
KIT – INSTITUT FÜR THEORETISCHE INFORMATIK

Applications of Formal Verification
Deductive Verification of Information Flow Properties of
Java Programs
Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov | SS 2012

KIT – University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

1 Non-Interference
Definition
Reformulation and Formalization – Alternating Quantifiers
Reformulation and Formalization – Self-Composition

2 Declassification

3 Termination-sensitive Non-interference

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 2/14

Non-Interference

Prominent information flow property: non-interference

Simple case:
deterministic, terminating, imperative program P
program variables of P are partitioned in

low-security variables low and
high-security variables high

In the following, non-interference means high do not
interfere with low in P (=no information flows from high to
low)

Definition (Non-interference – not quite formal)
When starting P with arbitrary values for low , the values of low
after executing P are independent of the choices of high.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 3/14

Non-Interference

Prominent information flow property: non-interference

Simple case:
deterministic, terminating, imperative program P
program variables of P are partitioned in

low-security variables low and
high-security variables high

In the following, non-interference means high do not
interfere with low in P (=no information flows from high to
low)

Definition (Non-interference – not quite formal)
When starting P with arbitrary values for low , the values of low
after executing P are independent of the choices of high.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 3/14

Non-Interference

Prominent information flow property: non-interference

Simple case:
deterministic, terminating, imperative program P
program variables of P are partitioned in

low-security variables low and
high-security variables high

In the following, non-interference means high do not
interfere with low in P (=no information flows from high to
low)

Definition (Non-interference – not quite formal)
When starting P with arbitrary values for low , the values of low
after executing P are independent of the choices of high.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 3/14

Non-Interference

Prominent information flow property: non-interference

Simple case:
deterministic, terminating, imperative program P
program variables of P are partitioned in

low-security variables low and
high-security variables high

In the following, non-interference means high do not
interfere with low in P (=no information flows from high to
low)

Definition (Non-interference – not quite formal)
When starting P with arbitrary values for low , the values of low
after executing P are independent of the choices of high.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 3/14

Non-Interference

Prominent information flow property: non-interference

Simple case:
deterministic, terminating, imperative program P
program variables of P are partitioned in

low-security variables low and
high-security variables high

In the following, non-interference means high do not
interfere with low in P (=no information flows from high to
low)

Definition (Non-interference – not quite formal)
When starting P with arbitrary values for low , the values of low
after executing P are independent of the choices of high.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 3/14

Non-Interference

Prominent information flow property: non-interference

Simple case:
deterministic, terminating, imperative program P
program variables of P are partitioned in

low-security variables low and
high-security variables high

In the following, non-interference means high do not
interfere with low in P (=no information flows from high to
low)

Definition (Non-interference – not quite formal)
When starting P with arbitrary values for low , the values of low
after executing P are independent of the choices of high.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 3/14

Examples

Which methods are secure?

class MiniExamples {
public int l;
private int h;

void m_1() {
l = h;

}

void m_2() {
if (l>0) {h=1;}
else {h=2;};

}

void m_3() {
if (h>0) {l=1;}
else {l=2;};

}

void m_4() {
h=0; l=h;

}

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 4/14

Examples

Which methods are secure?

class MiniExamples {
public int l;
private int h;

void m_1() {
l = h;

}

void m_2() {
if (l>0) {h=1;}
else {h=2;};

}

void m_3() {
if (h>0) {l=1;}
else {l=2;};

}

void m_4() {
h=0; l=h;

}

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 4/14

Examples

Which methods are secure?

class MiniExamples {
public int l;
private int h;

void m_1() {
l = h;

}

void m_2() {
if (l>0) {h=1;}
else {h=2;};

}

void m_3() {
if (h>0) {l=1;}
else {l=2;};

}

void m_4() {
h=0; l=h;

}

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 4/14

Examples

Which methods are secure?

class MiniExamples {
public int l;
private int h;

void m_1() {
l = h;

}

void m_2() {
if (l>0) {h=1;}
else {h=2;};

}

void m_3() {
if (h>0) {l=1;}
else {l=2;};

}

void m_4() {
h=0; l=h;

}

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 4/14

Examples

Which methods are secure?

class MiniExamples {
public int l;
private int h;

void m_1() {
l = h;

}

void m_2() {
if (l>0) {h=1;}
else {h=2;};

}

void m_3() {
if (h>0) {l=1;}
else {l=2;};

}

void m_4() {
h=0; l=h;

}

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 4/14

Examples

Which methods are secure?

void m_5() {
l=h; l=l-h;

}

void m_6() {
if (false) l=h;

}

}

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 5/14

Examples

Which methods are secure?

void m_5() {
l=h; l=l-h;

}

void m_6() {
if (false) l=h;

}

}

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 5/14

Examples

Which methods are secure?

void m_5() {
l=h; l=l-h;

}

void m_6() {
if (false) l=h;

}

}

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 5/14

Non-Interference

Definition (Low-equivalence on states)
Two states are low-equivalent if they assign the same values to
low variables.

Definition (Non-interference)
Starting P in two arbitrary low-equivalent states results in two
final states that are also low-equivalent.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 6/14

Non-Interference

Definition (Low-equivalence on states)
Two states are low-equivalent if they assign the same values to
low variables.

