# Applications of Formal Verification Formal Software Design: Modelling in Event-B 

Dr. Vladimir Klebanov • Dr. Mattias Ulbrich | SS 2015

KIT - Institut für Theoretische Informatik


## Literatur



Jean-Raymond Abrial: Modelling in Event-B System and Software Enginieering
Cambridge University Press, 2010

Jean-Raymond Abrial:
The B-Book:
Assigning programs to meanings
Cambridge University Press, 1996

## Abstraction and Refinement Introduction

## Late fault recovery is expensive



Software Life-Cycle
["Extra Time Saves Money", W. Knuffel, Computer Language, 1990]

## Late fault recovery is expensive


["Extra Time Saves Money", W. Knuffel, Computer Language, 1990]

## Reasons for system faults

- Systems are inherently complex
- Unconsidered situations, corner cases
- Ambiguous natural language requirements
- Component interplay


## Reasons for system faults

- Systems are inherently complex
- Unconsidered situations, corner cases
- Ambiguous natural language requirements
- Component interplay


## Reasons for system faults

- Systems are inherently complex
- Unconsidered situations, corner cases
- Ambiguous natural language requirements
- Component interplay


## Reasons for system faults

- Systems are inherently complex
- Unconsidered situations, corner cases
- Ambiguous natural language requirements
- Component interplay


## Reasons for system faults

- Systems are inherently complex
- Unconsidered situations, corner cases
- Ambiguous natural language requirements
- Component interplay


## Abstraction

## The only tool to master complexity is abstraction.

Cliff Jones

## Abstraction and Refinement



## Abstraction and Refinement



Abstraction

## Abstraction

## Abstraction

- reduce system complexity
- without removing important properties
- make the model susceptible to formal analysis
and the inverse


## Refinement

- enrich abstract model with details
- introduce a new particular aspect
- iterative process: add complexity in a stepwise fashion


## Abstraction in Engineering

## Abstraction is an important tool in engineering

Established means of abstraction

- Mechanical engineering: BLUEPRINTS
- Electrical engineering: DATASHEETS
- CIRCUIT DIAGRAMS
- Architecture: Floor PLANS

Abstract descriptions remove unnecessary details, concentrate on one aspect

## Datasheet - Abstraction

Extracts from datasheet for an IC with four NAND gates

## Datasheet - Abstraction

Extracts from datasheet for an IC with four NAND gates

## Aspect Behaviour

## Aspect Geometry

## Datasheet - Abstraction

Extracts from datasheet for an IC with four NAND gates

## Aspect Behaviour


refined to


## Aspect Geometry

## Datasheet - Abstraction

Extracts from datasheet for an IC with four NAND gates

## Aspect Behaviour


refined to


## Aspect Geometry


refined to


## Schematic Diagram vs. PCB Layout



## Schematic Diagram vs. PCB Layout



Beck diagrams (1931)



Beck diagrams (1931)


## Property preservation

## Abstraction with focus on particular aspect

System properties w.r.t. that aspect must also hold in the abstraction.

## Refinement with focus on particular aspect

Properties of abstract model w.r.t. that aspect must be inherited by the refined model.

## Examples:

- Abstraction: "The shortest tube travel from Liverpool St. to Westminster has 8 stops and 2 changes."
- Refinement: Abstract: Input " $a=1$ " gives output " $b=1$ " Concrete: High voltage on pin A gives high voltage on pin B


## Property preservation

## Abstraction with focus on particular aspect

System properties w.r.t. that aspect must also hold in the abstraction.

## Refinement with focus on particular aspect

Properties of abstract model w.r.t. that aspect must be inherited by the refined model.

That's what we will formally prove in the next sections.

## Examples:

- Abstraction: "The shortest tube travel from Liverpool St. to Westminster has 8 stops and 2 changes."
- Refinement: Abstract: Input " $a=1$ " gives output " $b=1$ " Concrete: High voltage on pin A gives high voltage on pin $B$


## "Conceptual" vs "Technical" Abstraction

Two areas of abstraction and refinement in formal methods:

## Conceptual abstraction

## Abstraction as a technique

## "Conceptual" vs "Technical" Abstraction

Two areas of abstraction and refinement in formal methods:

## Conceptual abstraction

- reduce complexity for more comprehensibility
- focus on a particular system aspect
- provided by designer/developer
- refinement introduces new aspect


## Abstraction as a technique

## "Conceptual" vs "Technical" Abstraction

Two areas of abstraction and refinement in formal methods:

## Conceptual abstraction

- reduce complexity for more comprehensibility
- focus on a particular system aspect
- provided by designer/developer
- refinement introduces new aspect


## Abstraction as a technique

## "Conceptual" vs "Technical" Abstraction

Two areas of abstraction and refinement in formal methods:

## Conceptual abstraction

- reduce complexity for more comprehensibility
- focus on a particular system aspect
- provided by designer/developer
- refinement introduces new aspect


## Abstraction as a technique

## "Conceptual" vs "Technical" Abstraction

Two areas of abstraction and refinement in formal methods:

## Conceptual abstraction

- reduce complexity for more comprehensibility
- focus on a particular system aspect
- provided by designer/developer
- refinement introduces new aspect


## Abstraction as a technique

## "Conceptual" vs "Technical" Abstraction

Two areas of abstraction and refinement in formal methods:

## Conceptual abstraction

- reduce complexity for more comprehensibility
- focus on a particular system aspect
- provided by designer/developer
- refinement introduces new aspect


## Abstraction as a technique

## "Conceptual" vs "Technical" Abstraction

Two areas of abstraction and refinement in formal methods:

## Conceptual abstraction

- reduce complexity for more comprehensibility
- focus on a particular system aspect
- provided by designer/developer
- refinement introduces new aspect


## Abstraction as a technique

- reduce complexity to enhance performance/reach of a tool
- abstract from given predicates to uninterpreted predicates
- computed automatically
- refinement driven by failed proofs (Counter-Example Guided Abstraction Refinement, CEGAR)


## "Conceptual" vs "Technical" Abstraction

Two areas of abstraction and refinement in formal methods:

## Conceptual abstraction

- reduce complexity for more comprehensibility
- focus on a particular system aspect
- provided by designer/developer
- refinement introduces new aspect


## Abstraction as a technique

- reduce complexity to enhance performance/reach of a tool
- abstract from given predicates to uninterpreted predicates
- computed automatically
- refinement driven by failed proofs (Counter-Example Guided Abstraction Refinement, CEGAR)


## "Conceptual" vs "Technical" Abstraction

Two areas of abstraction and refinement in formal methods:

## Conceptual abstraction

- reduce complexity for more comprehensibility
- focus on a particular system aspect
- provided by designer/developer
- refinement introduces new aspect


## Abstraction as a technique

- reduce complexity to enhance performance/reach of a tool
- abstract from given predicates to uninterpreted predicates
- computed automatically
- refinement driven by failed proofs (Counter-Example Guided Abstraction Refinement, CEGAR)


## "Conceptual" vs "Technical" Abstraction

Two areas of abstraction and refinement in formal methods:

## Conceptual abstraction

- reduce complexity for more comprehensibility
- focus on a particular system aspect
- provided by designer/developer
- refinement introduces new aspect


## Abstraction as a technique

- reduce complexity to enhance performance/reach of a tool
- abstract from given predicates to uninterpreted predicates
- computed automatically
- refinement driven by failed proofs (Counter-Example Guided Abstraction Refinement, CEGAR)


## "Conceptual" vs "Technical" Abstraction

Two areas of abstraction and refinement in formal methods:

## Conceptual abstraction

- reduce complexity for more comprehensibility
- focus on a particular system aspect
- provided by designer/developer
- refinement introduces new aspect


## Abstraction as a technique

- reduce complexity to enhance performance/reach of a tool
- abstract from given predicates to uninterpreted predicates
- computed automatically
- refinement driven by failed proofs (Counter-Example Guided Abstraction Refinement, CEGAR)


## "Conceptual" vs "Technical" Abstraction

Two areas of abstraction and refinement in formal methods:

## Conceptual abstraction

- reduce complexity for more comprehensibility
- focus on a particular system aspect
- provided by designer/developer
- refinement introduces new aspect

That's what we will look into in the next sections.

## Abstraction as a technique

- reduce complexity to enhance performance/reach of a tool
- abstract from given predicates to uninterpreted predicates
- computed automatically
- refinement driven by failed proofs (Counter-Example Guided Abstraction Refinement, CEGAR)


## Event-B Introduction

- EventB is a formalism for modelling and reasoning about discrete systems.
- for their structure (how can their state be described) and
- for their behaviour (how can the evolution of their state be described)
- Models are formulated using set theory
- Event-based evolution of the original B Method
- Tool-support:
- RODIN - deductive verification, theorem prover: proofs
- Pro-B - model checking, animator: counterexamples


## Central Concepts

- Variables and Events
- Variables model the current state within the state space.
- Events describe operations to model the system behaviour
- Invariants
- properties to be maintained by system
- formal proof obligations to show that
- Refinement
- Behaviour of refining model is compatible with abstract model
- formal proof obligation to show that
- Hence, invariants of abstract model are inherited by concrete model


## Central Concepts

- Variables and Events
- Variables model the current state within the state space.
- Events describe operations to model the system behaviour
- Invariants
- properties to be maintained by system
- formal proof obligations to show that
- Refinement
- Behaviour of refining model is compatible with abstract model
- formal proof obligation to show that
- Hence, invariants of abstract model are inherited by concrete model


## Contexts and Machines

## Event-B models

systems state evolution over time, triggered by events

Event-B models consist of contexts and machines:

## Contexts

Static, rigid, constant parts that do not change over time.
Machines
Dynamic, volatile, evolving parts that do change over time.

## Contexts and Machines

## Event-B models consist of contexts and machines:

## Contexts

- Carrier sets (ground types, universes, "urelements")
- Constants (state-independent symbols, rigid symbols)
- Axioms (formulas valid by stipulation)
- Theorems (formulas proved valid)


## Machines

- Context references (which symbols are available)
- Variables (state-dependent symbols, non-rigid symbols, program variables)
- Invariants (formulas true in every reachable system state)
- Events (state transition descriptions)
(Explanations or alternative names in parens)


## Contexts and Machines

## Event-B models consist of contexts and machines:

## Contexts

- Carrier sets (ground types, universes, "urelements")
- Constants (state-independent symbols, rigid symbols)
- Axioms (formulas valid by stipulation)
- Theorems (formulas proved valid)


## Machines

- Context references (which symbols are available)
- Variables (state-dependent symbols, non-rigid symbols, program variables)
- Invariants (formulas true in every reachable system state)
- Events (state transition descriptions)
(Explanations or alternative names in parens)


## Contexts and Machines

## Event-B models consist of contexts and machines:

## Contexts

- Carrier sets (ground types, universes, "urelements")
- Constants (state-independent symbols, rigid symbols)
- Axioms (formulas valid by stipulation)
- Theorems (formulas proved valid)


## Machines

- Context references (which symbols are available)
- Variables (state-dependent symbols, non-rigid symbols, program variables)
- Invariants (formulas true in every reachable system state)
- Events (state transition descriptions)
(Explanations or alternative names in parens)


## Contexts and Machines

## Event-B models consist of contexts and machines:

## Contexts

- Carrier sets (ground types, universes, "urelements")
- Constants (state-independent symbols, rigid symbols)
- Axioms (formulas valid by stipulation)
- Theorems (formulas proved valid)


## Machines

- Context references (which symbols are available)
- Variables (state-dependent symbols, non-rigid symbols, program variables)
- Invariants (formulas true in every reachable system state)
- Events (state transition descriptions)
(Explanations or alternative names in parens)


## Contexts and Machines

## Event-B models consist of contexts and machines:

## Contexts

- Carrier sets (ground types, universes, "urelements")
- Constants (state-independent symbols, rigid symbols)
- Axioms (formulas valid by stipulation)
- Theorems (formulas proved valid)


## Machines

- Context references (which symbols are available)
- Variables (state-dependent symbols, non-rigid symbols, program variables)
- Invariants (formulas true in every reachable system state)
- Events (state transition descriptions)
(Explanations or alternative names in parens)


## Contexts and Machines

## Event-B models consist of contexts and machines:

## Contexts

- Carrier sets (ground types, universes, "urelements")
- Constants (state-independent symbols, rigid symbols)
- Axioms (formulas valid by stipulation)
- Theorems (formulas proved valid)


## Machines

- Context references (which symbols are available)
- Variables (state-dependent symbols, non-rigid symbols, program variables)
- Invariants (formulas true in every reachable system state)
- Events (state transition descriptions)
(Explanations or alternative names in parens)


## Contexts and Machines

## Event-B models consist of contexts and machines:

## Contexts

- Carrier sets (ground types, universes, "urelements")
- Constants (state-independent symbols, rigid symbols)
- Axioms (formulas valid by stipulation)
- Theorems (formulas proved valid)


## Machines

- Context references (which symbols are available)
- Variables (state-dependent symbols, non-rigid symbols, program variables)
- Invariants (formulas true in every reachable system state)
- Events (state transition descriptions)
(Explanations or alternative names in parens)


## Contexts and Machines

## Event-B models consist of contexts and machines:

## Contexts

- Carrier sets (ground types, universes, "urelements")
- Constants (state-independent symbols, rigid symbols)
- Axioms (formulas valid by stipulation)
- Theorems (formulas proved valid)


## Machines

- Context references (which symbols are available)
- Variables (state-dependent symbols, non-rigid symbols, program variables)
- Invariants (formulas true in every reachable system state)
- Events (state transition descriptions)
(Explanations or alternative names in parens)


## Introduction by Example

## Students and Exams - Requirements

R1 Every student must take a final exam in a subject of their choice.

