical--;

Drawbacks:
no separation of concerns (model vs. correctness property)

changing assertions is error prone (easily out of synch)
easy to forget assertions:
correctness property might be violated at unexpected locations
many interesting properties not expressible via assertions

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 5/26

Beyond Assertions

Assertions only talk about the state ‘at their own location’ in the code.

Example: mutual exclusion expressed by adding assertion into each
critical section.

critical++;
assert(critical <= 1);
critical--;

Drawbacks:
no separation of concerns (model vs. correctness property)
changing assertions is error prone (easily out of synch)

easy to forget assertions:
correctness property might be violated at unexpected locations
many interesting properties not expressible via assertions

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 5/26

Beyond Assertions

Assertions only talk about the state ‘at their own location’ in the code.

Example: mutual exclusion expressed by adding assertion into each
critical section.

critical++;
assert(critical <= 1);
critical--;

Drawbacks:
no separation of concerns (model vs. correctness property)
changing assertions is error prone (easily out of synch)
easy to forget assertions:
correctness property might be violated at unexpected locations

many interesting properties not expressible via assertions

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 5/26

Beyond Assertions

Assertions only talk about the state ‘at their own location’ in the code.

Example: mutual exclusion expressed by adding assertion into each
critical section.

critical++;
assert(critical <= 1);
critical--;

Drawbacks:
no separation of concerns (model vs. correctness property)
changing assertions is error prone (easily out of synch)
easy to forget assertions:
correctness property might be violated at unexpected locations
many interesting properties not expressible via assertions

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 5/26

Temporal Correctness Properties

properties more conveniently expressed as global properties,
rather than assertions:

Mutual Exclusion
“critical <= 1 holds throughout the run”

Array Index within Bounds (given array a of length len)
“0 <= i <= len-1 holds throughout the run”

properties impossible to express via assertions:

Absence of Deadlock
“If some processes try to enter their critical section,
eventually one of them does so.”

Absence of Starvation
“If one process tries to enter its critical section,
eventually that process does so.”

all these are temporal properties ⇒ use temporal logic

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 6/26

Temporal Correctness Properties

properties more conveniently expressed as global properties,
rather than assertions:
Mutual Exclusion

“critical <= 1 holds throughout the run”

Array Index within Bounds (given array a of length len)
“0 <= i <= len-1 holds throughout the run”

properties impossible to express via assertions:

Absence of Deadlock
“If some processes try to enter their critical section,
eventually one of them does so.”

Absence of Starvation
“If one process tries to enter its critical section,
eventually that process does so.”

all these are temporal properties ⇒ use temporal logic

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 6/26

Temporal Correctness Properties

properties more conveniently expressed as global properties,
rather than assertions:
Mutual Exclusion

“critical <= 1 holds throughout the run”
Array Index within Bounds (given array a of length len)

“0 <= i <= len-1 holds throughout the run”

properties impossible to express via assertions:

Absence of Deadlock
“If some processes try to enter their critical section,
eventually one of them does so.”

Absence of Starvation
“If one process tries to enter its critical section,
eventually that process does so.”

all these are temporal properties ⇒ use temporal logic

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 6/26

Temporal Correctness Properties

properties more conveniently expressed as global properties,
rather than assertions:
Mutual Exclusion

“critical <= 1 holds throughout the run”
Array Index within Bounds (given array a of length len)

“0 <= i <= len-1 holds throughout the run”

properties impossible to express via assertions:

Absence of Deadlock
“If some processes try to enter their critical section,
eventually one of them does so.”

Absence of Starvation
“If one process tries to enter its critical section,
eventually that process does so.”

all these are temporal properties ⇒ use temporal logic

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 6/26

Temporal Correctness Properties

properties more conveniently expressed as global properties,
rather than assertions:
Mutual Exclusion

“critical <= 1 holds throughout the run”
Array Index within Bounds (given array a of length len)

“0 <= i <= len-1 holds throughout the run”

properties impossible to express via assertions:
Absence of Deadlock

“If some processes try to enter their critical section,
eventually one of them does so.”

Absence of Starvation
“If one process tries to enter its critical section,
eventually that process does so.”

all these are temporal properties ⇒ use temporal logic

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 6/26

Temporal Correctness Properties

properties more conveniently expressed as global properties,
rather than assertions:
Mutual Exclusion

“critical <= 1 holds throughout the run”
Array Index within Bounds (given array a of length len)

“0 <= i <= len-1 holds throughout the run”

properties impossible to express via assertions:
Absence of Deadlock

“If some processes try to enter their critical section,
eventually one of them does so.”