Definition (Non-interference)
Starting P in two arbitrary low-equivalent states results in two
final states that are also low-equivalent.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 6/14

Non-Interference in JavaDL –
Alternating Quantifiers

Non-interference encoding in JavaDL (v1)
For all low input values inl , there exist low output values r such
that for all high input values inh, if we assign the values inl to
the program variables low and inh to the program variables
high, then after execution of P the values of low are r .

∀inl∃r∀inh({low := inl || high := inh}[P]low = r)

Problem: not suitable for automatic verification
instantiation of existential quantifier difficult.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 7/14

Non-Interference in JavaDL –
Alternating Quantifiers

Non-interference encoding in JavaDL (v1)
For all low input values inl , there exist low output values r such
that for all high input values inh, if we assign the values inl to
the program variables low and inh to the program variables
high, then after execution of P the values of low are r .

∀inl∃r∀inh({low := inl || high := inh}[P]low = r)

Problem: not suitable for automatic verification
instantiation of existential quantifier difficult.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 7/14

Non-Interference in JavaDL –
Alternating Quantifiers

Non-interference encoding in JavaDL (v1)
For all low input values inl , there exist low output values r such
that for all high input values inh, if we assign the values inl to
the program variables low and inh to the program variables
high, then after execution of P the values of low are r .

∀inl∃r∀inh({low := inl || high := inh}[P]low = r)

Problem: not suitable for automatic verification
instantiation of existential quantifier difficult.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 7/14

Non-Interference in JavaDL –
Alternating Quantifiers

Non-interference encoding in JavaDL (v1)
For all low input values inl , there exist low output values r such
that for all high input values inh, if we assign the values inl to
the program variables low and inh to the program variables
high, then after execution of P the values of low are r .

∀inl∃r∀inh({low := inl || high := inh}[P]low = r)

Problem: not suitable for automatic verification
instantiation of existential quantifier difficult.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 7/14

Non-Interference in JavaDL –
Alternating Quantifiers

Non-interference encoding in JavaDL (v1)
For all low input values inl , there exist low output values r such
that for all high input values inh, if we assign the values inl to
the program variables low and inh to the program variables
high, then after execution of P the values of low are r .

∀inl∃r∀inh({low := inl || high := inh}[P]low = r)

Problem: not suitable for automatic verification
instantiation of existential quantifier difficult.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 7/14

Non-Interference in JavaDL –
Alternating Quantifiers

Non-interference encoding in JavaDL (v1)
For all low input values inl , there exist low output values r such
that for all high input values inh, if we assign the values inl to
the program variables low and inh to the program variables
high, then after execution of P the values of low are r .

∀inl∃r∀inh({low := inl || high := inh}[P]low = r)

Problem: not suitable for automatic verification
instantiation of existential quantifier difficult.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 7/14

Non-Interference in JavaDL –
Alternating Quantifiers

Non-interference encoding in JavaDL (v1)
For all low input values inl , there exist low output values r such
that for all high input values inh, if we assign the values inl to
the program variables low and inh to the program variables
high, then after execution of P the values of low are r .

∀inl∃r∀inh({low := inl || high := inh}[P]low = r)

Problem: not suitable for automatic verification
instantiation of existential quantifier difficult.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 7/14

Non-Interference in JavaDL –
Self-Composition

Non-interference encoding in JavaDL (v2)
Running two instances of P on the same low values but on
arbitrary high values results in low variables which have the
same values.

∀inl∀in1
h∀in2

h∀out1
l ∀out2

l {low := inl}(
{high := in1

h}[P]out1
l = low

∧ {high := in2
h}[P]out2

l = low

→ out1
l = out2

l

)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 8/14

Non-Interference in JavaDL –
Self-Composition

Non-interference encoding in JavaDL (v2)
Running two instances of P on the same low values but on
arbitrary high values results in low variables which have the
same values.

∀inl∀in1
h∀in2

h∀out1
l ∀out2

l {low := inl}(
{high := in1

h}[P]out1
l = low

∧ {high := in2
h}[P]out2

l = low

→ out1
l = out2

l

)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 8/14

Non-Interference in JavaDL –
Self-Composition

Non-interference encoding in JavaDL (v2)
Running two instances of P on the same low values but on
arbitrary high values results in low variables which have the
same values.

∀inl∀in1
h∀in2

h∀out1
l ∀out2

l {low := inl}(
{high := in1

h}[P]out1
l = low

∧ {high := in2
h}[P]out2

l = low

→ out1
l = out2

l

)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 8/14

Non-Interference in JavaDL –
Self-Composition

Non-interference encoding in JavaDL (v2)
Running two instances of P on the same low values but on
arbitrary high values results in low variables which have the
same values.

∀inl∀in1
h∀in2

h∀out1
l ∀out2

l {low := inl}(
{high := in1

h}[P]out1
l = low

∧ {high := in2
h}[P]out2

l = low

→ out1
l = out2

l

)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 8/14

Declassification

Let T (high, low) be a term. Intuitively: The only thing the
attacker is allowed to learn about the secret inputs is the value
of T in the initial state.

