Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. B. Beckert
Dr. Vladimir Klebanov

Applying Formal Verification, SS 2012

Functional Verification with KeY

Assignment 1

Consider an array b with n integer elements. Let j and k be two indices with $0 \leqslant \mathrm{j}<\mathrm{k}<n$. In the questions below, $b[j . . k$] is a shortcut for a segment of the array b, but in JML it cannot be used outside of assignable clauses. Write JML expressions which precisely describe the following:

1. All elements in $\mathrm{b}[\mathrm{j} . \mathrm{k}$] are zero.
2. All zeros of $b[0 \ldots n-1]$ are in $b[j \ldots k]$.
3. It is not the case that all zeros of $b[0 . . n-1]$ are in $b[j \ldots k]$. Write this in two ways, once using negation ('!') an once avoiding negation.
4. $\mathrm{b}[0 . . \mathrm{n}-1]$ contains two zeros.
5. $\mathrm{b}[0 \ldots \mathrm{n}-1]$ contains at least two zeros.
6. $\mathrm{b}[0 . . \mathrm{n}-1]$ contains at most two zeros.
7. Specify a method public static void reverse (int [] b) which reverses the order of elements in b.
8. Specify a method public static int sum(int [] b) which computes the sum of all positive elements in b.

Assignment 2

The following class implements selection sort. Specify the class in JML as completely as possible. Verify the code of the method min_index() against your specification with KeY.

```
public class Sort {
public static void selectionSort(int[] a) {
    for (int i = 0; i < a.length; i++) {
        int min_i = min_index(a, i);
        int temp = a[i];
        a[i] = a[min_i];
        a[min_i] = temp;
    }
}
private static int min_index(int[] a, int start_i) {
    int min_i = start_i;
    for (int i = start_i; i < a.length; i++) {
        if (a[i] < a[min_i]) min_i = i;
    }
```

```
            return min_i;
    }
}
```