R2 They can have attempts without yet failing or passing.
R3 Eventually they can pass or fail, but never both.
$\rightarrow$ Identify the context, the state and the events according to the requirements R1-R3.

## Introduction by Example

## Students and Exams - Requirements

R1 Every student must take a final exam in a subject of their choice.

R2 They can have attempts without yet failing or passing.
R3 Eventually they can pass or fail, but never both.
$\rightarrow$ Identify the context, the state and the events according to the requirements R1-R3.

## Introduction by Example

## Students and Exams - Requirements

R1 Every student must take a final exam in a subject of their choice.

R2 They can have attempts without yet failing or passing.
R3 Eventually they can pass or fail, but never both.
$\rightarrow$ Identify the context, the state and the events according to the requirements R1-R3.

## Introduction by Example

## Students and Exams - Requirements

R1 Every student must take a final exam in a subject of their choice.

R2 They can have attempts without yet failing or passing.
R3 Eventually they can pass or fail, but never both.
$\rightarrow$ Identify the context, the state and the events according to the requirements R1-R3.

## Introduction by Example

## Students and Exams - Requirements

R1 Every student must take a final exam in a subject of their choice.

R2 They can have attempts without yet failing or passing.
R3 Eventually they can pass or fail, but never both.
$\rightarrow$ Identify the context, the state and the events according to the requirements R1-R3.

## Introduction by Example

## Students and Exams - Requirements

R1 Every student must take a final exam in a subject of their choice.

R2 They can have attempts without yet failing or passing.
R3 Eventually they can pass or fail, but never both.
$\rightarrow$ Identify the context, the state and the events according to the requirements R1-R3.

## Exam Context

## CONTEXT ExamCtxt

## CONTEXT ExamCtxt

## SETS

## STUDENT // see requirement R1 SUBJECT

## CONTEXT ExamCtxt

SETS
STUDENT // see requirement R1 SUBJECT

CONSTANTS maths physics siblings

## Exam Context

## CONTEXT ExamCtxt

SETS

## STUDENT // see requirement R1 SUBJECT

CONSTANTS
maths physics siblings

AXIOMS

> maths $\in$ SUBJECT // type of variables physics $\in$ SUBJECT

## Exam Context

## CONTEXT ExamCtxt

SETS
STUDENT // see requirement R1 SUBJECT

CONSTANTS
maths physics siblings

AXIOMS
maths $\in$ SUBJECT // type of variables physics $\in$ SUBJECT
maths $\neq$ physics // constants could have same value

## Exam Context

## CONTEXT ExamCtxt

SETS
STUDENT // see requirement R1 SUBJECT

CONSTANTS
maths physics siblings

AXIOMS
maths $\in$ SUBJECT // type of variables physics $\in$ SUBJECT
maths $\neq$ physics // constants could have same value siblings $\subseteq$ STUDENT $\times$ STUDENT // function type

## Exam Context

## CONTEXT ExamCtxt

SETS
STUDENT // see requirement R1 SUBJECT

CONSTANTS
maths physics siblings

AXIOMS
maths $\in$ SUBJECT // type of variables physics $\in$ SUBJECT
maths $\neq$ physics // constants could have same value siblings $\subseteq$ STUDENT $\times$ STUDENT // function type $\forall s \cdot s \in S T U D E N T \Rightarrow(s \mapsto s) \notin$ siblings // irreflexive //...

## MACHINE ExamAbstract

## MACHINE ExamAbstract SEES ExamCtxt

## Exam Machine

MACHINE ExamAbstract SEES ExamCtxt<br>VARIABLES<br>passed failed

## Exam Machine

MACHINE ExamAbstract SEES ExamCtxt<br>VARIABLES<br>passed failed INVARIANTS

passed $\subseteq$ STUDENT $\quad$ failed $\subseteq$ STUDENT

## Exam Machine

MACHINE ExamAbstract SEES ExamCtxt<br>VARIABLES<br>passed failed INVARIANTS

passed $\subseteq$ STUDENT $\quad$ failed $\subseteq$ STUDENT
passed $\cap$ failed $=\varnothing \quad / /$ R3

## Exam Machine

MACHINE ExamAbstract SEES ExamCtxt

VARIABLES
passed failed INVARIANTS
passed $\subseteq$ STUDENT failed $\subseteq$ STUDENT
passed $\cap$ failed $=\varnothing \quad / /$ R3
EVENTS
INITIALISATION $\widehat{=} \ldots$
ATTEMPTEXAM $\widehat{=} \ldots$ R2
PASSEXAM $\widehat{=} \ldots \quad / / R 3$
FAILEXAM $\widehat{=} \ldots \quad / /$ R3

MACHINE ExamAbstract VARIABLES passed failed...

## EVENTS

INITIALISATION $\widehat{=}$
failed $:=\varnothing$
passed $:=\varnothing$

```
MACHINE ExamAbstract
VARIABLES passed failed...
EVENTS
INITIALISATION \(\widehat{=}\)
    failed \(:=\varnothing\)
    passed := \(\varnothing\)
```

PASSEXAM $\widehat{=}$
ANY s grade
WHERE $s \in S T U D E N T \wedge$ grade $\leq 4$
THEN passed $:=$ passed $\cup\{s\}$

MACHINE ExamAbstract
VARIABLES passed failed...
EVENTS
INITIALISATION $\widehat{=}$
failed $:=\varnothing$
passed $:=\varnothing$
PASSEXAM $\widehat{=}$
ANY s grade
WHERE $s \in S T U D E N T \wedge$ grade $\leq 4$
THEN passed $:=$ passed $\cup\{s\}$
FAILEXAM $\widehat{=}$
ANY s grade
WHERE $s \in S T U D E N T \wedge$ grade $>4$
THEN failed $:=$ failed $\cup\{s\}$

## Invariant violated

## MACHINE ExamAbstract <br> VARIABLES passed failed <br> INVARIANTS passed $\cap$ failed $=\varnothing \quad \ldots$ <br> EVENTS <br> PASSEXAM $\widehat{=}$ <br> ANY s grade <br> WHERE $s \in S T U D E N T \wedge$ grade $\leq 4$ <br> THEN passed $:=$ passed $\cup\{s\}$

FAILEXAM $\widehat{=}$
ANY s grade
WHERE $s \in S T U D E N T \wedge$ grade $>4$
THEN failed $:=$ failed $\cup\{s\}$

## Invariant violated

```
MACHINE ExamAbstract
VARIABLES passed failed
INVARIANTS passed }\cap\mathrm{ failed = }=\quad.
EVENTS
PASSEXAM \hat{=}
    ANY s grade
    WHERE s \in STUDENT \ (failed \cup passed) ^ grade \leq 4
    THEN passed := passed }\cup{s
FAILEXAM \hat{=}
    ANY s grade
    WHERE s \in STUDENT \ (failed }\cup\mathrm{ passed) ) grade > 4
    THEN failed := failed }\cup{s
```


## Underspecified model

EVENTS
PASSEXAM $\widehat{=}$
ANY s grade WHERE grade $\leq 4 \wedge s \in \ldots$
THEN passed $:=$ passed $\cup\{s\}$
FAILEXAM $\hat{=}$
ANY $s$ grade WHERE grade $>4 \wedge s \in \ldots$
THEN failed $:=$ failed $\cup\{s\}$
ATTEMPTEXAM $\widehat{=}$
ANY s grade WHERE grade $\in \mathbb{N} \wedge s \in \ldots$ THEN skip

## Underspecified model

```
EVENTS
PASSEXAM \(\widehat{=}\)
ANY s grade WHERE grade \(\leq 4 \wedge s \in \ldots\)
THEN passed \(:=\) passed \(\cup\{s\}\)
FAILEXAM \(\widehat{=}\)
ANY \(s\) grade WHERE grade \(>4 \wedge s \in \ldots\)
THEN failed \(:=\) failed \(\cup\{s\}\)
ATTEMPTEXAM \(\widehat{=}\)
ANY s grade WHERE grade \(\in \mathbb{N} \wedge s \in \ldots\)
THEN skip
```


## Additional requirement

R4 Any student may attempt the exam three times and ultimately fails if the fourth attempt is unsuccessful.

## MACHINE RefinedExams REFINES ExamsAbstract

## MACHINE RefinedExams REFINES ExamsAbstract VARIABLES passed attempts

## Refinement Exams (1)

## MACHINE RefinedExams REFINES ExamsAbstract VARIABLES passed attempts INVARIANTS

attempts $\in$ STUDENT $\rightarrow \mathbb{N} / /$ typing for attempts failed $=\{s \cdot \operatorname{attempts}(s)=4\} / /$ coupling invariant

## Refinement Exams (1)

## MACHINE RefinedExams REFINES ExamsAbstract <br> VARIABLES passed attempts <br> INVARIANTS

attempts $\in$ STUDENT $\rightarrow \mathbb{N} / /$ typing for attempts failed $=\{s \cdot \operatorname{attempts}(s)=4\} / /$ coupling invariant
EVENTS
INITIALISATION $\widehat{=}$ REFINES INITIALISATION
passed $:=\varnothing$
attempts $:=\{s \cdot s \in$ STUDENT $\mid(s \mapsto 0)\}$

## Refinement Exams (1)

## Refinement Exams (2)

```
EVENTS
examUltimateFail \hat{= REFINES examFail}
    ANY s grade
    WHERE ... ^ grade > 4 ^ attempts(s) = 3
    THEN
            attempts(s):= attempts(s)+1
EXAMMISSED 人 REFINES EXAMATTEMPT
    ANY s grade
    WHERE ... ^ grade > 4 ^ attempts(s)<3
    THEN
    attempts(s):= attempts(s)+1
```


## Refinement Exams (3)

This refinment takes now also R4 into account.

## Refinement preserves invariants

! Every possible event of RefinedExams is a possible event in ExamsAbstract
$\Rightarrow$ Every invariant of ExamsAbstract is also an invariant of RefinedExams

We will come back to this more formally ...

## Set Theory Equipment for formal modelling

# Set theory - a universal modelling language 

## Not only used in Event-B.

Set theory also used for modelling in ...

- Z
- Object-Z, Z++
- (classical) B
- Event-B
- Alloy


## Set Theory

## Formal language in Event-B models

Typed First Order Set Theory with Additional Theories

Every term in Event-B has a unqiue type.
Types are part of the syntax of Event-B and some expressions are syntactically forbidden:
maths $\in$ failed is syntactially invalid.
(remember: math $\in$ SUBJECT, failed $\subseteq$ STUDENT)
"You can't compare apples and oranges."

## Set Theory

Formal language in Event-B models
Typed First Order Set Theory with Additional Theories

- sets are objects in the logic
- first order axioms define the semantics of sets
- quantification over sets is allowed
- quantification over predicates, functions is not allowed
- (Foundation is a typed Zermelo-Fraenkel axiomatisation)


## Set Theory

Formal language in Event-B models
Typed First Order Set Theory with Additional Theories

- sets are objects in the logic
- first order axioms define the semantics of sets
- quantification over sets is allowed
- quantification over predicates, functions is not allowed
- (Foundation is a typed Zermelo-Fraenkel axiomatisation)


## Set Theory

Formal language in Event-B models
Typed First Order Set Theory with Additional Theories

- sets are objects in the logic
- first order axioms define the semantics of sets
- quantification over sets is allowed
- quantification over predicates, functions is not allowed
- (Foundation is a typed Zermelo-Fraenkel axiomatisation)


## Set Theory

Formal language in Event-B models
Typed First Order Set Theory with Additional Theories

- sets are objects in the logic
- first order axioms define the semantics of sets
- quantification over sets is allowed
- quantification over predicates, functions is not allowed
- (Foundation is a typed Zermelo-Fraenkel axiomatisation)


## Set Theory

Formal language in Event-B models
Typed First Order Set Theory with Additional Theories

- sets are objects in the logic
- first order axioms define the semantics of sets
- quantification over sets is allowed
- quantification over predicates, functions is not allowed
- (Foundation is a typed Zermelo-Fraenkel axiomatisation)


## Set Theory

Formal language in Event-B models
Typed First Order Set Theory with Additional Theories

There are additional theories with fixed semantics

- integers
- more theories (datatypes) can be added by user (an extension to the system)


## Types

(1) BOOL and $\mathbb{Z}$ are types
(2) Every carrier set declared in a CONTEXT is a type.
(3) If $T$ is a type then $\mathbb{P}(T)$ is a type. Semantics: $\mathbb{P}(T)$ is the set of all subsets of $T$ (powerset).
(4) If $T_{1}, T_{2}$ are types then $T_{1} \times T_{2}$ is a type. Semantics: $T_{1} \times T_{2}$ is the set of all ordered pairs ( $a, b$ ) with $a \in T_{1}$ and $b \in T_{2}$ (Cartesian produt).

Every expression $E$ has a unqiue type $\tau(E)$.

## Types

(1) BOOL and $\mathbb{Z}$ are types
(2) Every carrier set declared in a CONTEXT is a type.
(3) If $T$ is a type then $\mathbb{P}(T)$ is a type. Semantics: $\mathbb{P}(T)$ is the set of all subsets of $T$ (powerset).
(4) If $T_{1}, T_{2}$ are types then $T_{1} \times T_{2}$ is a type. Semantics: $T_{1} \times T_{2}$ is the set of all ordered pairs ( $a, b$ ) with $a \in T_{1}$ and $b \in T_{2}$ (Cartesian produt).

