
KIT – INSTITUT FÜR THEORETISCHE INFORMATIK

Applications of Formal Verification
Verification of Information Flow Properties

Dr. Vladimir Klebanov · Dr. Mattias Ulbrich | SS 2015

KIT – University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

Security is everywhere . . .

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 2/35

Heartbleed Disaster

published in April 2014
security bug in the OpenSSL TLS library
heartbeat protocol (“ping”)
vulnerability classified as a buffer over-read (read more
data than should be allowed.)
some 17% (around half a million) of certified secure web
servers believed vulnerable to the attack
fixed by adding one if statement.
known data theft: hackers stole security keys from
community health systems, compromising the
confidentiality of 4.5 million patient records.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 3/35

Heartbleed – Information Flow

OpenSSL’s memory: Contains secret information

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

OpenSSL Heartbeat Request (‘PING’, 12)

P I N G ?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

OPENSSL with

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

P I N G p r i v = 1 5 7

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 4/35

Information Flow Model

public secret

Program P

public secret

?

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 5/35

Attacker model

[T
O
P
]

[S
EC

R
ET

]

Public Input Channel

Public Output Channel

[TOP
]

[SEC
RET]

Attacker communicates with system over public channels
. . . tries to learn the secret which is kept inside the system
. . . or at least parts of the secret

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 6/35

Attacker scenarios

Attacker is . . . Public channels are . . .

an agent over the network network traffic

another application on same
device

shared resources (files),
interprocess comm.

program using a library shared memory,
method calls

In models:
Attacker’s capabilities expressed by the public channels.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 7/35

Mathematical model

Every program is a function
P : SecretInput × PublicInput → SecretOutput × PublicOutput

Decomposition into two functions P = (s,p)

s : SecretInput × PublicInput → SecretOutput
p : SecretInput × PublicInput → PublicOutput

P(h, `) =
(
s(h, `),p(h, `)

)
We will define security properties for such programs and
analyse them.

Convention
Variables with high security status are named h (h1 etc.) and
variables with low (public) security status are named ` (`1 etc.).

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 8/35

Example

Java method
private int h;
public int l;
void f() {

if(h > 5) {
l ++;

} else {
h --;

}
}

h and l serve as input
and output variables.

Model

sf (h, l) =

{
h if h > 5
h − 1 if h ≤ 5

pf (h, l) =

{
l + 1 if h > 5
l if h ≤ 5

Attacker model
Attacker can see l.
Attacker cannot see h.
(e.g. by visibility modifiers)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 9/35

Secure information flow as a game

Parties: the attacker and the system

Assume: Atacker knows program P

Protocol: 1 Attacker chooses
x , y ∈ SecretInput ,
z ∈ PublicInput

2 System selects a ∈ {x , y} randomly (i.i.d.).
3 Attacker receives public output p(a, z).
4 Attacker guesses whether a = x or a = y .

Winner: Attacker wins this game if they guess a correctly

Ü Program has secure information flow if best
guessing strategy has winning probability 0.5.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 10/35

Secure information flow as a game (II)

Secure information flow is a hard condition:

Attacker may freely choose the secret
even if that value may be unlikely to occur
(→ chosen plaintext in crypto)

The winning probablity must not deviate from 50%.
50% are the winning odds for blind guessing.
Information gained from public channels still leaves the
attacker with same chance.
information theoretical security
stricter than computational security
(increasing winning probability within negligible polynomial
bounds,→ IND-CPA in cryptography)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 11/35

Noninterference
(Goguen and Meseguer, 1982)

Semantic definition
A program P = (s,p) satisfies noninterference if a user
cannot learn anything about secret input from inspecting public
outputs.

Mathematical condition

∀h1,h2, l . p(h1, l) = p(h2, l)

The public result p of program P is independent of the secret
input.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 12/35

Quiz

Have the following programs the noninterference property?

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 13/35

Quiz

class MiniExamples {
public int l;
private int h;

void m1() {
l = h;

}

void m2() {
if (l > 0) {

h=1;
} else {

h=2;
}

}

void m3() {
if (h>0) {l=1;}
else {l=2;};

}

void m4() {
h=0; l=h;

}

void m5() {
while(h == 0) { }

}

void m6() {
Thread.sleep(h * 1000);

}
}

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 14/35

Sometimes it is ok to leak a bit
. . . or two

private int secretPIN;
int checkPIN(int triedPIN) {

if(secretPIN == triedPIN) {
return 1;

} else {
return 0;

}
}

1 This method leaks information.
2 How much?
3 Can this be used to learn about the secret?

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 15/35

Information flow control

Noninterference is often too strict.

Relaxations:
Declassification

Allow particular data to flow

Quantitative analysis
Analyse the amount of secret information that
flows

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 16/35

Declassification

Situation
The attacker must not learn anything but the value of an
expression ex(h, l).
ex(h, l) is called declassified and no longer secret.

Mathematical condition

∀h1,h2, `. ex(h1, `) = ex(h2, `)→ p(h1, `) = p(h2, `)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 17/35

Secure information flow as a game
(again)

Parties: the attacker and the system

Assume: Atacker knows program P

Protocol: 1 Attacker chooses
x , y ∈ SecretInput ,
z ∈ PublicInput ,

Attacker cannot use ex to
discern x and y .

such that ex(x , z) = ex(y , z)
2 System selects a ∈ {x , y} randomly (i.i.d.).
3 Attacker receives public output p(a, z).
4 Attacker guesses whether a = x or a = y .

Winner: Attacker wins this game if they guess a correctly

Ü Program has secure information flow if best
guessing strategy has winning probability 0.5.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 18/35

Declassification in the example

Code
private int sec;
int checkPIN(int try) {

if(sec == try) return 1; else return 0;
}

Declassification
It is declassified whether PIN is correct: ex := sec = try
(Admissible to learn that PIN is correct if the attacker already has the
number.)