Absence of Starvation
“If one process tries to enter its critical section,
eventually that process does so.”

all these are temporal properties ⇒ use temporal logic

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 6/26

Temporal Correctness Properties

properties more conveniently expressed as global properties,
rather than assertions:
Mutual Exclusion

“critical <= 1 holds throughout the run”
Array Index within Bounds (given array a of length len)

“0 <= i <= len-1 holds throughout the run”

properties impossible to express via assertions:
Absence of Deadlock

“If some processes try to enter their critical section,
eventually one of them does so.”

Absence of Starvation
“If one process tries to enter its critical section,
eventually that process does so.”

all these are temporal properties

⇒ use temporal logic

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 6/26

Temporal Correctness Properties

properties more conveniently expressed as global properties,
rather than assertions:
Mutual Exclusion

“critical <= 1 holds throughout the run”
Array Index within Bounds (given array a of length len)

“0 <= i <= len-1 holds throughout the run”

properties impossible to express via assertions:
Absence of Deadlock

“If some processes try to enter their critical section,
eventually one of them does so.”

Absence of Starvation
“If one process tries to enter its critical section,
eventually that process does so.”

all these are temporal properties ⇒ use temporal logic

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 6/26

Boolean Temporal Logic

talking about numerical variables (like in critical <= 1 or
0 <= i <= len-1) requires variation of propositional temporal logic
which we call Boolean temporal logic:

Boolean expressions (over PROMELA variables),
rather than propositions,
form basic building blocks of the logic

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 7/26

Boolean Temporal Logic over
PROMELA

Set ForBTL of Boolean Temporal Formulas (simplified)
all PROMELA variables and constants of type bool/bit are
∈ ForBTL

if e1 and e2 are numerical PROMELA expressions, then all of
e1==e2, e1!=e2, e1<e2, e1<=e2, e1>e2, e1>=e2 are ∈ ForBTL

if P is a process and l is a label in P, then P@l is ∈ ForBTL
(“P is at l”, also available as P[pid]@l)

if φ and ψ are formulas ∈ ForBTL, then all of
!φ, φ && ψ, φ || ψ, φ −> ψ, φ <−> ψ

[]φ, <>φ, φUψ

are ∈ ForBTL

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 8/26

Boolean Temporal Logic over
PROMELA

Set ForBTL of Boolean Temporal Formulas (simplified)
all PROMELA variables and constants of type bool/bit are
∈ ForBTL

if e1 and e2 are numerical PROMELA expressions, then all of
e1==e2, e1!=e2, e1<e2, e1<=e2, e1>e2, e1>=e2 are ∈ ForBTL

if P is a process and l is a label in P, then P@l is ∈ ForBTL
(“P is at l”, also available as P[pid]@l)

if φ and ψ are formulas ∈ ForBTL, then all of
!φ, φ && ψ, φ || ψ, φ −> ψ, φ <−> ψ

[]φ, <>φ, φUψ

are ∈ ForBTL

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 8/26

Boolean Temporal Logic over
PROMELA

Set ForBTL of Boolean Temporal Formulas (simplified)
all PROMELA variables and constants of type bool/bit are
∈ ForBTL

if e1 and e2 are numerical PROMELA expressions, then all of
e1==e2, e1!=e2, e1<e2, e1<=e2, e1>e2, e1>=e2 are ∈ ForBTL

if P is a process and l is a label in P, then P@l is ∈ ForBTL
(“P is at l”, also available as P[pid]@l)

if φ and ψ are formulas ∈ ForBTL, then all of
!φ, φ && ψ, φ || ψ, φ −> ψ, φ <−> ψ

[]φ, <>φ, φUψ

are ∈ ForBTL

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 8/26

Boolean Temporal Logic over
PROMELA

Set ForBTL of Boolean Temporal Formulas (simplified)
all PROMELA variables and constants of type bool/bit are
∈ ForBTL

if e1 and e2 are numerical PROMELA expressions, then all of
e1==e2, e1!=e2, e1<e2, e1<=e2, e1>e2, e1>=e2 are ∈ ForBTL

if P is a process and l is a label in P, then P@l is ∈ ForBTL
(“P is at l”, also available as P[pid]@l)

if φ and ψ are formulas ∈ ForBTL, then all of
!φ, φ && ψ, φ || ψ, φ −> ψ, φ <−> ψ

[]φ, <>φ, φUψ

are ∈ ForBTL

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 8/26

Semantics of Boolean Temporal
Logic

A run σ through a PROMELA model M is a chain of states

L0, I0 L1, I1 L2, I2 L3, I3 L4, I4 · · ·

Lj maps each running process to its current location counter.
From Lj to Lj+1, only one of the location counters has advanced

(exception: channel rendezvous).
Ij maps each variable in M to its current value.