Every expression $E$ has a unqiue type $\tau(E)$.

## Types

(1) BOOL and $\mathbb{Z}$ are types
(2) Every carrier set declared in a CONTEXT is a type.
(3) If $T$ is a type then $\mathbb{P}(T)$ is a type. Semantics: $\mathbb{P}(T)$ is the set of all subsets of $T$ (powerset).
(4) If $T_{1}, T_{2}$ are types then $T_{1} \times T_{2}$ is a type. Semantics: $T_{1} \times T_{2}$ is the set of all ordered pairs $(a, b)$ with $a \in T_{1}$ and $b \in T_{2}$ (Cartesian produt).

Every expression $E$ has a unque type $\tau(E)$.

## Types

(1) BOOL and $\mathbb{Z}$ are types
(2) Every carrier set declared in a CONTEXT is a type.
(3) If $T$ is a type then $\mathbb{P}(T)$ is a type. Semantics: $\mathbb{P}(T)$ is the set of all subsets of $T$ (powerset).
(4) If $T_{1}, T_{2}$ are types then $T_{1} \times T_{2}$ is a type. Semantics: $T_{1} \times T_{2}$ is the set of all ordered pairs $(a, b)$ with $a \in T_{1}$ and $b \in T_{2}$ (Cartesian produt).

Every expression $E$ has a unqiue type $\tau(E)$.

## Types

(1) BOOL and $\mathbb{Z}$ are types
(2) Every carrier set declared in a CONTEXT is a type.
(3) If $T$ is a type then $\mathbb{P}(T)$ is a type. Semantics: $\mathbb{P}(T)$ is the set of all subsets of $T$ (powerset).
(4) If $T_{1}, T_{2}$ are types then $T_{1} \times T_{2}$ is a type. Semantics: $T_{1} \times T_{2}$ is the set of all ordered pairs ( $a, b$ ) with $a \in T_{1}$ and $b \in T_{2}$ (Cartesian produt).

Every expression $E$ has a unqiue type $\tau(E)$.

## Types (2)

Set theory needs not be typed: Everything can be viewed a set.

Reasons to introduce types:

- some specification errors may be detected as syntax errors (even before the verification has started)
- avoid Russell's paradox


## Types (2)

Set theory needs not be typed: Everything can be viewed a set.

## Reasons to introduce types:

- some specification errors may be detected as syntax errors (even before the verification has started)
- avoid Russell's paradox


## Russell's paradox

Assume that the expression $\{s \mid \phi\}$ for any formula $\phi$ denotes a set. Let $R:=\{s \mid s \notin s\}$.

## Types (2)

Set theory needs not be typed: Everything can be viewed a set.

## Reasons to introduce types:

- some specification errors may be detected as syntax errors (even before the verification has started)
- avoid Russell's paradox


## Russell's paradox

Assume that the expression $\{s \mid \phi\}$ for any formula $\phi$ denotes a set. Let $R:=\{s \mid s \notin s\}$.
One observes: $\quad R \in R \Longleftrightarrow R \notin R \quad$ z

## Types (2)

Set theory needs not be typed: Everything can be viewed a set.

## Reasons to introduce types:

- some specification errors may be detected as syntax errors (even before the verification has started)
- avoid Russell's paradox


## Russell's paradox

Assume that the expression $\{s \mid \phi\}$ for any formula $\phi$ denotes a set. Let $R:=\{s \mid s \notin s\}$. Not allowed with types.
One observes: $\quad R \in R \Longleftrightarrow R \notin R \quad$ z
(This crushed naive set theory in early 1900s.)

## Sets

# Constructors for sets: <br> - empty set $\varnothing: \mathbb{P}(S)$ 

## Sets

Constructors for sets:

- empty set $\varnothing: \mathbb{P}(S)$
- set extension $\{\ldots\}: S^{*} \rightarrow \mathbb{P}(S)$ example: $\{1,2\}: \mathbb{P}(\mathbb{Z})$


## Sets

Constructors for sets:

- empty set $\varnothing: \mathbb{P}(S)$
- set extension $\{\ldots\}: S^{*} \rightarrow \mathbb{P}(S)$ example: $\{1,2\}: \mathbb{P}(\mathbb{Z})$
- carrier sets $C: \mathbb{P}(C)$ example: STUDENT : $\mathbb{P}(S T U D E N T)$


## Sets

Constructors for sets:

- empty set $\varnothing: \mathbb{P}(S)$
- set extension $\{\ldots\}: S^{*} \rightarrow \mathbb{P}(S)$
example: $\{1,2\}: \mathbb{P}(\mathbb{Z})$
- carrier sets $C: \mathbb{P}(C)$
example: STUDENT : $\mathbb{P}(S T U D E N T)$
- powerset $\mathbb{P}(\cdot): \mathbb{P}(S) \rightarrow \mathbb{P}(\mathbb{P}(S))$
example: $\mathbb{P}(\{1,2\})=\{\varnothing,\{1\},\{2\},\{1,2\}\}: \mathbb{P}(\mathbb{Z})$


## Sets

Constructors for sets:

- empty set $\varnothing: \mathbb{P}(S)$
- set extension $\{\ldots\}: S^{*} \rightarrow \mathbb{P}(S)$ example: $\{1,2\}: \mathbb{P}(\mathbb{Z})$
- carrier sets $C: \mathbb{P}(C)$ example: STUDENT : $\mathbb{P}(S T U D E N T)$
- powerset $\mathbb{P}(\cdot): \mathbb{P}(S) \rightarrow \mathbb{P}(\mathbb{P}(S))$
example: $\mathbb{P}(\{1,2\})=\{\varnothing,\{1\},\{2\},\{1,2\}\}: \mathbb{P}(\mathbb{Z})$
- product $\cdot \times \cdot: \mathbb{P}(S) \times \mathbb{P}(T) \rightarrow \mathbb{P}(S \times T)$
example: BOOL $\times\{1\}=\{\{$ true, 1$\},\{$ false, 1$\}\}: \mathbb{P}(B O O L \times \mathbb{Z})$


## Sets

Constructors for sets:

- empty set $\varnothing: \mathbb{P}(S)$
- set extension $\{\ldots\}: S^{*} \rightarrow \mathbb{P}(S)$ example: $\{1,2\}: \mathbb{P}(\mathbb{Z})$
- carrier sets $C: \mathbb{P}(C)$ example: STUDENT: $\mathbb{P}(S T U D E N T)$
- powerset $\mathbb{P}(\cdot): \mathbb{P}(S) \rightarrow \mathbb{P}(\mathbb{P}(S))$ example: $\mathbb{P}(\{1,2\})=\{\varnothing,\{1\},\{2\},\{1,2\}\}: \mathbb{P}(\mathbb{Z})$
- product $\cdot \times \cdot: \mathbb{P}(S) \times \mathbb{P}(T) \rightarrow \mathbb{P}(S \times T)$
example: BOOL $\times\{1\}=\{\{$ true, 1$\},\{$ false, 1$\}\}: \mathbb{P}(B O O L \times \mathbb{Z})$
- set comprehension $\{x \cdot \varphi \mid e\}$ formula $\varphi$, term $e: T$, result of type $\mathbb{P}(T)$ example: $\{x \cdot x \geq 2 \mid x * x\}=\{4,9,16, \ldots\}$


## Relations

- Relations are sets of pairs (tuples).


# Relations 

- Relations are sets of pairs (tuples).
- All relations: $E_{1} \leftrightarrow E_{2}:=\mathbb{P}\left(E_{1} \times E_{2}\right)$


## Relations

- Relations are sets of pairs (tuples).
- All relations: $E_{1} \leftrightarrow E_{2}:=\mathbb{P}\left(E_{1} \times E_{2}\right)$
- Pairs $\left(E_{1} \mapsto E_{2}\right): \tau\left(E_{1}\right) \times \tau\left(E_{2}\right)$


## Relations

- Relations are sets of pairs (tuples).
- All relations: $E_{1} \leftrightarrow E_{2}:=\mathbb{P}\left(E_{1} \times E_{2}\right)$
- Pairs $\left(E_{1} \mapsto E_{2}\right): \tau\left(E_{1}\right) \times \tau\left(E_{2}\right)$
- Domain of a relation $\operatorname{dom}(R)$ $\operatorname{dom}(R)=\{x, y \cdot(x \mapsto y) \in R \mid x\}$ example: $\operatorname{dom}\left(E_{1} \times E_{2}\right)=E_{1}$


## Relations

- Relations are sets of pairs (tuples).
- All relations: $E_{1} \leftrightarrow E_{2}:=\mathbb{P}\left(E_{1} \times E_{2}\right)$
- Pairs $\left(E_{1} \mapsto E_{2}\right): \tau\left(E_{1}\right) \times \tau\left(E_{2}\right)$
- Domain of a relation $\operatorname{dom}(R)$ $\operatorname{dom}(R)=\{x, y \cdot(x \mapsto y) \in R \mid x\}$ example: $\operatorname{dom}\left(E_{1} \times E_{2}\right)=E_{1}$
- Range of a relation $\operatorname{ran}(R)$ $\operatorname{ran}(R)=\{x, y \cdot(x \mapsto y) \in R \mid y\}$ example: $\operatorname{ran}\left(E_{1} \times E_{2}\right)=E_{2}$


## Relations

- Relations are sets of pairs (tuples).
- All relations: $E_{1} \leftrightarrow E_{2}:=\mathbb{P}\left(E_{1} \times E_{2}\right)$
- Pairs $\left(E_{1} \mapsto E_{2}\right): \tau\left(E_{1}\right) \times \tau\left(E_{2}\right)$
- Domain of a relation $\operatorname{dom}(R)$ $\operatorname{dom}(R)=\{x, y \cdot(x \mapsto y) \in R \mid x\}$ example: $\operatorname{dom}\left(E_{1} \times E_{2}\right)=E_{1}$
- Range of a relation $\operatorname{ran}(R)$ $\operatorname{ran}(R)=\{x, y \cdot(x \mapsto y) \in R \mid y\}$ example: $\operatorname{ran}\left(E_{1} \times E_{2}\right)=E_{2}$
- can be nested: $\left(E_{1} \leftrightarrow E_{2}\right) \leftrightarrow E_{3}$ for a ternary relation etc.


## Relations

- Relations are sets of pairs (tuples).
- All relations: $E_{1} \leftrightarrow E_{2}:=\mathbb{P}\left(E_{1} \times E_{2}\right)$
- Pairs $\left(E_{1} \mapsto E_{2}\right): \tau\left(E_{1}\right) \times \tau\left(E_{2}\right)$
- Domain of a relation $\operatorname{dom}(R)$ $\operatorname{dom}(R)=\{x, y \cdot(x \mapsto y) \in R \mid x\}$ example: $\operatorname{dom}\left(E_{1} \times E_{2}\right)=E_{1}$ if $E_{2} \neq \varnothing$
- Range of a relation $\operatorname{ran}(R)$ $\operatorname{ran}(R)=\{x, y \cdot(x \mapsto y) \in R \mid y\}$ example: $\operatorname{ran}\left(E_{1} \times E_{2}\right)=E_{2}$ if $E_{1} \neq \varnothing$
- can be nested: $\left(E_{1} \leftrightarrow E_{2}\right) \leftrightarrow E_{3}$ for a ternary relation etc.


## Kinds of relations

- All relations $E_{1} \leftrightarrow E_{2}$



## Kinds of relations

- All relations $E_{1} \leftrightarrow E_{2}$
dom ran
- All surjections $E_{1} \leftrightarrow E_{2} \quad\left(\operatorname{ran}(R)=E_{2}\right)$



## Kinds of relations

- All relations $E_{1} \leftrightarrow E_{2}$
dom ran
- All surjections $E_{1} \leftrightarrow E_{2} \quad\left(\operatorname{ran}(R)=E_{2}\right)$

- All total relations $E_{1} \leftrightarrow E_{2}$
$\left(\operatorname{dom}(R)=E_{1}\right)$



## Kinds of relations

- All relations $E_{1} \leftrightarrow E_{2}$

dom ran
- All surjections $E_{1} \leftrightarrow E_{2} \quad\left(\operatorname{ran}(R)=E_{2}\right)$

- All total relations $E_{1} \leftrightarrow E_{2} \quad\left(\operatorname{dom}(R)=E_{1}\right)$

dom ran
- All total surjections $E_{1} \leftrightarrow \nless E_{2}$


## Functional relations

## Observation

Every function $f \in A \rightarrow B$ can be understood as the relation

$$
\{x \cdot x \in A \mid x \mapsto f(x)\} \quad \in \quad A \leftrightarrow B
$$

- Partial functions $E_{1} \rightarrow E_{2} \subseteq E_{1} \leftrightarrow E_{2}$ $(\forall x, y, z \cdot x \mapsto y \in R \wedge x \mapsto z \in R \Rightarrow y=z)(*)$

dom ran


## Functional relations

## Observation

Every function $f \in A \rightarrow B$ can be understood as the relation

$$
\{x \cdot x \in A \mid x \mapsto f(x)\} \quad \in \quad A \leftrightarrow B
$$

- Partial functions $E_{1} \rightarrow E_{2} \subseteq E_{1} \leftrightarrow E_{2}$ $(\forall x, y, z \cdot x \mapsto y \in R \wedge x \mapsto z \in R \Rightarrow y=z)(*)$

dom ran
- Total functions $E_{1} \rightarrow E_{2}$ $E_{1} \rightarrow E_{2}=\left(E_{1} \rightarrow E_{2}\right) \cap\left(E_{1} \leftrightarrow E_{2}\right)$ (both partial function and total relation)



