nnnnnnnnnnnnnnnnnnnnnnnnnnnn

Applications of Formal Verification
Verification of Information Flow Properties

Dr. Vladimir Klebanov - Dr. Mattias Ulbrich | SS 2015

KIT — INSTITUT FUR THEORETISCHE INFORMATIK

I Security is everywhere ... AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

UBIQUITOUS COMPUTING NSA
WIKILEAKS

= OEGURITY

CLOUD COMPUTING
INDUSTRIE 4.0 PRISM
SMART GRID

Klebanov, Ulbrich — Applications of Formal Verification SS 2015 2/35

I Heartbleed Disaster T

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

a published in April 2014
m security bug in the OpenSSL TLS library
m heartbeat protocol (“ping”)

m vulnerability classified as a buffer over-read (read mor
data than should be allowed.)

m some 17% (around half a million) of certified secure web
servers believed vulnerable to the attack

a fixed by adding one if statement.

a known data theft: hackers stole security keys from
community health systems, compromising the
confidentiality of 4.5 million patient records.

Klebanov, Ulbrich — Applications of Formal Verification SS 2015 3/35

I Heartbleed — Information Flow

OpenSSL Heartbeat Request (‘PING’, 12)
2202222 2|22]2]|2]|?
PII|N|G|2|2|2|2|2|2|2|2]?|2[?2]?

OPENSSL with ¥
2122|7217 21?2?2222
PII[N|G|p|r|i|v|=|12|5[7|2|2]|2]|?
SS 2015

Klebanov, Ulbrich — Applications of Formal Verification

T

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

4/35

I Information Flow Model

public

secret

NS4

Prog$im P

/37 \

publlc

secret

Klebanov, Ulbrich — Applications of Formal Verification

S8 2015

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

5/35

I Attacker model

Q Public Input Channel
“ Public Output Channel

m Attacker communicates with system over public channels
..tries to learn the secret which is kept inside the system
m ...or at least parts of the secret

Klebanov, Ulbrich — Applications of Formal Verification SS 2015 6/35

I Attacker scenarios

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Attackeris... Public channels are ...

an agent over the network

network traffic

another application on same
device

shared resources (files),
interprocess comm.

program using a library

shared memory,
method calls

In models:

Attacker’s capabilities expressed by the public channels.

Klebanov, Ulbrich — Applications of Formal Verification

S8 2015

7/35

I Mathematical model AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Every program is a function

P : Secretinput x Publiclnput — SecretOutput x PublicOutput

Decomposition into two functions P = (s, p)

s : Secretinput x Publiclnput — SecretOutput
p : Secretinput x Publicinput — PublicOutput
P(h.6) = (s(h.¢),p(h,0))

We will define security properties for such programs and
analyse them.
Convention

Variables with high security status are named h (hy etc.) and
variables with low (public) security status are named ¢ (¢1 etc.).

Klebanov, Ulbrich — Applications of Formal Verification SS 2015 8/35

I Example

Java method
private int h;
public int 1;

void f () {
if(h > 5) {
1 rekp
} else {
h ——;
}
}

h and 1 serve as input
and output variables.

Klebanov, Ulbrich — Applications of Formal Verification

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

hl)_{ !fh>5
ifh<5

pr(h, 1) =

Attacker model
m Attacker can see 1.
a Attacker cannot see h.
m (e.g. by visibility modifiers)

SS 2015 9/35

I Secure information flow as a game T

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Parties: the attacker and the system
Assume: Atacker knows program P

Protocol: @ Attacker chooses
X,y € Secretinput,
z € Publiclnput
@ System selects a € {x, y} randomly (i.i.d.).
@ Attacker receives public output p(a, z).
@ Attacker guesses whether a= xora=y.

Winner: Attacker wins this game if they guess a correctly

=» Program has secure information flow if best
guessing strategy has winning probability 0.5.

Klebanov, Ulbrich — Applications of Formal Verification SS 2015 10/35

I Secure information flow as a game (Il) AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Secure information flow is a hard condition:

a Attacker may freely choose the secret

m even if that value may be unlikely to occur
a (— chosen plaintext in crypto)

a The winning probablity must not deviate from 50%.

a 50% are the winning odds for blind guessing.

a Information gained from public channels still leaves the
attacker with same chance.

m information theoretical security

m stricter than computational security
(increasing winning probability within negligible polynomial
bounds, — IND-CPA in cryptography)

Klebanov, Ulbrich — Applications of Formal Verification SS 2015 11/35

I Noninterference AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

(Goguen and Meseguer, 1982)

Semantic definition

A program P = (s, p) satisfies noninterference if a user
cannot learn anything about secret input from inspecting public
outputs.