Proof obligation:
∀sec, sec′, try . ((sec = try)↔ (sec′ = try))→

pcheckPIN(sec, try) = pcheckPIN(sec′, try)

. . . is valid
Klebanov, Ulbrich – Applications of Formal Verification SS 2015 19/35

Quantitative information flow analysis

Analyse how much information flows
not only whether or not it flows.

Examples
l = h & 0b0111 /*7*/; leaks 3 bits (of 32).
l = h1 ˆ h2 ˆ h3; leaks 32 bits (of 96).

One metric to compute amount of information:
Shannon Entropy H:

Pr(r) :={h | p(h) = r}/SecretSize

H(L) =
∑

r

Pr(r) · log2(Pr(r))

(other metrics exist and have use cases)
Klebanov, Ulbrich – Applications of Formal Verification SS 2015 20/35

Verification of Noninterference Properties

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 21/35

Enforcing Noninterference

1 Dynamic checking

2 Static verification
1 Precise: deductive verification

2 Approximative: type systems

3 Approximative: program graph analyses

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 22/35

Dynamic Logic (recap)

Semantics of Dynamic Logic

s |= [P]ϕ ⇐⇒ s′ |= ϕ for all s with (s, s′) ∈ ρP

[P]ϕ means “ϕ holds after the execution of P”.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 23/35

Deductive verification:
Self-composition

Variant P ′ Let P ′ be a variant of program P in which every
occurrence of every variable x is replaced by x ′.

Assumption P has one secret variable h and one public
variable ` (used for input and output).

Noninterference condition
A program P satisfies noninterference if and only if the formula

∀h,h′, `, `′. ` = `′ → [P ; P ′]` = `′

is valid.

Different variable sets, executions independent
“Self-composition”: Sequentially composing (;) the same
program (modulo variant) twice.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 24/35

Better self-composition

Loops are difficult to verify: Invariants are needed.

Let P = beforeLoop; while(c) { body }; afterLoop.

The self-composition
P;P’ = beforeLoop; while(c) { body }; afterLoop ;

beforeLoop’; while(c’) { body’ }; afterLoop’
has two loops.

Reorder statements to reduce complexity:
beforeLoop; beforeLoop’;

while(...) { body’; body’ };
afterLoop; afterLoop’

is equivalent problem with a single loop.
Coupling invariant (→ Event-B) is easier to find

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 25/35

Alternating Quantifiers

(Darvas, Hähnle, Sands 2005)

An alternative condition
A program P satisfies noninterference if and only if the formula

∀`.∃r .∀h. p(h, `) = r

is valid.

Equivalent to ∀h1,h2, `. p(h1, `) = p(h2, `)
(→ exercise: prove it!)
Dynamic Logic Proof Obligation: ∀`.∃r .∀h. [P](r = `)

+ Only one program execution, reduce complexity.
– How to instantiate the existential quantifier?

(→ example)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 26/35

Security type systems

Goal:
Define programming language in which syntactically correct
programs have noninterference property.

Language Grammar:

Variable: l1,l2, . . . ,h1,h2, . . .
(fixed security-levels by name)

Expression: Variable | Expression ‘+’ Expression

Command: Variable ‘:=’ Expression
| Command ‘;’ Command
| if Expression = 0 then Command

else Command end
| while Expression = 0 do Command end

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 27/35

Security type system: Explicit flow

Problem:
Assignment can leak information

For instance: l1 := h1

Solution
Assignments to low variables are forbidden if high variables
occur in the expression.

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 28/35

Security type system: Implicit flow

Problem:
Conditinal/Loop can leak information

For instance:
if h1 = 0
then l1 := 0
else l1 := 1
end

Solution
Assignments to low variables are forbidden in a conditional (if)
command if a high variable occurs in the branching condition.

(Similar applies to while loops.)

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 29/35

Type rules

exp : high

hi 6∈ Vars(exp)
exp : low

pc ∈ {low ,high}
[pc] ` hi := exp

exp : low
[low]li := exp

[high] ` comm
[low] ` comm

[pc] ` comm1 [pc] ` comm2

[pc] ` comm1; comm2

exp : pc [pc] ` th [pc] ` el
[pc] ` if exp = 0 then th else el

exp : pc [pc] ` comm
[pc] ` while exp = 0 do comm

forbid explicit flow

forbid implicit flow

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 30/35

Type rules

A program P is correctly typed if

[pc] ` P

can be inferred for pc = low or pc = high.

Theorem
Every correctly typed program has noninterference
property.

Incompleteness
There are programs which have noninterference property
that cannot be typed.
For instance: l1 := h1 − h1

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 31/35

Online Challenge

http://ifc-challenge.appspot.com

© 2012 Andrei Sabelfeld and Arnar Birgisson

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 32/35

http://ifc-challenge.appspot.com

Graph-based information flow control

J O A N A

http://pp.ipd.kit.edu/projects/joana/

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 33/35

http://pp.ipd.kit.edu/projects/joana/

Some interesting extensions

more than 2 security levels
(e.g., “public” < “internal” < “secret”)

pointers / objects / records / heap data structures

exceptions

reactive systems (more than one input, one output)

termination / timing analysis

concurrency

Ü All research challenges in their own right!

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 34/35

Summary

Information flow can be analysed and noninterference verified
using formal methods.

Type systems / graph-based systems scale well
(up to 100 kLOC)
Deductive systems are more precise, can prove more
cases
Declassification of expressions in deductive verification
Declassification of variables in type systems

Klebanov, Ulbrich – Applications of Formal Verification SS 2015 35/35