## Functional relations

## Observation

Every function $f \in A \rightarrow B$ can be understood as the relation

$$
\{x \cdot x \in A \mid x \mapsto f(x)\} \quad \in \quad A \leftrightarrow B
$$

- Partial functions $E_{1} \rightarrow E_{2} \subseteq E_{1} \leftrightarrow E_{2}$ $(\forall x, y, z \cdot x \mapsto y \in R \wedge x \mapsto z \in R \Rightarrow y=z)(*)$

dom ran
- Total functions $E_{1} \rightarrow E_{2}$ $E_{1} \rightarrow E_{2}=\left(E_{1} \rightarrow E_{2}\right) \cap\left(E_{1} \leftrightarrow E_{2}\right)$ (both partial function and total relation)

- Injections $E_{1} \leftrightarrow E_{2}$
$(*) \wedge(\forall x, y, z \cdot x \mapsto z \in R \wedge y \mapsto z \in R \Rightarrow x=y)$

dom ran


## Functional relations (2)

Intersection of relation classes give new classes:

- Total injections $E_{1} \mapsto E_{2}=\left(E_{1} \rightarrow E_{2}\right) \cap\left(E_{1} \rightarrow E_{2}\right)$
- Partial surjections $E_{1} \rightarrow E_{2}=\left(E_{1} \rightarrow E_{2}\right) \cap\left(E_{1} \leftrightarrow E_{2}\right)$
- Total surjections $E_{1} \rightarrow E_{2}=\left(E_{1} \rightarrow E_{2}\right) \cap\left(E_{1} \rightarrow E_{2}\right)$
- Bijections $E_{1} \mapsto E_{2}=\left(E_{1} \rightarrow E_{2}\right) \cap\left(E_{1} \mapsto E_{2}\right)$


## Example: File system

## CONTEXT FileSystemCtx

## Example: File system

## CONTEXT FileSystemCtx SETS OBJECT

# Example: File system 

CONTEXT FileSystemCtx SETS OBJECT<br>CONSTANTS files, dirs, root<br>AXIOMS files $\subseteq$ OBJECT, dirs $\subseteq$ OBJECT,<br>root $\in$ dirs, files $\cap$ dirs $=\varnothing$

# CONTEXT FileSystemCtx SETS OBJECT <br> CONSTANTS files, dirs, root <br> AXIOMS files $\subseteq$ OBJECT, dirs $\subseteq$ OBJECT, <br> root $\in$ dirs, files $\cap$ dirs $=\varnothing$ 

MACHINE FileSystem SEES FileSystemCtx
VARIABLES tree, parent

## Example: File system

# CONTEXT FileSystemCtx SETS OBJECT <br> CONSTANTS files, dirs, root <br> AXIOMS files $\subseteq$ OBJECT, dirs $\subseteq$ OBJECT, <br> root $\in$ dirs, files $\cap$ dirs $=\varnothing$ 

MACHINE FileSystem SEES FileSystemCtx
VARIABLES tree, parent
INVARIANTS
tree $\in$ dirs $\leftrightarrow($ files $\cup$ dirs $)$

## Example: File system

# CONTEXT FileSystemCtx SETS OBJECT <br> CONSTANTS files, dirs, root <br> AXIOMS files $\subseteq$ OBJECT, dirs $\subseteq$ OBJECT, <br> root $\in$ dirs, files $\cap$ dirs $=\varnothing$ 

MACHINE FileSystem SEES FileSystemCtx
VARIABLES tree, parent
INVARIANTS
tree $\in$ dirs $\leftrightarrow($ files $\cup$ dirs $)$
// most directories (but root) have a parent directory :
parent $\in$ dirs $\rightarrow$ dirs

## Example: File system

# CONTEXT FileSystemCtx SETS OBJECT <br> CONSTANTS files, dirs, root <br> AXIOMS files $\subseteq$ OBJECT, dirs $\subseteq$ OBJECT, <br> root $\in$ dirs, files $\cap$ dirs $=\varnothing$ 

MACHINE FileSystem SEES FileSystemCtx
VARIABLES tree, parent
INVARIANTS
tree $\in$ dirs $\leftrightarrow($ files $\cup$ dirs $)$
// most directories (but root) have a parent directory :
parent $\in$ dirs $\rightarrow$ dirs
// more precise
parent $\in($ dirs $\backslash\{$ root $\}) \rightarrow$ dirs

## Relational operations

- Relational application $\cdot[\cdot]: \mathbb{P}(S \times T) \times \mathbb{P}(S) \rightarrow \mathbb{P}(T)$ $R[A]=\{x, y \cdot x \mapsto y \in R \wedge x \in A \mid y\}$

dom ran


## Relational operations

- Relational application $\cdot[\cdot]: \mathbb{P}(S \times T) \times \mathbb{P}(S) \rightarrow \mathbb{P}(T)$ $R[A]=\{x, y \cdot x \mapsto y \in R \wedge x \in A \mid y\}$



## Relational operations

- Relational application $\cdot[\cdot]: \mathbb{P}(S \times T) \times \mathbb{P}(S) \rightarrow \mathbb{P}(T)$ $R[A]=\{x, y \cdot x \mapsto y \in R \wedge x \in A \mid y\}$



## Relational operations

- Relational application $\cdot[\cdot]: \mathbb{P}(S \times T) \times \mathbb{P}(S) \rightarrow \mathbb{P}(T)$ $R[A]=\{x, y \cdot x \mapsto y \in R \wedge x \in A \mid y\}$
- Functional application •( $\cdot$ ) : $\mathbb{P}(S \times T) \times S \rightarrow T$

$$
x=f(e) \Longleftrightarrow e \mapsto x \in f \quad\{f(e)\}=f[\{e\}]
$$

## Relational operations

- Relational application $\cdot[\cdot]: \mathbb{P}(S \times T) \times \mathbb{P}(S) \rightarrow \mathbb{P}(T)$ $R[A]=\{x, y \cdot x \mapsto y \in R \wedge x \in A \mid y\}$
- Functional application •( $\cdot$ ) : $\mathbb{P}(S \times T) \times S \rightarrow T$

$$
x=f(e) \Longleftrightarrow e \mapsto x \in f \quad\{f(e)\}=f[\{e\}]
$$

Problem: What if $f[\{e\}]$ is not a one-element set?

## Relational operations

- Relational application $\cdot[\cdot]: \mathbb{P}(S \times T) \times \mathbb{P}(S) \rightarrow \mathbb{P}(T)$ $R[A]=\{x, y \cdot x \mapsto y \in R \wedge x \in A \mid y\}$
- Functional application $\cdot(\cdot): \mathbb{P}(S \times T) \times S \rightarrow T$

$$
x=f(e) \Longleftrightarrow e \mapsto x \in f \quad\{f(e)\}=f[\{e\}]
$$

Problem: What if $f[\{e\}]$ is not a one-element set? Solution: Well-definedness needs to be proved
(1) $f \in S \rightarrow T$ (not an arbitrary relation in $S \leftrightarrow T$ )
(2) $e \in \operatorname{dom}(f)$
everytime a functional application is used.

## Restrictions

## Concept

Limit the domain or range of a relation to a subset.


## Restrictions

## Concept

Limit the domain or range of a relation to a subset.


## Restrictions

## Concept

Limit the domain or range of a relation to a subset.


## Restrictions

## Concept

Limit the domain or range of a relation to a subset.


- $A \triangleleft R \quad:=\{x, y \cdot x \mapsto y \in R \wedge x \in A \mid x \mapsto y\} \subseteq R$
- $A \notin R \quad:=\{x, y \cdot x \mapsto y \in R \wedge x \notin A \mid x \mapsto y\} \subseteq R$ $R \triangleright B:=\{x, y \cdot x \mapsto y \in R \wedge y \in B \mid x \mapsto y\} \subseteq R$
$R \triangleright B:=\{x, y \cdot x \mapsto y \in R \wedge y \notin B \mid x \mapsto y\} \subseteq R$


## Restrictions

## Concept

Limit the domain or range of a relation to a subset.

dom ran

- $A \triangleleft R \quad:=\{x, y \cdot x \mapsto y \in R \wedge x \in A \mid x \mapsto y\} \subseteq R$
- $A \notin R \quad:=\{x, y \cdot x \mapsto y \in R \wedge x \notin A \mid x \mapsto y\} \subseteq R$
$R \triangleright B:=\{x, y \cdot x \mapsto y \in R \wedge y \in B \mid x \mapsto y\} \subseteq R$
$R \triangleright B:=\{x, y \cdot x \mapsto y \in R \wedge y \notin B \mid x \mapsto y\} \subseteq R$
- Relational application: $R[A]=\operatorname{ran}(A \triangleleft R)$

Override

$$
\begin{gathered}
R \notin S:=((\operatorname{dom} S) \notin R) \cup S \\
x \mapsto y \in R \& S \Longleftrightarrow \begin{cases}x \mapsto y \in S & \text { if } x \in \operatorname{dom}(S) \\
x \mapsto y \in R & \text { if } x \notin \operatorname{dom}(S)\end{cases}
\end{gathered}
$$

- "Clear" $\operatorname{dom}(S)$ in $R$ and "replace" by $S$.

$$
\begin{gathered}
R \notin S:=((\operatorname{dom} S) \notin R) \cup S \\
x \mapsto y \in R \& S \Longleftrightarrow \begin{cases}x \mapsto y \in S & \text { if } x \in \operatorname{dom}(S) \\
x \mapsto y \in R & \text { if } x \notin \operatorname{dom}(S)\end{cases}
\end{gathered}
$$

- "Clear" $\operatorname{dom}(S)$ in $R$ and "replace" by $S$.
- Special case: $f \in A \rightarrow B, g \in A \rightarrow B$ implies $f \nLeftarrow g \in A \rightarrow B$

$$
\begin{gathered}
R \notin S:=((\operatorname{dom} S) \notin R) \cup S \\
x \mapsto y \in R \& S \Longleftrightarrow \begin{cases}x \mapsto y \in S & \text { if } x \in \operatorname{dom}(S) \\
x \mapsto y \in R & \text { if } x \notin \operatorname{dom}(S)\end{cases}
\end{gathered}
$$

- "Clear" $\operatorname{dom}(S)$ in $R$ and "replace" by $S$.
- Special case: $f \in A \rightarrow B, g \in A \rightarrow B$ implies $f \nLeftarrow g \in A \rightarrow B$
- $f \&\{x \mapsto y\}$ updates function $f$ in one place $x$

$$
\begin{gathered}
R \notin S:=((\operatorname{dom} S) \notin R) \cup S \\
x \mapsto y \in R \& S \Longleftrightarrow \begin{cases}x \mapsto y \in S & \text { if } x \in \operatorname{dom}(S) \\
x \mapsto y \in R & \text { if } x \notin \operatorname{dom}(S)\end{cases}
\end{gathered}
$$

- "Clear" $\operatorname{dom}(S)$ in $R$ and "replace" by $S$.
- Special case: $f \in A \rightarrow B, g \in A \rightarrow B$ implies $f \nLeftarrow g \in A \rightarrow B$
- $f \&\{x \mapsto y\}$ updates function $f$ in one place $x$
- Caution: $\triangleleft$ and $\&$ are different symbols

$$
\begin{gathered}
R \notin S:=((\operatorname{dom} S) \notin R) \cup S \\
x \mapsto y \in R \& S \Longleftrightarrow \begin{cases}x \mapsto y \in S & \text { if } x \in \operatorname{dom}(S) \\
x \mapsto y \in R & \text { if } x \notin \operatorname{dom}(S)\end{cases}
\end{gathered}
$$

- "Clear" dom $(S)$ in $R$ and "replace" by $S$.
- Special case: $f \in A \rightarrow B, g \in A \rightarrow B$ implies $f \nLeftarrow g \in A \rightarrow B$
- $f \notin\{x \mapsto y\}$ updates function $f$ in one place $x$
- Caution: $\triangleleft$ and $\nleftarrow$ are different symbols
- Syntax sometimes $\oplus$ instead of $\nleftarrow$

$$
\begin{gathered}
R \notin S:=((\operatorname{dom} S) \notin R) \cup S \\
x \mapsto y \in R \& S \Longleftrightarrow \begin{cases}x \mapsto y \in S & \text { if } x \in \operatorname{dom}(S) \\
x \mapsto y \in R & \text { if } x \notin \operatorname{dom}(S)\end{cases}
\end{gathered}
$$

- "Clear" dom $(S)$ in $R$ and "replace" by $S$.
- Special case: $f \in A \rightarrow B, g \in A \rightarrow B$ implies $f \nLeftarrow g \in A \rightarrow B$
- $f \notin\{x \mapsto y\}$ updates function $f$ in one place $x$
- Caution: $\&$ and $\&$ are different symbols
- Syntax sometimes $\oplus$ instead of $\nleftarrow$
- Compare Updates in Dynamic Logic for KeY.


## Forward composition

$$
x \mapsto y \in R ; S \Longleftrightarrow \exists z \cdot x \mapsto z \in R \wedge z \mapsto y \in S
$$

$x \mapsto y$ is in the composition $R$; $S$ if there is a transmitting element $z$ with both $x \mapsto z \in R$ and $z \mapsto y \in S$.


## Forward composition

$$
x \mapsto y \in R ; S \Longleftrightarrow \exists z \cdot x \mapsto z \in R \wedge z \mapsto y \in S
$$

$x \mapsto y$ is in the composition $R$; $S$ if there is a transmitting element $z$ with both $x \mapsto z \in R$ and $z \mapsto y \in S$.


