nnnnnnnnnnnnnnnnnnnnnnnnnnnn

Applications of Formal Verification

Deductive Verification of Information Flow Properties of
Java Programs

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov | SS 2012

KIT — INSTITUT FUR THEORETISCHE INFORMATIK

0 Non-Interference
@ Definition
@ Reformulation and Formalization — Alternating Quantifiers
@ Reformulation and Formalization — Self-Composition

° Declassification

@ Termination-sensitive Non-interference

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification SS 2012 2/14

Non-Interference AT

Prominent information flow property: non-interference

Simple case:
a deterministic, terminating, imperative program P
m program variables of P are partitioned in
® low-security variables /ow and
m high-security variables high
a In the following, non-interference means high do not
interfere with low in P (=no information flows from high to
low)

Definition (Non-interference — not quite formal)

When starting P with arbitrary values for low, the values of low
after executing P are independent of the choices of high.

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification SS 2012 3/14

Non-Interference AT

Prominent information flow property: non-interference

Simple case:
a deterministic, terminating, imperative program P
m program variables of P are partitioned in
® low-security variables /ow and
m high-security variables high
a In the following, non-interference means high do not
interfere with low in P (=no information flows from high to
low)

Definition (Non-interference — not quite formal)

When starting P with arbitrary values for low, the values of low
after executing P are independent of the choices of high.

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification SS 2012 3/14

Non-Interference AT

Prominent information flow property: non-interference

Simple case:
a deterministic, terminating, imperative program P
m program variables of P are partitioned in
® low-security variables /ow and
m high-security variables high
a In the following, non-interference means high do not
interfere with low in P (=no information flows from high to
low)

Definition (Non-interference — not quite formal)

When starting P with arbitrary values for low, the values of low
after executing P are independent of the choices of high.

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification SS 2012 3/14

Non-Interference AT

Prominent information flow property: non-interference

Simple case:
a deterministic, terminating, imperative program P
m program variables of P are partitioned in
® low-security variables /ow and
m high-security variables high
a In the following, non-interference means high do not
interfere with low in P (=no information flows from high to
low)

Definition (Non-interference — not quite formal)

When starting P with arbitrary values for low, the values of low
after executing P are independent of the choices of high.

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification SS 2012 3/14

Non-Interference AT

Prominent information flow property: non-interference

Simple case:
a deterministic, terminating, imperative program P
m program variables of P are partitioned in
® low-security variables /ow and
m high-security variables high
a In the following, non-interference means high do not
interfere with low in P (=no information flows from high to
low)

Definition (Non-interference — not quite formal)

When starting P with arbitrary values for low, the values of low
after executing P are independent of the choices of high.

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification SS 2012 3/14

Non-Interference AT

Prominent information flow property: non-interference

Simple case:
a deterministic, terminating, imperative program P
m program variables of P are partitioned in
® low-security variables /ow and
m high-security variables high
a In the following, non-interference means high do not
interfere with low in P (=no information flows from high to
low)

Definition (Non-interference — not quite formal)

When starting P with arbitrary values for low, the values of low
after executing P are independent of the choices of high.

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification SS 2012 3/14

I Examples

Which methods are secure?

class MiniExamples {
public int 1;
private int h;

void m_1 () { void m_3 () {

1 = h; if (h>0) {1=1;}
} else {1=2;1};

}

void m_2 () {

if (1>0) {h=1;} void m_4 () {

else {h=2;}; h=0; 1=h;
} }

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification SS 2012 4/14

I Examples

Which methods are secure?

class MiniExamples {
public int 1;
private int h;

void m_1 () { void m_3 () {

1 = h; if (h>0) {1=1;}
} else {1=2;1};

}

void m_2 () {

if (1>0) {h=1;} void m_4 () {

else {h=2;}; h=0; 1=h;
} }

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification SS 2012 4/14

I Examples

Which methods are secure?

class MiniExamples {
public int 1;
private int h;

void m_1 () { void m_3 () {

1 = h; if (h>0) {1=1;}
} else {1=2;1};

}

void m_2 () {

if (1>0) {h=1;} void m_4 () {

else {h=2;}; h=0; 1=h;
} }

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification SS 2012 4/14

I Examples

Which methods are secure?

class MiniExamples {
public int 1;
private int h;

void m_1 () { volid m_3 () {

1 = h; if (h>0) {1=1;}
} else {1=2;1};

}

void m_2 () {

if (1>0) {h=1;} void m_4 () {

else {h=2;}; h=0; 1=h;
} }

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification SS 2012 4/14

I Examples

Which methods are secure?

class MiniExamples {
public int 1;
private int h;

void m_1() { void m_3() {

1 = h; if (h>0) {1=1;}
} else {1=2;1};

}

void m_2 () {

if (1>0) {h=1;} void m_4 () {

else {h=2;}; h=0; 1=h;
} }

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification SS 2012 4/14

I Examples T

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Which methods are secure?

void m_6() {

void m_5() {
=1-h; if (false) 1=h;

1=h; 1

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification SS 2012 5114

I Examples T

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Which methods are secure?

void m_6() {

void m_5() {
1=1-h; if (false) 1l=h;

1=h;

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification SS 2012 5114

I Examples T

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Which methods are secure?

void m_6() {

void m_5¢() {
1=1-h; if (false) 1=h;

1=h;

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification SS 2012 5114

I Non-Interference AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Definition (Low-equivalence on states)

Two states are low-equivalent if they assign the same values to
low variables.