Arithmetic and relational expressions are interpreted in states as
expected; e.g., Lj , Ij |= x<y iff Ij(x) < Ij(y)

Lj , Ij |= P@l iff Lj(P) is the location labeled with l.

Evaluating other formulas ∈ ForBTL in a run σ: as usual (see the book
/ “Formale Systeme”).

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 9/26

Semantics of Boolean Temporal
Logic

A run σ through a PROMELA model M is a chain of states

L0, I0 L1, I1 L2, I2 L3, I3 L4, I4 · · ·

Lj maps each running process to its current location counter.
From Lj to Lj+1, only one of the location counters has advanced

(exception: channel rendezvous).
Ij maps each variable in M to its current value.

Arithmetic and relational expressions are interpreted in states as
expected; e.g., Lj , Ij |= x<y iff Ij(x) < Ij(y)

Lj , Ij |= P@l iff Lj(P) is the location labeled with l.

Evaluating other formulas ∈ ForBTL in a run σ: as usual (see the book
/ “Formale Systeme”).

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 9/26

Semantics of Boolean Temporal
Logic

A run σ through a PROMELA model M is a chain of states

L0, I0 L1, I1 L2, I2 L3, I3 L4, I4 · · ·

Lj maps each running process to its current location counter.
From Lj to Lj+1, only one of the location counters has advanced

(exception: channel rendezvous).
Ij maps each variable in M to its current value.

Arithmetic and relational expressions are interpreted in states as
expected; e.g., Lj , Ij |= x<y iff Ij(x) < Ij(y)

Lj , Ij |= P@l iff Lj(P) is the location labeled with l.

Evaluating other formulas ∈ ForBTL in a run σ: as usual (see the book
/ “Formale Systeme”).

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 9/26

Semantics of Boolean Temporal
Logic

A run σ through a PROMELA model M is a chain of states

L0, I0 L1, I1 L2, I2 L3, I3 L4, I4 · · ·

Lj maps each running process to its current location counter.
From Lj to Lj+1, only one of the location counters has advanced

(exception: channel rendezvous).
Ij maps each variable in M to its current value.

Arithmetic and relational expressions are interpreted in states as
expected; e.g., Lj , Ij |= x<y iff Ij(x) < Ij(y)

Lj , Ij |= P@l iff Lj(P) is the location labeled with l.

Evaluating other formulas ∈ ForBTL in a run σ: as usual (see the book
/ “Formale Systeme”).

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 9/26

Boolean Temporal Logic Support in
SPIN

SPIN supports Boolean temporal logic

but

arithmetic operators (+,-,*,/, ...),
relational operators (==,!=,<,<=, ...),

label operators (@)
cannot appear directly in TL formulas given to SPIN

instead

Boolean expressions must be abbreviated using #define

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 10/26

Boolean Temporal Logic Support in
SPIN

SPIN supports Boolean temporal logic

but

arithmetic operators (+,-,*,/, ...),
relational operators (==,!=,<,<=, ...),

label operators (@)
cannot appear directly in TL formulas given to SPIN

instead

Boolean expressions must be abbreviated using #define

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 10/26

Boolean Temporal Logic Support in
SPIN

SPIN supports Boolean temporal logic

but

arithmetic operators (+,-,*,/, ...),
relational operators (==,!=,<,<=, ...),

label operators (@)
cannot appear directly in TL formulas given to SPIN

instead

Boolean expressions must be abbreviated using #define

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 10/26

Boolean Temporal Logic Support in
SPIN

SPIN supports Boolean temporal logic

but

arithmetic operators (+,-,*,/, ...),
relational operators (==,!=,<,<=, ...),

label operators (@)
cannot appear directly in TL formulas given to SPIN

instead

Boolean expressions must be abbreviated using #define

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 10/26

Temporal Logic Quiz

What does the following LTL formula mean?
[]((Q & !R & <>R) −> (P −> (!R U (S & !R))) U R)

P triggers S between Q (e.g., end of system initialization) and R (start
of system shutdown).

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 11/26

Temporal Logic Quiz

What does the following LTL formula mean?
[]((Q & !R & <>R) −> (P −> (!R U (S & !R))) U R)

P triggers S between Q (e.g., end of system initialization) and R (start
of system shutdown).

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 11/26

Safety Properties

Safety properties are formulas for which a finite prefix of a run
suffices as counterexample.