## Forward composition

$$
x \mapsto y \in R ; S \Longleftrightarrow \exists z \cdot x \mapsto z \in R \wedge z \mapsto y \in S
$$

$x \mapsto y$ is in the composition $R$; $S$ if there is a transmitting element $z$ with both $x \mapsto z \in R$ and $z \mapsto y \in S$.

(There is also backward composition $R \circ S=S ; R$ )

# CONTEXT FileSystemCtx <br> SETS OBJECT <br> CONSTANTS files, dirs, root <br> AXIOMS files $\subseteq$ OBJECT, dirs $\subseteq$ OBJECT, <br> root $\in$ dirs, files $\cap$ dirs $=\varnothing$ 

MACHINE FileSystem SEES FileSystemCtx
VARIABLES tree, depth
INVARIANTS
tree $\in$ dirs $\leftrightarrow$ (files $\cup$ dirs $) \wedge$ depth $\in$ dirs $\rightarrow \mathbb{N} \wedge$

## Example: File system

# CONTEXT FileSystemCtx <br> SETS OBJECT <br> CONSTANTS files, dirs, root <br> AXIOMS files $\subseteq$ OBJECT, dirs $\subseteq$ OBJECT, <br> root $\in$ dirs, files $\cap$ dirs $=\varnothing$ 

MACHINE FileSystem SEES FileSystemCtx
VARIABLES tree, depth
INVARIANTS
tree $\in$ dirs $\leftrightarrow$ (files $\cup$ dirs $) \wedge$ depth $\in$ dirs $\rightarrow \mathbb{N} \wedge$
$\forall d \cdot((\operatorname{depth}(d)>0 \Rightarrow \operatorname{depth}[\operatorname{tree}[\{d\}]]=\{\operatorname{depth}(d)-1\})$
$\wedge(\operatorname{depth}(d)=0 \Rightarrow\{d\} \triangleleft$ tree $\triangleright$ files $=\varnothing))$

## Event-B Events

## Machine (systematic)

MACHINE name
SEES context
VARIABLES $\overline{\text { vars }}$
INVARIANTS $\operatorname{inv}(\overline{\operatorname{vars}})$
EVENTS
END

The symbols in context can be used in inv even if not mentioned explicitly.

## Events

## EVENT M <br> // the following are the parameters, <br> // the input signals, nondeterministic choices <br> ANY $\overline{p r m s}$ <br> // the preconditions, conditions on the input values <br> WHERE guard( $\overline{\text { vars, }}, \overline{p r m s})$ <br> // evolution of the program variables when the event "fires" THEN <br> actions <br> END

There is one more contruct (WITH) that we omit here.

## Actions (Generalised Substitutions)

## Deterministic actions

- "Assignment" $x$ := $t$
- Variable $x$ and term $t$ must have same type $(\tau(t)=\tau(x))$
- After event, $x$ has value of expression $t$


## Actions (Generalised Substitutions)

## Deterministic actions

- "Assignment" $x:=t$
- Variable $x$ and term $t$ must have same type $(\tau(t)=\tau(x))$
- After event, $x$ has value of expression $t$


## Actions (Generalised Substitutions)

Deterministic actions

- "Assignment" $x$ := $t$
- Variable $x$ and term $t$ must have same type $(\tau(t)=\tau(x))$
- After event, $x$ has value of expression $t$


## Actions (Generalised Substitutions)

## Deterministic actions

- "Assignment" $x:=t$
- Variable $x$ and term $t$ must have same type $(\tau(t)=\tau(x))$
- After event, $x$ has value of expression $t$


## Actions (Generalised Substitutions)

## Deterministic actions

- "Assignment" $x:=t$
- Variable $x$ and term $t$ must have same type ( $\tau(t)=\tau(x)$ )
- After event, $x$ has value of expression $t$


## Example:

THEN
$x:=y$
$y:=x$
END // swaps values of variables $x, y$.
Unmentioned variable $z$ does not change.
Remember the updates in $\operatorname{KeY}:\{x:=y \| y:=x\}$ has same effects.

## Actions (Generalised Substitutions)

Nondeterministic actions

$$
x: \mid \varphi \quad \text { means "choose } x \text { such that } \varphi \text { " }
$$

- Actions can have more than one resolution
- $\varphi$ is called the before-after-predicate (BAP)
- variables without tick: before-state
- variables with tick: after-state.


## Actions (Generalised Substitutions)

Nondeterministic actions

$$
x: \mid \varphi \quad \text { means "choose } x \text { such that } \varphi \text { " }
$$

- Actions can have more than one resolution
- $\varphi$ is called the before-after-predicate (BAP)
- variables without tick: before-state
- variables with tick: after-state.


## Actions (Generalised Substitutions)

Nondeterministic actions

$$
x: \mid \varphi \quad \text { means "choose } x \text { such that } \varphi \text { " }
$$

- Actions can have more than one resolution
- $\varphi$ is called the before-after-predicate (BAP)
- variables without tick: before-state
- variables with tick: after-state.


## Actions (Generalised Substitutions)

Nondeterministic actions

$$
x: \mid \varphi \quad \text { means "choose } x \text { such that } \varphi \text { " }
$$

- Actions can have more than one resolution
- $\varphi$ is called the before-after-predicate (BAP)
- variables without tick: before-state
- variables with tick: after-state.


## Actions (Generalised Substitutions)

## Nondeterministic actions

$$
x: \mid \varphi \quad \text { means "choose } x \text { such that } \varphi \text { " }
$$

- Actions can have more than one resolution
- $\varphi$ is called the before-after-predicate (BAP)
- variables without tick: before-state
- variables with tick: after-state.


## Actions (Generalised Substitutions)

## Nondeterministic actions

$$
x: \mid \varphi \quad \text { means "choose } x \text { such that } \varphi \text { " }
$$

- Actions can have more than one resolution
- $\varphi$ is called the before-after-predicate (BAP)
- variables without tick: before-state
- variables with tick: after-state.


## Example:

$$
x, y: \mid x^{\prime}=y^{\prime} \wedge y^{\prime}>y
$$

After the action $x$ and $y$ are equal and $y$ is strictly greater than before the action.

## Actions (Generalised Substitutions)

## Normal form

Every action can be defined as a before-after-predicate

$$
\operatorname{bap}(\overline{\text { vars }}, \overline{\text { vars' }}, \overline{p r m s})
$$

with
(1) vars the machines variables before the action
(2) $\overline{v a r s^{\prime}}$ the machine variables after the action
(3) prms the parameters of the event

- $x:=t$ is short for $x: \mid x^{\prime}=t$
- $x: \in S$ is short for $x: \mid x^{\prime} \in S$


## Initialisation

- Values of the machine in the beginning?


## Initialisation

KarIsruhe institute of Technology

- Values of the machine in the beginning?
- Initial values defined by the special event INITIALISATION.


## Initialisation

- Values of the machine in the beginning?
- Initial values defined by the special event INITIALISATION.
- before-after-predicate bap $_{\text {init }}$ and guard grd $_{\text {init }}$ must not refer to vars, there is no "before-state".


## Initialisation

- Values of the machine in the beginning?
- Initial values defined by the special event INITIALISATION.
- before-after-predicate bap $_{\text {init }}$ and guard grd $_{\text {init }}$ must not refer to vars, there is no "before-state".
- After the first state, only normal events trigger.


## Machine Semantics

Machine variables $\overline{v a r s}:=v_{1}, \ldots, v_{k}$ with types $\bar{T}=T_{1} \times \ldots \times T_{k}$.
A state $\sigma \in \bar{T}$ is a vector, variable assignment.
A trace is a sequence of states $\sigma_{0}, \sigma_{1}, \ldots$ such that

- first state $\sigma_{0}$ is result of the initialisation event
- every state $\sigma_{i}$ results from an event which operates on $\sigma_{i-1}$ (for every $i>0$ ).


The semantics of a machine $M$ is the set of all traces possible for $M$.

## Event Parameters

## Sources for indeterminism

- indeterministic choices in bap's (cf. : $\in,: \mid)$
- event parameters


## Event parameter may model:

- content of messages passed around
- indeterministic user input
- unpredictable environment actions
- a number, amount of data to operate with

Technically event parameters can be removed and replaced by existential quantifiers.

## Semantics (more formally)

State space: $\bar{T}=T_{1} \times \ldots \times T_{k}$

## Semantics (more formally)

State space: $\bar{T}=T_{1} \times \ldots \times T_{k}$
Trace: $t \in \mathbb{N} \rightarrow \bar{T}$

## Semantics (more formally)

State space: $\bar{T}=T_{1} \times \ldots \times T_{k}$
Trace: $t \in \mathbb{N} \rightarrow \bar{T}$ with

- $\exists p r m s_{i n i t} \cdot \operatorname{grd}_{\text {init }}\left(p r m s_{i n i t}\right) \wedge \operatorname{bap}_{\text {init }}\left(t(0)\right.$, prms $\left._{\text {init }}\right)$


## Semantics (more formally)

State space: $\bar{T}=T_{1} \times \ldots \times T_{k}$
Trace: $t \in \mathbb{N} \rightarrow \bar{T}$ with

- $\exists p r m s_{i n i t} \cdot \operatorname{grd}_{\text {init }}\left(p r m s_{\text {init }}\right) \wedge \operatorname{bap}_{\text {init }}\left(t(0)\right.$, prms $\left._{\text {init }}\right)$
- For $n \in \mathbb{N}_{1}$, there is $e \in E V E N T S$ such that $\exists p r m s_{e} \cdot \operatorname{grd}_{e}\left(t(i-1), \operatorname{prms}_{e}\right) \wedge \operatorname{bap}_{e}\left(t(i-1), t(i)\right.$, prms $\left._{e}\right)$


## Semantics (more formally)

State space: $\bar{T}=T_{1} \times \ldots \times T_{k}$
Trace: $t \in \mathbb{N} \rightarrow \bar{T}$ with

- $\exists p r m s_{i n i t} \cdot \operatorname{grd}_{\text {init }}\left(p r m s_{\text {init }}\right) \wedge \operatorname{bap}_{\text {init }}\left(t(0)\right.$, prms $\left._{\text {init }}\right)$
- For $n \in \mathbb{N}_{1}$, there is $e \in E V E N T S$ such that $\exists p r m s_{e} \cdot \operatorname{grd}_{e}\left(t(i-1), p r m s_{e}\right) \wedge \operatorname{bap}_{e}\left(t(i-1), t(i), p r m s_{e}\right)$


## Semantics (more formally)

State space: $\bar{T}=T_{1} \times \ldots \times T_{k}$
Trace: $t \in \mathbb{N} \rightarrow \bar{T}$
with

- $\exists p r m s_{i n i t} \cdot \operatorname{grd}_{\text {init }}\left(p r m s_{\text {init }}\right) \wedge \operatorname{bap}_{\text {init }}\left(t(0)\right.$, prms $\left._{\text {init }}\right)$
- For $n \in \mathbb{N}_{1}$, there is $e \in E V E N T S$ such that $\exists p r m s_{e} \cdot \operatorname{grd}_{e}\left(t(i-1)\right.$, prms $\left._{e}\right) \wedge \operatorname{bap}_{e}\left(t(i-1), t(i)\right.$, prms $\left._{e}\right)$

Partial, finite trace trace: $t \in 0 . . n \rightarrow \bar{T}$

## Semantics (more formally)

State space: $\bar{T}=T_{1} \times \ldots \times T_{k}$
Trace: $t \in \mathbb{N} \rightarrow \bar{T}$
with

- $\exists p r m s_{i n i t} \cdot \operatorname{grd}_{\text {init }}\left(\right.$ prms $\left._{\text {init }}\right) \wedge \operatorname{bap}_{\text {init }}\left(t(0)\right.$, prms $\left._{\text {init }}\right)$
- For $n \in \mathbb{N}_{1}$, there is $e \in E V E N T S$ such that $\exists$ prms $_{e} \cdot \operatorname{grd}_{e}\left(t(i-1)\right.$, prms $\left._{e}\right) \wedge \operatorname{bap}_{e}\left(t(i-1), t(i)\right.$, prms $\left._{e}\right)$

Partial, finite trace trace: $t \in 0 . . n \rightarrow \bar{T}$
Deadlock: no event e can be triggered, i.e. $\forall p r m s_{e} \cdot \neg \operatorname{grd}_{e}\left(t(n), p r m s_{e}\right)$ for all events $e$.

## Invariants

SAFETY: Do all states reachable by $M$ satisfy inv?


The red trace violates the invariant in two states.