Mathematical condition

Vh1,h2,/- p(h17I):p(h2a/)

The public result p of program P is independent of the secret
input.

Klebanov, Ulbrich — Applications of Formal Verification SS 2015 12/35

| aquiz SXIT

Have the following programs the noninterference property?

Klebanov, Ulbrich — Applications of Formal Verification SS 2015 13/35

I Quiz

class MiniExamples {
public int 1;
private int h;

void ml () {
1l = h;

void m2 () {
if (1 > 0) |
h=1;
} else {
h=2;

Klebanov, Ulbrich — Applications of Formal Verification

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

void m3 () {
if (h>0) {1=1;}
else {1=2;1};

void m4 () {
h=0; 1=h;

void m6 () {
Thread.sleep(h *= 1000);

S8 2015 14/35

Sometimes it is ok to leak a bit ST
...ortwo e

private int secretPIN;
int checkPIN(int triedPIN) {
if (secretPIN == triedPIN) {
return 1;
} else {
return 0;

@ This method leaks information.
@ How much?
@ Can this be used to learn about the secret?

Klebanov, Ulbrich — Applications of Formal Verification SS 2015 15/35

I Information flow control (T

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Noninterference is often too strict.

Relaxations:

Declassification
Allow particular data to flow

Quantitative analysis
Analyse the amount of secret information that
flows

Klebanov, Ulbrich — Applications of Formal Verification SS 2015 16/35

I Declassification AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Situation

The attacker must not learn anything but the value of an
expression ex(h, /).
ex(h, 1) is called declassified and no longer secret.

Mathematical condition

Vh17h27£' eX(h‘Iaé) = eX(hz,g) - p(h1a€) = p(h2a€)

Klebanov, Ulbrich — Applications of Formal Verification SS 2015 17/35

Secqre information flow as a game AT
(again) FES

Parties: the attacker and the system

Assume: Atacker knows prc Attacker cannot use ex to

Protocol: @ Attacker choo 21SCeMM X and y.

X,y € Secretlnput,
z € Publiclnput,
such that ex(x, z) = ex(y, 2)
@ System selects a € {x, y} randomly (i.i.d.).
@ Attacker receives public output p(a, z).
@ Attacker guesses whethera= xora=y.

Winner: Attacker wins this game if they guess a correctly

=» Program has secure information flow if best
guessing strategy has winning probability 0.5.

Klebanov, Ulbrich — Applications of Formal Verification SS 2015 18/35

I Declassification in the example (T

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Code

private int sec;
int checkPIN(int try) {
if (sec == try) return 1l; else return 0;

Declassification

It is declassified whether PIN is correct: ex := sec = try
(Admissible to learn that PIN is correct if the attacker already has the
number.)

|

Proof obligation:
Vsec, sec’, try. ((sec = try) «» (sec’ = try)) —
Peneckpn(SEC, try) = Penecken(S€C, try)

...is valid
Klebanov, Ulbrich — Applications of Formal Verification SS 2015 19/35

I Quantitative information flow analysis

Analyse how much information flows
not only whether or not it flows.

eeeeeeeeeeeeeeeeeeeeeeeeeeee

1 =h & 000111 /«x7«/; leaks 3 bits (of 32).
1 =hl © h2 ° h3; leaks 32 bits (of 96).

One metric to compute amount of information:
Shannon Entropy H:

Pr(r) :={h | p(h) = r}/SecretSize

H(L) =Y Pr(r) - logy(Pr(r))

(other metrics exist and have use cases)
Klebanov, Ulbrich — Applications of Formal Verification SS 2015

20/35

Verification of Noninterference Properties

Klebanov, Ulbrich — Applications of Formal Verification SS 2015 21/35

I Enforcing Noninterference IT

@ Dynamic checking

@ Static verification
@ Precise: deductive verification
@ Approximative: type systems

@ Approximative: program graph analyses

Klebanov, Ulbrich — Applications of Formal Verification SS 2015 22/35

I Dynamic Logic (recap) AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Semantics of Dynamic Logic

sE[Plp < s [Epforallswith(s,s) e pp

[Pl¢ means “p holds after the execution of P”.

Klebanov, Ulbrich — Applications of Formal Verification SS 2015 23/35

Deductive verification: ST
Self-compositon 5

Variant P’ Let P’ be a variant of program P in which every
occurrence of every variable x is replaced by x’.

Assumption P has one secret variable h and one public
variable ¢ (used for input and output).

Noninterference condition

A program P satisfies noninterference if and only if the formula
vhoW 0.0, £=¢ —[P;Pl=1¢
is valid.

a Different variable sets, executions independent

m “Self-composition™ Sequentially composing (;) the same
program (modulo variant) twice.

