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Goals

hybrid dynamic logic

differential equations

quantifier elimination for R
modelling cyberphysical systems

modelling pitfalls and opportunities

differential invariants
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Cyber-Physical Systems Analysis: Aircraft Example

Which control decisions are safe for aircraft collision avoidance?
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CPSs Promise Transformative Impact!

Prospects: Safe & Efficient

Driver assistance
Autonomous cars

Pilot decision support
Autopilots / UAVs

Train protection
Robots help people

Prerequisite: CPS need to be safe

How do we make sure CPS make the world a better place?
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Can you trust a computer to control physics?

Rationale
1 Safety guarantees require analytic foundations.

2 Foundations revolutionized digital computer science & our society.

3 Need even stronger foundations when software reaches out into our
physical world.

How can we provide people with cyber-physical systems they can bet their
lives on? — Jeannette Wing

Cyber-physical Systems

CPS combine cyber capabilities with physical capabilities to solve problems
that neither part could solve alone.
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CPSs are Multi-Dynamical Systems
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CPS Dynamics

CPS are characterized by multiple
facets of dynamical systems.

CPS Compositions

CPS combine multiple
simple dynamical effects.

Tame Parts

Exploiting compositionality
tames CPS complexity.
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Hybrid Systems & Cyber-Physical Systems

Mathematical model for complex physical systems:

Definition (Hybrid Systems)

systems with interacting discrete and continuous dynamics

Technical characteristics:

Definition (Cyber-Physical Systems)

(Distributed network of) computerized control for physical system
Computation, communication and control for physics
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How to Teach Cyber-Physical Systems?

Onion Model
1 Going outside in

2 Unpeel layer by layer

3 Progress when all prereqs
are covered

4 First study CS ∧ math ∧
engineering

5 Talk about CPS in the big
finale

Scenic Tour Model
1 Start at the heart: CPS

2 Go on scenic expeditions
into various directions

3 Explore the world around us
as we find the need

4 Stay on CPS the whole time

5 Leverage CPS as the guiding
motivation for understanding
more about connected areas
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Computational Thinking for CPS

Logical scrutiny, formalization, and correctness

proofs are critical for CPS!

1 CPSs are so easy to get wrong.

2 These logical aspects are an integral part of CPS design.

3 Critical to your understanding of the intricate complexities of CPS.

4 Tame complexity by a simple programming language for core aspects.
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Lecture Notes and Book

André Platzer.
Foundations of Cyber-Physical Systems.
Lecture notes.
Computer Science Department
Carnegie Mellon University.
http://symbolaris.com/course/

fcps16-schedule.html

André Platzer.
Logical Analysis of Hybrid Systems.
Springer, 426p., 2010.
DOI 10.1007/978-3-642-14509-4
http://symbolaris.com/lahs/

CMU library e-book
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Differential Equations as Models of Continuous Processes

Example (Vector field and one solution of a differential equation)
[

y ′(t) = f (t, y)
y(t0) = y0

]

Intuition:

1 At each point in space, plot the
value of f (t, y) as a vector

2 Start at initial state y0 at initial
time t0

3 Follow the direction of the vector

The diagram should show
infinitely many vectors . . .

Your car’s ODE x ′ = v , v ′ = a Well it’s a wee bit more complicated
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André Platzer (CMU) FCPS / 02: Differential Equations & Domains 3 / 12



Differential Equations as Models of Continuous Processes

Example (Vector field and one solution of a differential equation)
[

y ′(t) = f (t, y)
y(t0) = y0

]

Intuition:

1 At each point in space, plot the
value of f (t, y) as a vector

2 Start at initial state y0 at initial
time t0

3 Follow the direction of the vector

The diagram should show
infinitely many vectors . . .