## Proof Obligation INV

To show that $\operatorname{inv}(\overline{v a r s})$ is an invariant for machine $M$, one proves for every event:

Invariants
Guards of the event
Before-after-predicate of the thevent
$\Rightarrow$
modified invariant

## Proof Obligation INV

To show that $\operatorname{inv}(\overline{v a r s})$ is an invariant for machine $M$, one proves:
(1) $\forall \overline{p r m s}, \overline{v a r s^{\prime}}$.

$$
\operatorname{grd}_{\text {init }}(\overline{\text { prms }}) \wedge \text { bap }_{\text {init }}\left(\overline{v^{\prime r s^{\prime}}}, \overline{\operatorname{prms}}\right) \rightarrow \operatorname{inv}\left(\overline{\text { vars }^{\prime}}\right)
$$

(Invariant initally valid)

## Proof Obligation INV

To show that $\operatorname{inv}(\overline{v a r s})$ is an invariant for machine $M$, one proves:
(1) $\forall \overline{p r m s}, \overline{v a r s^{\prime}}$.

$$
\begin{aligned}
& \operatorname{grd}_{\text {init }}(\overline{\operatorname{prms}}) \wedge \text { bap }_{\text {init }}\left(\overline{\text { vars' }^{\prime}}, \overline{\operatorname{prms}}\right) \rightarrow \operatorname{inv}\left(\overline{\text { vars }^{\prime}}\right) \\
& (\text { Invariant initally valid })
\end{aligned}
$$

(2) $\forall \overline{p r m s}, \overline{v a r s}, \overline{v a r s^{\prime}}$. $\operatorname{inv}(\overline{v a r s}) \wedge \operatorname{grd}_{e}(\overline{\text { vars }}, \overline{p r m s}) \wedge$ bap $_{e}(\overline{\text { vars }}, \overline{\text { vars' }}, \overline{p r m s}) \rightarrow \operatorname{inv}\left(\overline{v^{v a r s}{ }^{\prime}}\right)$
for every event $e$ in $M$.
(Events preserve invariant)

## Proof Obligation INV

To show that $\operatorname{inv}(\overline{v a r s})$ is an invariant for machine $M$, one proves:
(1) $\forall \overline{p r m s}, \overline{v a r s^{\prime}}$.

$$
\begin{aligned}
& \text { grd }_{\text {init }} \wedge \text { bap }_{\text {init }} \rightarrow \text { inv } \\
& \text { (Invariant initally valid) }
\end{aligned}
$$

(2) $\forall \overline{p r m s}, \overline{v a r s}, \overline{v^{\prime} s^{\prime}}$.

$$
\operatorname{inv} \wedge \operatorname{grd}_{e} \wedge
$$

bap $_{e} \rightarrow i n v^{\prime}$
for every event $e$ in $M$.
(Events preserve invariant)

## Proof Obligation INV

To show that $\operatorname{inv}(\overline{v a r s})$ is an invariant for machine $M$, one proves:
(1) $\forall \overline{p r m s}, \overline{v a r s^{\prime}}$.

$$
\begin{aligned}
& \text { grd }_{\text {init }} \wedge \text { bap }_{\text {init }} \rightarrow \text { inv } \\
& \text { (Invariant initally valid) }
\end{aligned}
$$

(2) $\forall \overline{p r m s}, \overline{v a r s}, \overline{v a r s^{\prime}}$.

$$
\operatorname{inv} \wedge \operatorname{grd}_{e} \wedge
$$

$$
\operatorname{bap}_{e} \rightarrow i n v^{\prime}
$$

for every event $e$ in $M$. (Events preserve invariant)

Note: Proof Obligation INV is a sufficient criterion, but not necessary. Necessary for inductive invariants.

## Inductive Invariant

MACHINE IndInv
VARIABLES $x$ INVARIANTS $x \in \mathbb{Z} \quad x \geq 0$ EVENTS

INITIALISATION $\widehat{=}$

$$
x:=2
$$

STEP $\widehat{=}$

$$
x:=2 *(x-1)
$$

There is only one trace:

$$
(2,2,2,2, \ldots)
$$

invariant is fulfilled.

## Inductive Invariant - Won’t prove

## Proof obligation for event STEP

$$
\operatorname{inv}(x) \wedge \operatorname{grd}(x) \wedge \quad \operatorname{bap}\left(x, x^{\prime}\right) \rightarrow \operatorname{inv}\left(x^{\prime}\right)
$$

## Inductive Invariant - Won’t prove

## Proof obligation for event STEP

$$
\left.\begin{array}{llll}
\operatorname{inv}(x) \\
x \geq 0
\end{array}\right) \operatorname{grd}(x) \quad \wedge \quad \operatorname{bap}\left(x, x^{\prime}\right) \quad \rightarrow \operatorname{inv}\left(x^{\prime}\right)
$$

## Inductive Invariant - Won’t prove

## Proof obligation for event STEP

$$
\left.\begin{array}{cll}
\operatorname{inv}(x) \\
x \geq 0
\end{array}\right) \operatorname{grd}(x) \quad \wedge \quad \operatorname{bap}\left(x, x^{\prime}\right) \quad \rightarrow \operatorname{inv}\left(x^{\prime}\right)
$$

\& This is not valid! Invariant is not inductive. $\&$
Counter-example: $x=0, x^{\prime}=-2$

## Inductive Invariant - Won’t prove

## Proof obligation for event STEP

$$
\left.\begin{array}{ccc}
\operatorname{inv}(x) \\
x \geq 0
\end{array}\right) \operatorname{grd}(x) \quad \wedge \quad \operatorname{bap}\left(x, x^{\prime}\right) \quad \rightarrow \operatorname{inv}\left(x^{\prime}\right)
$$

\& This is not valid! Invariant is not inductive. \&
Counter-example: $x=0, x^{\prime}=-2$


## Feasibility Proof Obligation FIS

Show that every action is feasible if the guard is true:

Invariants<br>Guards of the event<br>$\Rightarrow$<br>$\exists v^{\prime} \cdot$ before-after-predicate

## Feasibility Proof Obligation FIS

The action of an event is is possible if guard is true.
$\forall \overline{\mathrm{vars}}, \overline{\text { prms }} \cdot \operatorname{grd}_{e}(\overline{\text { vars }}, \overline{p r m s}) \rightarrow \exists \overline{\text { vars' }} \cdot \operatorname{bap}(\overline{\text { vars }}, \overline{\text { vars' }}, \overline{p r m s})$

Deterministic action: $x:=t$
... nothing to show
Indeterministic action: $x: \in S$
...show that $S \neq \varnothing$
Indeterministic action: $x: \mid \varphi$
$\ldots$.. show satisfiability of $\varphi$
Thus impossible evolutions like $x: \mid$ false or $x: \in \varnothing$ are avoided

## Deadlock Freedom DLKF

## Recap:

Deadlock: no event e can be triggered, i.e. $\forall p r m s_{e} \cdot \neg \operatorname{grd}_{e}\left(t(n), p r m s_{e}\right)$ for all events $e$.

## Deadlock Freedom DLKF

## Recap:

Deadlock: no event e can be triggered, i.e. $\forall p r m s_{e} \cdot \neg \operatorname{grd}_{e}\left(t(n), p r m s_{e}\right)$ for all events $e$.

## Proof Obligation

There is always an event that can trigger:

$$
\forall \overline{\operatorname{vars}} \cdot \operatorname{inv}(\overline{\operatorname{vars}}) \Rightarrow \bigvee_{\text {event } e \in M} \exists \overline{\operatorname{prms}} \cdot \operatorname{grd}_{e}(\overline{\text { vars }}, \overline{\text { prms }})
$$

## Deadlock Freedom DLKF

## Recap:

Deadlock: no event e can be triggered, i.e.
$\forall p r m s_{e} \cdot \neg \operatorname{grd}_{e}\left(t(n), p r m s_{e}\right)$ for all events $e$.

## Proof Obligation

There is always an event that can trigger:

$$
\forall \overline{\operatorname{vars}} \cdot \operatorname{inv}(\overline{\operatorname{vars}}) \Rightarrow \bigvee_{\text {event } e \in M} \exists \overline{\operatorname{prms}} \cdot \operatorname{grd}_{e}(\overline{\text { vars }}, \overline{\text { prms }})
$$

Again, this is sufficient not necessary.
(The invariant may be too weak to imply deadlock freedom)

## Event-B Refinement

## Refinement in Event-B



## Refinement in Event-B



## Refinement in Event-B



MACHINE Abstract VARIABLES $x$ INVARIANTS $x \geq 0$

EVENTS INCREASE $\widehat{=}$

$$
x: \mid x^{\prime} \geq x
$$

## Refinement in Event-B



MACHINE Abstract VARIABLES $x$ INVARIANTS ${ }^{d} x \geq 0$

EVENTS INCREASE $\widehat{=}$

$$
x: \mid x^{\prime} \geq x
$$

## Refinement in Event-B



MACHINE Abstract VARIABLES $x$ INVARIANTS $x \geq 0$

EVENTS INCREASE $\widehat{=}$

$$
x: \mid x^{\prime} \geq x
$$

## MACHINE Refined <br> REFINES Abstract <br> VARIABLES $x$

## Refinement in Event-B



MACHINE Abstract VARIABLES $x$
INVARIANTS $x \geq 0$
EVENTS INCREASE $\widehat{=}$

$$
x: \mid x^{\prime} \geq x
$$

MACHINE Refined
REFINES Abstract
VARIABLES $x$
EVENTS NEXTVAL $\widehat{=}$
REFINES InCREASE

$$
x:=5 * x^{2}+3 * x
$$

## Refinement in Event-B



MACHINE Abstract VARIABLES $x$
INVARIANTS $x \geq 0$
EVENTS InCREASE $\widehat{=}$
$x:\left|x^{\prime}\right| \geq x$

MACHINE Refined
REFINES Abstract
VARIABLEE $x$
EVENTS NEXTVAL $\widehat{=}$
REFINES INCREASE

$$
x:=5 * x^{2}+3 * x
$$

## Refining Machines

## MACHINE Refined REFINES Abstract SEES Context <br> VARIABLES vars ${ }_{R}$ INVARIANTS $\operatorname{inv}_{R}\left(\overline{\operatorname{vars}_{A}}, \overline{\operatorname{vars}_{R}}\right)$ EVENTS <br> INITIALISATION $\widehat{=}$... <br> $\mathrm{EVT}_{R} \widehat{=}$ REFINES EVT $A \ldots$ <br> END

## Machines as Relations

Every machine $M$ defines:

- a state space $S_{M}$ spanned by the types of vars $_{M}$
- the initialisation $I_{M} \subseteq S_{M}$
- the transition relations $E_{M ; e v t} \in S_{M} \leftrightarrow S_{M}$ (for event evt)


## Details

$$
S_{M}=\tau\left(v_{1}\right) \times \ldots \times \tau\left(v_{k}\right) \quad\left(\text { with } \text { vars }_{M}=v_{1}, \ldots, v_{k}\right)
$$

## Machines as Relations

Every machine $M$ defines:

- a state space $S_{M}$ spanned by the types of vars $_{M}$
- the initialisation $I_{M} \subseteq S_{M}$
- the transition relations $E_{M ; e v t} \in S_{M} \leftrightarrow S_{M}$ (for event evt)


## Details

$$
\begin{aligned}
S_{M} & \left.=\tau\left(v_{1}\right) \times \ldots \times \tau\left(v_{k}\right) \quad \text { (with } \text { vars }_{M}=v_{1}, \ldots, v_{k}\right) \\
I_{M}(p) & =\left\{s \in S_{M} \mid \operatorname{grd}_{\text {init }}(p) \wedge \operatorname{bap}_{\text {init }}\left(s^{\prime}, p\right)\right\}
\end{aligned}
$$

## Machines as Relations

Every machine $M$ defines:

- a state space $S_{M}$ spanned by the types of vars $_{M}$
- the initialisation $I_{M} \subseteq S_{M}$
- the transition relations $E_{M ; e v t} \in S_{M} \leftrightarrow S_{M}$ (for event evt)


## Details

$$
\left.\begin{array}{rl}
S_{M} & =\tau\left(v_{1}\right) \times \ldots \times \tau\left(v_{k}\right) \quad\left(\text { with }^{\operatorname{vars}}\right. \\
M
\end{array}=v_{1}, \ldots, v_{k}\right)
$$

## Machines as Relations

Every machine $M$ defines:

- a state space $S_{M}$ spanned by the types of vars $_{M}$
- the initialisation $I_{M} \subseteq S_{M}$
- the transition relations $E_{M ; e v t} \in S_{M} \leftrightarrow S_{M}$ (for event evt)


## Details

$$
\begin{aligned}
S_{M} & =\tau\left(v_{1}\right) \times \ldots \times \tau\left(v_{k}\right) \quad\left(\text { with }^{v a r s_{M}}=v_{1}, \ldots, v_{k}\right) \\
I_{M}(p) & =\left\{s \in S_{M} \mid \operatorname{grd}_{\text {init }}(p) \wedge \operatorname{bap}_{\text {init }}\left(s^{\prime}, p\right)\right\} \\
I_{M} & =\bigcup_{p} I_{M}(p) \\
E_{M ; e v t}(p) & =\left\{\left(s \mapsto s^{\prime}\right) \mid \operatorname{grd}_{\text {evt }}(s, p) \wedge \operatorname{bap}_{\text {evt }}\left(s, s^{\prime}, p\right)\right\}
\end{aligned}
$$

## Machines as Relations

Every machine $M$ defines:

- a state space $S_{M}$ spanned by the types of vars $_{M}$
- the initialisation $I_{M} \subseteq S_{M}$
- the transition relations $E_{M ; e v t} \in S_{M} \leftrightarrow S_{M}$ (for event evt)


## Details

$$
\begin{aligned}
S_{M} & =\tau\left(v_{1}\right) \times \ldots \times \tau\left(v_{k}\right) \quad\left(\text { with }^{v^{2}} \operatorname{vars}_{M}=v_{1}, \ldots, v_{k}\right) \\
I_{M}(p) & =\left\{s \in S_{M} \mid \operatorname{grd}_{\text {init }}(p) \wedge \operatorname{bap}_{\text {init }}\left(s^{\prime}, p\right)\right\} \\
I_{M} & =\bigcup_{p} I_{M}(p) \\
E_{M ; e v t}(p) & =\left\{\left(s \mapsto s^{\prime}\right) \mid \operatorname{grd}_{\text {evt }}(s, p) \wedge \operatorname{bap}_{\text {evt }}\left(s, s^{\prime}, p\right)\right\} \\
E_{M ; \text { evt }} & =\bigcup_{p} E_{M ; \text { evt }}(p)
\end{aligned}
$$

## Simple Refinement - Definition

Every trace of the refined machine $R$ is a trace of the abstract machine $A$.