Klebanov, Ulbrich — Applications of Formal Verification SS 2015 24/35

I Better self-composition IT

Loops are difficult to verify: Invariants are needed.

Let P = beforeLoop; while(c) { body }; afterLoop.

The self-composition
P;P’=beforeLoop; while(c) { body }; afterLoop ;
beforeLoop’; while(c’) { body’ }; afterLoop’
has two loops.

Reorder statements to reduce complexity:
beforelLoop; beforelLoop’;

while(...) { body’; body’ };

)) afterLoop; afterLoop’
is equivalent problem with a single loop.

Coupling invariant (— Event-B) is easier to find

Klebanov, Ulbrich — Applications of Formal Verification SS 2015 25/35

I Alternating Quantifiers AIT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

(Darvas, Hahnle, Sands 2005)

An alternative condition

A program P satisfies noninterference if and only if the formula
V(. 3arYh. p(h,0) =r
is valid.

m Equivalent to Vhy, ho, (. p(hy,) = p(ho, £)
(— exercise: prove it!)
a Dynamic Logic Proof Obligation: V¢.3r.Vh. [P](r = ¢)
+ Only one program execution, reduce complexity.
— How to instantiate the existential quantifier?
(— example)

Klebanov, Ulbrich — Applications of Formal Verification SS 2015 26/35

I Security type systems T

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Define programming language in which syntactically correct
programs have noninterference property.

Language Grammatr:

Variable: 14,15,...,hq,ho,...
(fixed security-levels by name)

Expression: Variable | Expression ‘+’ Expression

Command: Variable ‘: =" Expression
| Command ‘;’ Command
| 1if Expression= 0 then Command
else Command end
| while Expression = 0 do Command end

Klebanov, Ulbrich — Applications of Formal Verification SS 2015 27/35

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

I Security type system: Explicit flow AT

Assignment can leak information

For instance: 14 := hy

Solution
Assignments to low variables are forbidden if high variables
occur in the expression.

Klebanov, Ulbrich — Applications of Formal Verification SS 2015 28/35

I Security type system: Implicit flow AT

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Problem:
Conditinal/Loop can leak information

For instance:

if hy = 0
then 14 := 0
else 19 :=1

D
o}
| Q

Solution

Assignments to low variables are forbidden in a conditional (if)
command if a high variable occurs in the branching condition.

(Similar applies to while loops.)

Klebanov, Ulbrich — Applications of Formal Verification SS 2015 29/35

I Type rules AIT

[high] - comm

exp : high [low] - comm
h; € Vars(exp) [pc] F commy [pc] F comms,
exp : low [pc] = commy; commo
pc € {low, high} exp:pc [pc]tth [pc]t el
[pc] - h; == exp [oclHif exp =0 then thelse el
forbid explicit flow
exp : low exp:pc [pc] F comm
[low]1; := exp [pc] - while exp = 0 do comm

forbid implicit flow

Klebanov, Ulbrich — Applications of Formal Verification SS 2015 30/35

| Type rules SAT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

A program P is correctly typed if
[pc] - P
can be inferred for pc = low or pc = high.

Every correctly typed program has noninterference
property.

Incompleteness

There are programs which have noninterference property
that cannot be typed.
For instance: 11 := hy — hy

Klebanov, Ulbrich — Applications of Formal Verification SS 2015 31/35

I Online Challenge ST

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

http://ifc-challenge.appspot.com

© 2012 Andrei Sabelfeld and Arnar Birgisson

Klebanov, Ulbrich — Applications of Formal Verification SS 2015 32/35

http://ifc-challenge.appspot.com

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

JOANA

http://pp.ipd.kit.edu/projects/joana/

Klebanov, Ulbrich — Applications of Formal Verification SS 2015 33/35

http://pp.ipd.kit.edu/projects/joana/

I Some interesting extensions T

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

a more than 2 security levels
(e.g., “public” < “internal” < “secret”)

m pointers / objects / records / heap data structures
m exceptions

m reactive systems (more than one input, one output)
a termination / timing analysis

m concurrency

=» All research challenges in their own right!

Klebanov, Ulbrich — Applications of Formal Verification SS 2015 34/35

I Summary

Information flow can be analysed and noninterference verified
using formal methods.

a Type systems / graph-based systems scale well
(up to 100 kLOC)

a Deductive systems are more precise, can prove more
cases

m Declassification of expressions in deductive verification
a Declassification of variables in type systems

Klebanov, Ulbrich — Applications of Formal Verification SS 2015 35/35