Often have the form []φ:
something good, φ, is guaranteed throughout each run resp.
something bad, ¬φ, never happens

example: ‘[](critical <= 1)’

“it is guaranteed throughout each run that at most one process is in
its critical section”

or equivalently:
“more than one process being in its critical section will never happen”

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 12/26

Safety Properties

Safety properties are formulas for which a finite prefix of a run
suffices as counterexample.

Often have the form []φ:
something good, φ, is guaranteed throughout each run resp.
something bad, ¬φ, never happens

example: ‘[](critical <= 1)’

“it is guaranteed throughout each run that at most one process is in
its critical section”

or equivalently:
“more than one process being in its critical section will never happen”

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 12/26

Safety Properties

Safety properties are formulas for which a finite prefix of a run
suffices as counterexample.

Often have the form []φ:
something good, φ, is guaranteed throughout each run resp.
something bad, ¬φ, never happens

example: ‘[](critical <= 1)’

“it is guaranteed throughout each run that at most one process is in
its critical section”

or equivalently:
“more than one process being in its critical section will never happen”

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 12/26

Safety Properties

Safety properties are formulas for which a finite prefix of a run
suffices as counterexample.

Often have the form []φ:
something good, φ, is guaranteed throughout each run resp.
something bad, ¬φ, never happens

example: ‘[](critical <= 1)’

“it is guaranteed throughout each run that at most one process is in
its critical section”

or equivalently:
“more than one process being in its critical section will never happen”

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 12/26

Safety Properties

Safety properties are formulas for which a finite prefix of a run
suffices as counterexample.

Often have the form []φ:
something good, φ, is guaranteed throughout each run resp.
something bad, ¬φ, never happens

example: ‘[](critical <= 1)’

“it is guaranteed throughout each run that at most one process is in
its critical section”

or equivalently:
“more than one process being in its critical section will never happen”

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 12/26

Applying Temporal Logic to Critical
Section Problem

We want to verify ‘[](critical<=1)’ as correctness property of:

active proctype P() {
do :: /* non-critical activity */

atomic {
!inCriticalQ;
inCriticalP = true

}
critical++;
/* critical activity */
critical--;
inCriticalP = false

od
}

/* similarly for process Q */

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 13/26

Model Checking a Safety Property
with JSPIN

1 add ‘#define mutex (critical <= 1)’ to PROMELA file
2 open PROMELA file
3 enter []mutex in LTL text field
4 select Translate to create a ‘never claim’, corresponding to the

negation of the formula
5 ensure Safety is selected
6 select Verify
7 (if necessary) select Stop to terminate too long verification

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 14/26

Never Claims

you may ignore them, but if you are interested:

a never claim tries to show the user wrong
it defines, in terms of PROMELA, all violations of a wanted
correctness property
it is semantically equivalent to the negation of the wanted
correctness property
JSPIN adds the negation for you
using SPIN directly, you have to add the negation yourself

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 15/26

Model Checking a Safety Property
with SPIN directly

Command Line Execution
make sure ‘#define mutex (critical <= 1)’ is in
safety1.pml

> spin -a -f "!([] mutex)" safety1.pml
> gcc -DSAFETY -o pan pan.c
> ./pan

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 16/26

Temporal MC Without Ghost
Variables

We want to verify mutual exclusion without using ghost variables

#define mutex !(P@cs && Q@cs)

bool inCriticalP = false, inCriticalQ = false;

active proctype P() {
do :: atomic {

!inCriticalQ;
inCriticalP = true

}
cs: /* critical activity */

inCriticalP = false
od

}
/* similarly for process Q */
/* with same label cs: */

Verify ‘[]mutex’ with JSPIN.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 17/26

Temporal MC Without Ghost
Variables

We want to verify mutual exclusion without using ghost variables

#define mutex !(P@cs && Q@cs)

bool inCriticalP = false, inCriticalQ = false;

active proctype P() {
do :: atomic {

!inCriticalQ;
inCriticalP = true

}
cs: /* critical activity */

inCriticalP = false
od

}
/* similarly for process Q */
/* with same label cs: */

Verify ‘[]mutex’ with JSPIN.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 17/26

Liveness Properties

Liveness properties are formulas where potential counterexamples
are necessarily infinite runs.

Often of the form <>φ:
something good, φ, eventually happens in each run

example: ‘<>csp’

(with csp a variable only true in the critical section of P)

“in each run, process P visits its critical section eventually”

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 18/26

Liveness Properties

Liveness properties are formulas where potential counterexamples
are necessarily infinite runs.

Often of the form <>φ:
something good, φ, eventually happens in each run

example: ‘<>csp’

(with csp a variable only true in the critical section of P)

“in each run, process P visits its critical section eventually”

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 18/26

Liveness Properties

Liveness properties are formulas where potential counterexamples
are necessarily infinite runs.