## Definition: Simple Refinement

Let $R, A$ be two machines with the same state space $S$.
$R$ is called a refinement of $A$ if
(1) $I_{R} \subseteq I_{A}$ and

## Simple Refinement - Definition

Every trace of the refined machine $R$ is a trace of the abstract machine $A$.

## Definition: Simple Refinement

Let $R, A$ be two machines with the same state space $S$.
$R$ is called a refinement of $A$ if
(1) $I_{R} \subseteq I_{A}$ and
(2) $E_{R ; \text { evt }_{R}} \subseteq E_{A ; \text { evt }_{A}}$ for each event

## Simple Refinement - Definition

Every trace of the refined machine $R$ is a trace of the abstract machine $A$.

## Definition: Simple Refinement

Let $R, A$ be two machines with the same state space $S$.
$R$ is called a refinement of $A$ if
(1) $I_{R} \subseteq I_{A}$ and
(2) $E_{R ; e v t_{R}} \subseteq E_{A ; e v t_{A}}$ for each event
( $e v t_{R}$ is the event in $R$ that refines event $e v t_{A}$ from $A$ )

## Loss of behaviour

## Why is this problematic?

```
MACHINE A
EVENTemergencyStop 人
WHERE true THEN heavyMachine := stop
END
```

refined by
MACHINE $R$
EVENTemergencyStop $\widehat{=}$ REFINES emergencyStop
WHERE false THEN heavyMachine $:=$ stop
END

## Loss of behaviour

## Why is this problematic?

```
MACHINE A
EVENTemergencyStop 人
WHERE true THEN heavyMachine := stop
END
```

refined by
MACHINE $R$
EVENTemergencyStop $\widehat{=}$ REFINES emergencyStop
WHERE false THEN heavyMachine $:=$ stop
END

## Loss of behaviour

## Why is this problematic?

```
MACHINE A
EVENTemergencyStop =
WHERE true THEN heavyMachine := stop
END
```

refined by
MACHINE $R$
EVENTemergencyStop $\widehat{=}$ REFINES emergencyStop
WHERE false THEN heavyMachine $:=$ stop
END
$E_{R ; e v t}=\varnothing \Longrightarrow R$ refines $A$

## Loss of behaviour

## Every trace for $A$ has a refining trace for $R$.

## Loss of behaviour

Every trace for $A$ has a refining trace for $R$.

## More precisely

For every trace in $A$ with triggered events evt $_{A, 1}$, evt $_{A, 2}, \ldots$, there is a trace in $R$ with triggered events $\operatorname{evt}_{R, 1}$, evt $_{R, 2}, \ldots$ and $\operatorname{evt}_{R ; i}$ refines $\operatorname{evt}_{A ; i}$.

## Loss of behaviour

Every trace for $A$ has a refining trace for $R$.

## More precisely

For every trace in $A$ with triggered events $e v t_{A, 1}, e v t_{A, 2}, \ldots$, there is a trace in $R$ with triggered events $e v t_{R, 1}$, evt $_{R, 2}, \ldots$ and $e v t_{R ; i}$ refines $^{e v t_{A ; i}}$.

## Definition: Lockfree Refinement

Let $R, A$ be two machines with the same state space $S$. $R$ is called a lockfree refinement of $A$ if
(1) $I_{R} \subseteq I_{A}$

## Loss of behaviour

Every trace for $A$ has a refining trace for $R$.

## More precisely

For every trace in $A$ with triggered events $\operatorname{evt}_{A, 1}$, evt $_{A, 2}, \ldots$, there is a trace in $R$ with triggered events $\operatorname{evt}_{R, 1}$, evt $_{R, 2}, \ldots$ and $\operatorname{evt}_{R ; i}$ refines $\operatorname{evt}_{A ; i}$.

## Definition: Lockfree Refinement

Let $R, A$ be two machines with the same state space $S$. $R$ is called a lockfree refinement of $A$ if
(1) $I_{R} \subseteq I_{A}$
(2) $I_{R} \neq \varnothing$

## Loss of behaviour

Every trace for $A$ has a refining trace for $R$.

## More precisely

For every trace in $A$ with triggered events $e v t_{A, 1}, e_{\text {l }} t_{A, 2}, \ldots$, there is a trace in $R$ with triggered events $e v t_{R, 1}$, evt $_{R, 2}, \ldots$ and $e v t_{R ; i}$ refines evt $_{A ; i}$.

## Definition: Lockfree Refinement

Let $R, A$ be two machines with the same state space $S$.
$R$ is called a lockfree refinement of $A$ if
(1) $I_{R} \subseteq I_{A}$
(2) $I_{R} \neq \varnothing$
(3) $E_{R ; e v t_{R}} \subseteq E_{A ; \text { evt }_{A}} \quad$ for each event

## Loss of behaviour

Every trace for $A$ has a refining trace for $R$.

## More precisely

For every trace in $A$ with triggered events $e v t_{A, 1}, e v t_{A, 2}, \ldots$, there is a trace in $R$ with triggered events $e v t_{R, 1}$, evt $_{R, 2}, \ldots$ and $e v t_{R ; i}$ refines $\operatorname{evt}_{A ; i}$.

## Definition: Lockfree Refinement

Let $R, A$ be two machines with the same state space $S$.
$R$ is called a lockfree refinement of $A$ if
(1) $I_{R} \subseteq I_{A}$
(2) $I_{R} \neq \varnothing$
(3) $E_{R ; e v t_{R}} \subseteq E_{A ; e v t_{A}}$ for each event
(4) $\operatorname{dom}\left(E_{A ; e v t_{A}}\right) \subseteq \operatorname{dom}\left(E_{R ; e v t_{R}}\right)$ for each event

## Coupling

## More general notion of refinement

What if abstract machine $A$ and refinement $R$ have different state spaces $S_{A}$ and $S_{R}$ ?

## Coupling

## More general notion of refinement

What if abstract machine $A$ and refinement $R$ have different state spaces $S_{A}$ and $S_{R}$ ?
$\rightarrow$ Couple abstract and refined state space.
$C \in S_{R} \leftrightarrow S_{A} \quad$ Coupling invariant / Gluing invariant

## Coupling

## More general notion of refinement

What if abstract machine $A$ and refinement $R$ have different state spaces $S_{A}$ and $S_{R}$ ?
$\rightarrow$ Couple abstract and refined state space.
$C \in S_{R} \leftrightarrow S_{A} \quad$ Coupling invariant / Gluing invariant

## Example

MACHINE AbstractFileSys
VARIABLES openFiles INVARIANTS openFiles $\subseteq$ FILES

MACHINE RefinedFileSys
VARIABLES openModes INVARIANTS openModes $\subseteq$

FILES $\times$ MODES

## Coupling

## More general notion of refinement

What if abstract machine $A$ and refinement $R$ have different state spaces $S_{A}$ and $S_{R}$ ?
$\rightarrow$ Couple abstract and refined state space.
$C \in S_{R} \leftrightarrow S_{A} \quad$ Coupling invariant / Gluing invariant

## Example

MACHINE AbstractFileSys
VARIABLES openFiles INVARIANTS openFiles $\subseteq$ FILES

MACHINE RefinedFileSys
VARIABLES openModes INVARIANTS openModes $\subseteq$

FILES $\times$ MODES

$$
C=\{r \mapsto a \mid a=\operatorname{dom}(r)\}=\{f, m \cdot(f \mapsto m) \mapsto m\}
$$

## Refinement - Coupling

- Sensible to assume $C$ a total relation:

$$
C \in S_{R} \leftrightarrow S_{A}
$$

- Often, coupling is a total function:

$$
C \in S_{R} \rightarrow S_{A}
$$

Define one abstraction for any detailed state. BUT sometimes, several possible abstractions per concrete state sensible.

## Refinement - Coupled Traces



## Refinement - Coupled Traces



## Refinement - Coupled Traces



## Refinement: $R$ refines $A$

For every concrete trace ( $\chi_{0}, \chi_{1}, \ldots$ ) of $R$ with events
(evt $1_{1}^{R}$, evt $_{2}^{R}, \ldots$ ) there exists an abstract trace ( $\sigma_{0}, \sigma_{1}, \ldots$ ) with events (evt $t_{1}^{A}$, evt $_{2}^{A}, \ldots$ ) such that

## Refinement - Coupled Traces



## Refinement: $R$ refines $A$

For every concrete trace ( $\chi_{0}, \chi_{1}, \ldots$ ) of $R$ with events
(evt $1_{1}^{R}$, evt $t_{2}^{R}, \ldots$ ) there exists an abstract trace ( $\sigma_{0}, \sigma_{1}, \ldots$ ) with events $\left(e v t_{1}^{A}, e v t_{2}^{A}, \ldots\right)$ such that
(1) $\chi_{i} \mapsto \sigma_{i} \in C$ for all $i \in \mathbb{N}$

## Refinement - Coupled Traces



## Refinement: $R$ refines $A$

For every concrete trace ( $\chi_{0}, \chi_{1}, \ldots$ ) of $R$ with events
(evt ${ }_{1}^{R}$, evt $_{2}^{R}, \ldots$ ) there exists an abstract trace ( $\sigma_{0}, \sigma_{1}, \ldots$ ) with events $\left(e v t_{1}^{A}, e v t_{2}^{A}, \ldots\right)$ such that
(1) $\chi_{i} \mapsto \sigma_{i} \in C$ for all $i \in \mathbb{N}$
(2) evt $i_{i}^{R}$ refines event $\operatorname{evt}_{i}^{A}$.

## Refinement - Definition

## Definition: Refinement

Let $R, A$ be two machines with state spaces $S_{R}, S_{A}$.
Let $C \in S_{R} \leftrightarrow R_{A}$ be the coupling invariant.
$R$ is called a refinement of $A$ modulo $C$ if

## Refinement - Definition

## Definition: Refinement

Let $R, A$ be two machines with state spaces $S_{R}, S_{A}$.
Let $C \in S_{R} \leftrightarrow R_{A}$ be the coupling invariant.
$R$ is called a refinement of $A$ modulo $C$ if
(1) $I_{R} \subseteq C^{-1}\left[I_{A}\right]$ and

$$
\left(\forall x, y \cdot x \mapsto y \in R^{-1} \Leftrightarrow y \mapsto x \in R, \text { inverse relation }\right)
$$

## Refinement - Definition

## Definition: Refinement

Let $R, A$ be two machines with state spaces $S_{R}, S_{A}$.
Let $C \in S_{R} \leftrightarrow R_{A}$ be the coupling invariant.
$R$ is called a refinement of $A$ modulo $C$ if
(1) $I_{R} \subseteq C^{-1}\left[I_{A}\right]$ and
(2) $E_{R ; \text { evt }_{R}} \subseteq C ; E_{A ; e v t_{A}} ; C^{-1}$ for each event.

$$
\left(\forall x, y \cdot x \mapsto y \in R^{-1} \Leftrightarrow y \mapsto x \in R, \text { inverse relation }\right)
$$

## Refinement - Path subsumption

KarIsruhe institute of Technology


## Refinement - Path subsumption



## Specifying Coupling

## The coupling invariant is specified as part of the invariant of the refining machine.

## Specifying Coupling

> The coupling invariant is specified as part of the invariant of the refining machine.

The invariant of a refinement is allowed to refer to variables of its abstraction.

## Specifying Coupling

The coupling invariant is specified as part of the invariant of the refining machine.

The invariant of a refinement is allowed to refer to variables of its abstraction.

## Example (from slide 72)

MACHINE AbstractFileSys
VARIABLES openFiles INVARIANTS
openFiles $\subseteq$ FILES

MACHINE RefinedFileSys VARIABLES openModes INVARIANTS

## openModes $\subseteq$

 FILES $\times$ MODES
## Specifying Coupling

The coupling invariant is specified as part of the invariant of the refining machine.

The invariant of a refinement is allowed to refer to variables of its abstraction.

## Example (from slide 72)

MACHINE AbstractFileSys
VARIABLES openFiles INVARIANTS
openFiles $\subseteq$ FILES

MACHINE RefinedFileSys VARIABLES openModes INVARIANTS
openModes $\subseteq$ FILES $\times$ MODES
openFiles = dom(openModes)

## Proof Obligation GRD

Proof that event guard in refinement is stronger than in abstract machine.

Abstraction is enabled when refinement is.

Abstract invariants
Concrete invariants
Concrete event guard

Abstract event guard

## Proof Obligation GRD

Proof that event guard in refinement is stronger than in abstract machine.

Abstraction is enabled when refinement is.

Abstract invariants
Concrete invariants
Concrete event guard

Abstract event guard
$\forall \overline{\text { vars }_{A}}, \overline{\operatorname{vars}_{R}}$.

$$
\begin{aligned}
\operatorname{inv}_{A}\left(\overline{\operatorname{vars}_{A}}\right) \wedge \operatorname{inv}_{R}\left(\overline{\operatorname{vars}_{A}}, \overline{\operatorname{vars}_{R}}\right) \wedge \operatorname{grd}_{R}\left(\overline{\operatorname{vars}_{R}}\right) & \\
& \Rightarrow \operatorname{grd}_{A}\left(\overline{\operatorname{vars}_{A}}\right)
\end{aligned}
$$

(Version w/o parameters, see literature for full version)

## Proof Obligation SIM

Show that refined action simulates abstract actions

Abstract invariants
Concrete invariants
Concrete event guard
Concrete before-after-predicate


Abstract before-after-predicate

## Proof Obligation SIM

Show that refined action simulates abstract actions

Abstract invariants
Concrete invariants
Concrete event guard
Concrete before-after-predicate

Abstract before-after-predicate
$\operatorname{Rem} E_{R ; e v t_{R}} \subseteq C ; E_{A ; e v t_{A}} ; C^{-1}$

## Proof Obligation SIM

Show that refined action simulates abstract actions

Abstract invariants
Concrete invariants
Concrete event guard
Concrete before-after-predicate

Abstract before-after-predicate
Rem $E_{R ; e v t_{R}} \subseteq C ; E_{A ; e v t_{A}} ; C^{-1}$
Obs The coupling invariant is only used for the before-state not for the after-state.