Definition (Non-interference w/ declassification)
Starting P in two arbitrary low-equivalent states coinciding in
the value of T results in two final states that are also
low-equivalent.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 9/14

Declassification

Let T (high, low) be a term. Intuitively: The only thing the
attacker is allowed to learn about the secret inputs is the value
of T in the initial state.

Definition (Non-interference w/ declassification)
Starting P in two arbitrary low-equivalent states coinciding in
the value of T results in two final states that are also
low-equivalent.

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 9/14

Declassification in JavaDL –
Self-Composition

Encoding non-interference w/ declassification in JavaDL
Running two instances of P on the same low values and
arbitrary high values coinciding on T results in low variables
which have the same values.

∀inl∀in1
h∀in2

h∀out1
l ∀out2

l {low := inl}(
{high := in1

h}T = {high := in2
h}T

∧ {high := in1
h}[P]out1

l = low

∧ {high := in2
h}[P]out2

l = low

→ out1
l = out2

l

)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 10/14

Declassification in JavaDL –
Self-Composition

Encoding non-interference w/ declassification in JavaDL
Running two instances of P on the same low values and
arbitrary high values coinciding on T results in low variables
which have the same values.

∀inl∀in1
h∀in2

h∀out1
l ∀out2

l {low := inl}(
{high := in1

h}T = {high := in2
h}T

∧ {high := in1
h}[P]out1

l = low

∧ {high := in2
h}[P]out2

l = low

→ out1
l = out2

l

)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 10/14

Declassification in JavaDL –
Alternating Quantifiers

Encoding non-interference w/ declassification in JavaDL
For all values of T , for all low input values inl , there exist low
output values r such that for all high input values inh, if we
assign the values inl to the program variables low and inh to the
program variables high, then after execution of P the values of
low are r .

∀d∀inl∃r∀inh{low := inl || high := inh}(T = d → [P]low = r)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 11/14

Declassification in JavaDL –
Alternating Quantifiers

Encoding non-interference w/ declassification in JavaDL
For all values of T , for all low input values inl , there exist low
output values r such that for all high input values inh, if we
assign the values inl to the program variables low and inh to the
program variables high, then after execution of P the values of
low are r .

∀d∀inl∃r∀inh{low := inl || high := inh}(T = d → [P]low = r)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 11/14

Adding Termination-sensitivity

We retract the requirement that P must always terminate.

Definition (Termination-sensitive non-interference)
Starting P in two arbitrary low-equivalent states either results in
two non-terminating runs or in two final states that are also
low-equivalent.

∀inl∀in1
h∀in2

h∀out1
l ∀out2

l {low := inl}(
{high := in1

h}〈P〉true ∧ {high := in2
h}〈P〉true ∧

({high := in1
h}〈P〉out1

l = low ∧
{high := in2

h}〈P〉out2
l = low →

out1
l = out2

l)

) ∨ ({high := in1
h}[P]false ∧ {high := in2

h}[P]false)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 12/14

Adding Termination-sensitivity

We retract the requirement that P must always terminate.

Definition (Termination-sensitive non-interference)
Starting P in two arbitrary low-equivalent states either results in
two non-terminating runs or in two final states that are also
low-equivalent.

∀inl∀in1
h∀in2

h∀out1
l ∀out2

l {low := inl}(
{high := in1

h}〈P〉true ∧ {high := in2
h}〈P〉true ∧

({high := in1
h}〈P〉out1

l = low ∧
{high := in2

h}〈P〉out2
l = low →

out1
l = out2

l)

) ∨ ({high := in1
h}[P]false ∧ {high := in2

h}[P]false)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 12/14

Adding Termination-sensitivity

We retract the requirement that P must always terminate.

Definition (Termination-sensitive non-interference)
Starting P in two arbitrary low-equivalent states either results in
two non-terminating runs or in two final states that are also
low-equivalent.

∀inl∀in1
h∀in2

h∀out1
l ∀out2

l {low := inl}(
{high := in1

h}〈P〉true ∧ {high := in2
h}〈P〉true ∧

({high := in1
h}〈P〉out1

l = low ∧
{high := in2

h}〈P〉out2
l = low →

out1
l = out2

l)

) ∨ ({high := in1
h}[P]false ∧ {high := in2

h}[P]false)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 12/14

Adding Termination-sensitivity

Another encoding of termination-sensitive non-interf.
For every low input, if P terminates for some high input, then it
teminates for all high inputs, and with the same low output.

∀inl {low := inl}(
∃inh{high := inh}〈P〉true →
∃r∀inh{high := inh}〈P〉low = r

)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 13/14

Not Covered Here

Concurrency / nondeterminism
Objects & heap
Properties beyond non-interference (e.g., data integrity)

Prof. Dr. Bernhard Beckert · Dr. Vladimir Klebanov – Applications of Formal Verification SS 2012 14/14

	Non-Interference
	Definition
	Reformulation and Formalization – Alternating Quantifiers
	Reformulation and Formalization – Self-Composition

	Declassification
	Termination-sensitive Non-interference