Often of the form <>φ:
something good, φ, eventually happens in each run

example: ‘<>csp’

(with csp a variable only true in the critical section of P)

“in each run, process P visits its critical section eventually”

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 18/26

Liveness Properties

Liveness properties are formulas where potential counterexamples
are necessarily infinite runs.

Often of the form <>φ:
something good, φ, eventually happens in each run

example: ‘<>csp’

(with csp a variable only true in the critical section of P)

“in each run, process P visits its critical section eventually”

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 18/26

Applying Temporal Logic to
Starvation Problem

We want to verify ‘<>csp’ as correctness property of:

active proctype P() {
do :: /* non-critical activity */

atomic {
!inCriticalQ;
inCriticalP = true

}
csp = true;
/* critical activity */
csp = false;
inCriticalP = false

od
}

/* similarly for process Q */
/* here using csq */

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 19/26

Model Checking a Liveness Property
with JSPIN

1 open PROMELA file
2 enter <>csp in LTL text field
3 select Translate to create a ‘never claim’, corresponding to the

negation of the formula
4 ensure that Acceptance is selected

(SPIN will search for accepting cycles through the never claim)
5 for the moment uncheck Weak Fairness (see discussion

below)
6 select Verify

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 20/26

Verification Fails

Verification fails.

Why?

The liveness property on one process ‘had no chance’.
The scheduler can unfairly select the other process all the time.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 21/26

Verification Fails

Verification fails.

Why?

The liveness property on one process ‘had no chance’.
The scheduler can unfairly select the other process all the time.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 21/26

Fairness
Does the following PROMELA model necessarily terminate?

byte n = 0;
bool flag = false;

active proctype P() {
do :: flag -> break;

:: else -> n = 5 - n;
od

}
active proctype Q() {
flag = true

}

Termination guaranteed only if scheduling is (weakly) fair!

Definition (Weak Fairness)
A run is called weakly fair iff the following holds:
each continuously executable statement is executed eventually.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 22/26

Fairness
Does the following PROMELA model necessarily terminate?

byte n = 0;
bool flag = false;

active proctype P() {
do :: flag -> break;

:: else -> n = 5 - n;
od

}
active proctype Q() {
flag = true

}

Termination guaranteed only if scheduling is (weakly) fair!

Definition (Weak Fairness)
A run is called weakly fair iff the following holds:
each continuously executable statement is executed eventually.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 22/26

Fairness
Does the following PROMELA model necessarily terminate?

byte n = 0;
bool flag = false;

active proctype P() {
do :: flag -> break;

:: else -> n = 5 - n;
od

}
active proctype Q() {
flag = true

}

Termination guaranteed only if scheduling is (weakly) fair!

Definition (Weak Fairness)
A run is called weakly fair iff the following holds:
each continuously executable statement is executed eventually.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 22/26

Model Checking Liveness with Weak
Fairness!

Always switch Weak Fairness on when checking for liveness!
1 open PROMELA file
2 enter <>csp in LTL text field
3 select Translate to create a ‘never claim’, corresponding to the

negation of the formula
4 ensure that Acceptance is selected

(SPIN will search for accepting cycles through the never claim)
5 ensure Weak Fairness is checked
6 select Verify

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 23/26

Model Checking Liveness with SPIN

directly

Command Line Execution

> spin -a -f "!csp" liveness1.pml
> gcc -o pan pan.c
> ./pan -a -f

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 24/26

Verification Fails

Verification fails again.

Why?

Weak fairness is still too weak.

Note that !inCriticalQ is not continuously executable!

Designing a fair mutual exclusion algorithm is complicated.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 25/26

Verification Fails

Verification fails again.

Why?

Weak fairness is still too weak.

Note that !inCriticalQ is not continuously executable!

Designing a fair mutual exclusion algorithm is complicated.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 25/26

Verification Fails

Verification fails again.

Why?

Weak fairness is still too weak.

Note that !inCriticalQ is not continuously executable!

Designing a fair mutual exclusion algorithm is complicated.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 25/26

Verification Fails

Verification fails again.

Why?

Weak fairness is still too weak.

Note that !inCriticalQ is not continuously executable!

Designing a fair mutual exclusion algorithm is complicated.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 25/26

Literature for this Lecture

Ben-Ari Chapter 5

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 26/26

	Model Checking with Spin
	Verification with Temporal Properties
	Boolean Temporal Logic
	Safety Properties
	Without Ghost Variables
	Liveness Properties
	The Scheduler Was Not Fair
	Literature