## Proof Obligation SIM

Show that refined action simulates abstract actions

Abstract invariants
Concrete invariants
Concrete event guard
Concrete before-after-predicate

Abstract before-after-predicate
Rem $E_{R ; e v t_{R}} \subseteq C ; E_{A ; e v t_{A}} ; C^{-1}$
Obs The coupling invariant is only used for the before-state not for the after-state.
? Why?

## Proof Obligation SIM

Show that refined action simulates abstract actions

Abstract invariants
Concrete invariants
Concrete event guard
Concrete before-after-predicate

Abstract before-after-predicate
Rem $E_{R ; e v t_{R}} \subseteq C ; E_{A ; e v t_{A}} ; C^{-1}$
Obs The coupling invariant is only used for the before-state not for the after-state.
? Why?
! Already proven condition INV implies invariant for after-state.

Things not covered in these slides:

- Witnesses for parameters dropped in refinements
- Termination issues (variants)
- Extended/Not extended events
- Event merging
- Sequential refinement


## Event-B has more ...

Things not covered in these slides:

- Witnesses for parameters dropped in refinements
- Termination issues (variants)
- Extended/Not extended events
- Event merging
- Sequential refinement


## Event-B has more ...

Things not covered in these slides:

- Witnesses for parameters dropped in refinements
- Termination issues (variants)
- Extended/Not extended events
- Event merging
- Sequential refinement

Things not covered in these slides:

- Witnesses for parameters dropped in refinements
- Termination issues (variants)
- Extended/Not extended events
- Event merging
- Sequential refinement

Things not covered in these slides:

- Witnesses for parameters dropped in refinements
- Termination issues (variants)
- Extended/Not extended events
- Event merging
- Sequential refinement


## Event-B has more ...

Things not covered in these slides:

- Witnesses for parameters dropped in refinements
- Termination issues (variants)
- Extended/Not extended events
- Event merging
- Sequential refinement


# Byzantine Agreement A case study verified with Event-B 

## Based on:

Roman Krenický and Mattias Ulbrich. Deductive Verification of a Byzantine Agreement Protocol. Technical report (2010-7). Karlsruhe Institute of
Technology, Department of Informatics, 2010

## Byzantine Generals



## Byzantine Generals

## "When shall we attack?"



## Byzantine Generals



## Byzantine Generals



## Application in Avionics



## Application in Avionics

## "Which components are operative?"

## Application in Avionics




## Explanation by Example

## C1



C3

## Explanation by Example



## Explanation by Example



## Explanation by Example



## Explanation by Example



## Explanation by Example

Karlsruhe institute of Technology


## Explanation by Example



## Explanation by Example



## Explanation by Example



## CONSENSUS!



## Example Run 2



C4

C3

## Example Run 2



## Example Run 2

KarIsruhe institute of Technology


## Example Run 2



## Byzantine Agreement Algorithm

## Verification Goals:

Validity If the transmitter tt is non-faulty, then all non-faulty receivers agree on the value sent by $t t$.

Agreement Any two non-faulty receivers agree on the value assigned to $t t$.

Round 0: Transmitter sends signed message to all receivers.

Round 0: Transmitter sends signed message to all receivers.

Round $n$ : Component receive messages, verify signatures, sign messages and pass them on.

Round 0: Transmitter sends signed message to all receivers.

Round $n$ : Component receive messages, verify signatures, sign messages and pass them on.

GOAL: Prove that this algorithm has the "validity" and "agreement" properties.

## Verification

## Quote

# We know of no area in computer science or mathematics in which informal reasoning is more likely to lead to errors than in the study of this type of algorithm. 

Taken from: The Byzantine Generals Problem
Leslie Lamport, Robert Shostak, and Marshall Pease
ACM Transactions on Programming Languages and Systems
Volume 4, pp. 383-401,1982.

# Context for Byzantine Agreement 

## CONTEXT Context SETS

CONSTANTS

AXIOMS

END

# Context for Byzantine Agreement 

## CONTEXT Context SETS <br> Module <br> Value <br> CONSTANTS

AXIOMS

END

# Context for Byzantine Agreement 

## CONTEXT Context SETS <br> Module <br> Value <br> CONSTANTS

faulty, transmitter, $V_{0}$
AXIOMS

END

## Context for Byzantine Agreement

## CONTEXT Context <br> SETS <br> Module <br> Value <br> CONSTANTS

faulty, transmitter, $V_{0}$
AXIOMS
faulty $\subseteq$ MODULE
transmitter $\in$ MODULE
$V_{0} \in$ Value
finite(faulty)
END

## First machine

MACHINE Messages<br>SEES Context<br>VARIABLES<br>INVARIANTS

## First machine

MACHINE Messages<br>SEES Context<br>VARIABLES messages, round, collected INVARIANTS

## First machine

> MACHINE Messages
> SEES Context
> VARIABLES messages, round, collected
> INVARIANTS
> ty_mess : messages $\subseteq$ MODULE $\times$ MODULE $\times$ VALUE

messages messages being sent in the current round

## First machine

> MACHINE Messages
> SEES Context
> VARIABLES messages, round, collected
> INVARIANTS
> ty_mess : messages $\subseteq$ Module $\times$ MODULE $\times$ VALUE
> ty_round : round $\in \mathbb{N}$

messages messages being sent in the current round round the number of the current round

## First machine

```
MACHINE Messages
SEES Context
VARIABLES messages, round, collected
INVARIANTS
    ty_mess : messages \(\subseteq\) MODULE \(\times\) MODULE \(\times\) VALUE
    ty_round : round \(\in \mathbb{N}\)
    ty_collected : collected \(\in\) MODULE \(\rightarrow \mathbb{P}(\) VALUE \()\)
```

messages messages being sent in the current round round the number of the current round collected values observed in previous rounds

## First machine (2)

messages messages being sent in the current round
round the number of the current round
collected values observed in previous rounds

## First machine (2)

messages messages being sent in the current round
round the number of the current round
collected values observed in previous rounds

MACHINE Messages SEES Context
VARIABLES messages, round, collected
INVARIANTS...
EVENTS
Initialisation $\widehat{=}$...
EVENT ROUND $\widehat{=}$

END

## First machine (2)

messages messages being sent in the current round
round the number of the current round
collected values observed in previous rounds

MACHINE Messages SEES Context
VARIABLES messages, round, collected
INVARIANTS...
EVENTS
Initialisation $\widehat{=}$...
EVENT ROUND 气
act1 : round := round +1

END

## First machine (2)

messages messages being sent in the current round
round the number of the current round
collected values observed in previous rounds

MACHINE Messages SEES Context
VARIABLES messages, round, collected
INVARIANTS...
EVENTS
Initialisation $\widehat{=}$...
EVENT ROUND $\widehat{=}$
act1 : round := round + 1
act2 : messages $: \in \mathbb{P}($ Module $\times$ Module $\times$ Value $)$
END

## First machine (2)

messages messages being sent in the current round
round the number of the current round
collected values observed in previous rounds

## MACHINE Messages SEES Context

VARIABLES messages, round, collected
INVARIANTS...
EVENTS
Initialisation $\widehat{=}$...
EVENT ROUND $\widehat{=}$
act1 : round := round + 1
act2 : messages $: \in \mathbb{P}($ Module $\backslash\{$ transmitter $\} \times$ Module $\times$ Value $)$
END

## First machine (2)

messages messages being sent in the current round
round the number of the current round
collected values observed in previous rounds

## MACHINE Messages SEES Context

VARIABLES messages, round, collected
INVARIANTS...
EVENTS
Initialisation $\widehat{=}$...
EVENT ROUND $\widehat{=}$
act1 : round := round + 1
act2 : messages $: \in \mathbb{P}($ Module $\backslash\{$ transmitter $\} \times$ MODULE $\times$ VALUE $)$
act3 : collected $:=\lambda m \cdot$ collected $(m) \cup$
END

## First machine (2)

messages messages being sent in the current round
round the number of the current round
collected values observed in previous rounds

## MACHINE Messages SEES Context

VARIABLES messages, round, collected
INVARIANTS...
EVENTS
Initialisation $\widehat{=}$...
EVENT ROUND 气
act1 : round := round + 1
act2 : messages $: \in \mathbb{P}($ Module $\backslash\{$ transmitter $\} \times$ MODULE $\times$ VALUE $)$
act3 : collected $:=\lambda m \cdot \operatorname{collected}(m) \cup\{v \mid(s, m, v) \in$ messages $\}$
END

## First refinement: signed messages

All messages are signed in a trustworthy manner:
No forgery possible $\Longrightarrow$ Consider only relayed messages.

## First refinement: signed messages

All messages are signed in a trustworthy manner:
No forgery possible $\Longrightarrow$ Consider only relayed messages.
round $k$ :


## First refinement: signed messages

All messages are signed in a trustworthy manner:
No forgery possible $\Longrightarrow$ Consider only relayed messages.

round $k$ :<br>round $k+1$ :



## Signed messages (2)



MACHINE SignedMessages REFINES Messages
VARIABLES messages, round, collected
INVARIANTS

## EVENTS

END

## Signed messages (2)


MACHINE SignedMessages REFINES Messages
VARIABLES messages, round, collected
INVARIANTS

## EVENTS

EVENTROUND REFINES ROUND $\widehat{=}$ act1, act3 as above
END

## Signed messages (2)



```
MACHINE SignedMessages REFINES Messages
VARIABLES messages, round, collected
INVARIANTS
EVENTS
EVENTROUND REFINES ROUND 气㐅
    act1, act3 as above
    was:messages : }\in\mathbb{P}(\mathrm{ Module \{transmitter } }\times\mathrm{ MOdule }\times\mathrm{ VALUE }
END
```


## Signed messages (2)



## MACHINE SignedMessages REFINES Messages

VARIABLES messages, round, collected
INVARIANTS

## EVENTS

EVENTROUND REFINES ROUND $\widehat{=}$ act1, act3 as above act2: messages $: \in \mathbb{P}(\{(r, n, v) \mid(s, r, v) \in$ messages $\})$
was: messages $: \in \mathbb{P}($ Module $\backslash\{$ transmitter $\} \times$ Module $\times$ Value $)$
END

## Signed messages (2)



## MACHINE SignedMessages REFINES Messages

VARIABLES messages, round, collected
INVARIANTS
val1: $\forall s, r, v \cdot(s, r, v) \in$ messages $\Rightarrow v \in$ collected(transmitter)

## EVENTS

EVENTROUND REFINES ROUND $\widehat{=}$ act1, act3 as above
act2: messages $: \in \mathbb{P}(\{(r, n, v) \mid(s, r, v) \in$ messages $\})$
was : messages $: \in \mathbb{P}($ MODULE $\backslash\{$ transmitter $\} \times$ MODULE $\times$ VALUE $)$
END

## Signed messages (2)



## MACHINE SignedMessages REFINES Messages

VARIABLES messages, round, collected
INVARIANTS
val1: $\forall s, r, v \cdot(s, r, v) \in$ messages $\Rightarrow v \in$ collected(transmitter)
val2: $\forall n \cdot \operatorname{collected}(n) \subseteq$ collected (transmitter)
EVENTS
EVENTROUND REFINES ROUND $\widehat{=}$ act1, act3 as above
act2: messages $: \in \mathbb{P}(\{(r, n, v) \mid(s, r, v) \in$ messages $\})$
was: messages $: \in \mathbb{P}($ Module $\backslash\{$ transmitter $\} \times$ ModULE $\times$ VALUE $)$
END

## Refinement Tower



## Refinement Tower

new event structure:

## PROCESS_EVENT refines SKIP

modifies internal data structures (invisible to abstract machine) and

```
ROUND_SWITCH refines ROUND
```

reproduces the effect of a round change from the internal data.

An implementation would refine PROCESS_EVENT.

## Refinement Tower



## Agreement!

In machine Guarantees:
round $\geq \operatorname{card}($ faulty $)+1 \Longrightarrow$
$(\forall n, m \cdot n \notin$ faulty $\wedge m \notin$ faulty $\Rightarrow$
$\operatorname{collected}(n)=\operatorname{collected}(m))$

## Agreement!

In machine Guarantees:

```
round \(\geq \operatorname{card}(\) faulty \()+1 \Longrightarrow\)
    ( \(\forall n, m \cdot n \notin\) faulty \(\wedge m \notin\) faulty \(\Rightarrow\)
        \(\operatorname{collected}(n)=\operatorname{collected}(m))\)
```

In machine HybridGuarantees:
round $\geq \operatorname{card}($ arbFaulty $)+1 \Longrightarrow$
$(\forall n, m \cdot n \notin$ faulty $\wedge m \notin$ faulty $\Rightarrow$
$\operatorname{collected}(n)=\operatorname{collected}(m))$

## Verification Effort

## Numbers

Size:
Labour:
Proofs:
Automation:

4 contexts, 12 machines, 106 invariants approx. 4 person months 322 proof obligations
74/322, 23\%