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification $S 2012 6/14

I Non-Interference AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Definition (Low-equivalence on states)
Two states are low-equivalent if they assign the same values to
low variables.

Definition (Non-interference)

Starting P in two arbitrary low-equivalent states results in two
final states that are also low-equivalent.

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification $S 2012 6/14

Non-Interference in JavaDL - R
Alternating Quantifiers T

Non-interference encoding in JavaDL (v1)

For all low input values in;, there exist low output values r such
that for all high input values iny, if we assign the values in,; to
the program variables low and iny, to the program variables
high, then after execution of P the values of low are r.

Vin3rving({low := in; || high := iny}[Pllow = r)

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification SS 2012 7114

Non-Interference in JavaDL - R
Alternating Quantifiers T

Non-interference encoding in JavaDL (v1)

For all low input values in,, there exist low output values r such
that for all high input values iny, if we assign the values in,; to
the program variables low and iny, to the program variables
high, then after execution of P the values of low are r.

Yin3rving({low := in; || high := iny}[Pllow = r)

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification SS 2012 7114

Non-Interference in JavaDL - R
Alternating Quantifiers T

Non-interference encoding in JavaDL (v1)

For all low input values in,, there exist low output values r such
that for all high input values iny, if we assign the values in, to
the program variables low and iny, to the program variables
high, then after execution of P the values of low are r.

Yin3rvin,({low := in; || high := iny}[Pllow = r)

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification SS 2012 7114

Non-Interference in JavaDL - R
Alternating Quantifiers T

Non-interference encoding in JavaDL (v1)

For all low input values in,, there exist low output values r such
that for all high input values iny, if we assign the values in, to
the program variables low and in, to the program variables
high, then after execution of P the values of low are r.

Yin3rving({low := in; || high := iny}[Pllow = r)

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification SS 2012 7114

Non-Interference in JavaDL - R
Alternating Quantifiers T

Non-interference encoding in JavaDL (v1)

For all low input values in,, there exist low output values r such
that for all high input values iny, if we assign the values in,; to
the program variables low and iny, to the program variables
high, then after execution of P the values of low are r.

Yin3rvin,({low := in; || high := iny}[Pllow = r)

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification SS 2012 7114

Non-Interference in JavaDL - R
Alternating Quantifiers T

Non-interference encoding in JavaDL (v1)

For all low input values in,, there exist low output values r such
that for all high input values iny, if we assign the values in,; to
the program variables low and iny, to the program variables
high, then after execution of P the values of low are r.

Yin3rvin,({low := in; || high := iny}[Pllow = r)

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification SS 2012 7114

Non-Interference in JavaDL - R
Alternating Quantifiers T

Non-interference encoding in JavaDL (v1)

For all low input values in,, there exist low output values r such
that for all high input values iny, if we assign the values in,; to
the program variables low and iny, to the program variables
high, then after execution of P the values of low are r.

Yin3rvin,({low := in; || high := iny}[Pllow = r)

m Problem: not suitable for automatic verification ~
instantiation of existential quantifier difficult.

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification S8 2012 7114

Non-Interference in JavaDL - SAT
Self-Compositon S

Non-interference encoding in JavaDL (v2)

Running two instances of P on the same low values but on
arbitrary high values results in low variables which have the
same values.

Vinin}vin2vout!vout? {low := in}(
{high := in}}[Plout] = low
A {high := in?}|Plout? = low

— out! = out?

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification S8 2012 8/14

Non-Interference in JavaDL - SAT
Self-Compositon S

Non-interference encoding in JavaDL (v2)

Running two instances of P on the same low values but on
arbitrary high values results in low variables which have the
same values.

VinNiniVingvout!vout? {low := in;}(
{high := in}}[P]out] = low
A {high := in?}[Plout? = low

— out! = out?

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification S8 2012 8/14

Non-Interference in JavaDL - SAT
Self-Compositon S

Non-interference encoding in JavaDL (v2)

Running two instances of P on the same low values but on
arbitrary high values results in low variables which have the

same values.

Vinvin}Vingvout!vout? {low := in}(
{high = in}}[Plout] = low
A {high = in?}[Plout? = low

— out! = out?

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification S8 2012 8/14

Non-Interference in JavaDL - SAT
Self-Compositon S

Non-interference encoding in JavaDL (v2)

Running two instances of P on the same low values but on
arbitrary high values results in low variables which have the
same values.

Vinin}vin2\out!vout? {low := in}(
{high = in}}[Plout! = low
A {high := in?}[P]out? = low

— out! = out?

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification S8 2012 8/14

I Declassification

Let T(high, low) be a term. Intuitively: The only thing the
attacker is allowed to learn about the secret inputs is the value
of T in the initial state.

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification S8 2012 9/14

I Declassification (T

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Let T(high, low) be a term. Intuitively: The only thing the
attacker is allowed to learn about the secret inputs is the value
of T in the initial state.

Definition (Non-interference w/ declassification)

Starting P in two arbitrary low-equivalent states coinciding in
the value of T results in two final states that are also
low-equivalent.

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification S8 2012 9/14

Declassification in JavaDL — SAT
Self-Compositon SRS

Encoding non-interference w/ declassification in JavaDL

Running two instances of P on the same low values and
arbitrary high values coinciding on T results in low variables

which have the same values.

vinNiniVinZvout!Vout? {low := in;}(
{high := inl}T = {high :== in?} T
A {high := in}}[Plout] = low
A {high := in2}[Plout? = low

— out! = out?

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification S8 2012 10/14

Declassification in JavaDL — SAT
Self-Compositon SRS

Encoding non-interference w/ declassification in JavaDL

Running two instances of P on the same low values and
arbitrary high values coinciding on T results in low variables

which have the same values.

vinNiniVinZvout!Vout? {low := in;}(
{high = in}} T = {high = in2} T
A {high := in}}[Plout] = low
A {high := in2}[Plout? = low

— out] = out?

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification S8 2012 10/14

Declassification in JavaDL — R
Alternating Quantifiers T

Encoding non-interference w/ declassification in JavaDL

For all values of T, for all low input values in;, there exist low
output values r such that for all high input values iny, if we
assign the values in; to the program variables low and inj to the
program variables high, then after execution of P the values of
low are r.

vavin3rviny{low = in; || high := iny}(T = d — [Pllow =r)

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification S8 2012 11/14

Declassification in JavaDL — R
Alternating Quantifiers T

Encoding non-interference w/ declassification in JavaDL

For all values of T, for all low input values in;, there exist low
output values r such that for all high input values iny, if we
assign the values in; to the program variables low and inj to the
program variables high, then after execution of P the values of
low are r.

vavinarviny{low := in; || high := iny}(T = d — [Pllow =r)

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification S8 2012 11/14

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

I Adding Termination-sensitivity AT

We retract the requirement that P must always terminate.

Definition (Termination-sensitive non-interference)

Starting P in two arbitrary low-equivalent states either results in
two non-terminating runs or in two final states that are also

low-equivalent.

Yin¥in}vin2Yout!vout? {low := in;}(
{high := in}}(P)true A {high := in2}(P)true A
({high := in}}(P)out! = low A
{high := in2}(P)out? = low —
out! = out?)
) Vv ({high := in}}[P]false A {high := in2}|P]false)

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification S8 2012 12/14

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

I Adding Termination-sensitivity AT

We retract the requirement that P must always terminate.

Definition (Termination-sensitive non-interference)

Starting P in two arbitrary low-equivalent states either results in
two non-terminating runs or in two final states that are also

low-equivalent.

Yin¥in}vin2Yout!vout? {low := in;}(
{high := in}}(P)true A {high := in2}(P)true A
({high := in}}(P)out! = low A
{high := in2}(P)out? = low —
out! = out?)
) v ({high := in}}[P]false A {high := in?}|P]false)

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification S8 2012 12/14

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

I Adding Termination-sensitivity AT

We retract the requirement that P must always terminate.

Definition (Termination-sensitive non-interference)

Starting P in two arbitrary low-equivalent states either results in
two non-terminating runs or in two final states that are also

low-equivalent.

Yin¥in}vin2Yout!vout? {low := in;}(
{high := in}}(P)true A {high := inZ}(P)true A
({high := in}}(P)out! = low A
{high := in2}(P)out? = low —
out! = out?)
) Vv ({high := in}}[P]false A {high := in2}|P]false)

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification S8 2012 12/14

I Adding Termination-sensitivity AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Another encoding of termination-sensitive non-interf.

For every low input, if P terminates for some high input, then it
teminates for all high inputs, and with the same low output.

Viny {low := in;}(

Jinp{ high := inp}(P)true —
arvinp{ high := inp}(P)low = r

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification S8 2012 13/14

I Not Covered Here T

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

m Concurrency / nondeterminism
a Objects & heap
a Properties beyond non-interference (e.g., data integrity)

Prof. Dr. Bernhard Beckert - Dr. Vladimir Klebanov — Applications of Formal Verification S8 2012 14/14

	Non-Interference
	Definition
	Reformulation and Formalization – Alternating Quantifiers
	Reformulation and Formalization – Self-Composition

	Declassification
	Termination-sensitive Non-interference