Your car’s ODE x ′ = v , v ′ = a Well it’s a wee bit more complicated
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The Meaning of Differential Equations

1 What exactly is a vector field?

2 What does it mean to describe directions of evolution at every point
in space?

3 Could directions possibly contradict each other?

Importance of meaning

The physical impacts of CPSs do not leave much room for failure, so we
immediately want to get into the mood of consistently studying the
behavior and exact meaning of all relevant aspects of CPS.
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Differential Equations & Initial-Value Problems

Definition (Ordinary Differential Equation, ODE)

f : D → Rn on domain D ⊆ R× Rn (i.e., open connected). Then
Y : I → Rn is solution of initial value problem (IVP)

[
y ′(t) = f (t, y)
y(t0) = y0

]

on interval I ⊆ R, iff, for all times t ∈ I ,

1 (t,Y (t)) ∈ D

2 Y ′(t) exists and Y ′(t) = f (t,Y (t)).

3 Y (t0) = y0

If f ∈ C (D,Rn), then Y ∈ C 1(I ,Rn).
If f continuous, then Y continuously differentiable.

André Platzer (CMU) FCPS / 02: Differential Equations & Domains 6 / 12



Differential Equations & Initial-Value Problems

Definition (Ordinary Differential Equation, ODE)

f : D → Rn on domain D ⊆ R× Rn (i.e., open connected). Then
Y : I → Rn is solution of initial value problem (IVP)

[
y ′(t) = f (t, y)
y(t0) = y0

]

on interval I ⊆ R, iff, for all times t ∈ I ,

1 (t,Y (t)) ∈ D

2 Y ′(t) exists and Y ′(t) = f (t,Y (t)).

3 Y (t0) = y0

If f ∈ C (D,Rn), then Y ∈ C 1(I ,Rn).
If f continuous, then Y continuously differentiable.
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Example: A Constant Differential Equation

Example (Initial value problem)
[
x ′(t) = 5
x(0) = 2

]

has a solution

x(t) = 5t + 2

Check by inserting solution into ODE+IVP.
[

(x(t))′ = (5t + 2)′ = 5
x(0) = 5 · 0 + 2 = 2

]
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Example: A Linear Differential Equation from before

Example (Initial value problem)
[
x ′(t) = 1

4x(t)
x(0) = 1

]

has a solution

x(t) = e
t
4

Check by inserting solution into ODE+IVP.
[

(x(t))′ = (e
t
4 )′ = e

t
4 ( t

4 )′ = e
t
4

1
4 = 1

4x(t)

x(0) = e
0
4 = 1

]

André Platzer (CMU) FCPS / 02: Differential Equations & Domains 8 / 12



Example: A Linear Differential Equation from before

Example (Initial value problem)
[
x ′(t) = 1

4x(t)
x(0) = 1

]

has a solution x(t) = e
t
4

Check by inserting solution into ODE+IVP.
[

(x(t))′ = (e
t
4 )′ = e

t
4 ( t

4 )′ = e
t
4

1
4 = 1

4x(t)

x(0) = e
0
4 = 1

]
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ODE Examples

Solutions more complicated than ODE

ODE Solution

x ′ = 1, x(0) = x0 x(t) = x0 + t

x ′ = 5, x(0) = x0 x(t) = x0 + 5t
x ′ = x , x(0) = x0 x(t) = x0e

t

x ′ = x2, x(0) = x0 x(t) = x0
1−tx0

x ′ = 1
x , x(0) = 1 x(t) =

√
1 + 2t . . .

y ′(x) = −2xy , y(0) = 1 y(x) = e−x
2

x ′(t) = tx , x(0) = x0 x(t) = x0e
t2

2

x ′ =
√
x , x(0) = x0 x(t) = t2

4 ± t
√
x0 + x0

x ′ = y , y ′ = −x , x(0) = 0, y(0) = 1 x(t) = sin t, y(t) = cos t
x ′ = 1 + x2, x(0) = 0 x(t) = tan t

x ′(t) = 2
t3 x(t) x(t) = e−

1
t2 non-analytic

x ′ = x2 + x4 ???

x ′(t) = et
2

non-elementary
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André Platzer (CMU) FCPS / 02: Differential Equations & Domains 9 / 12



ODE Examples

Solutions more complicated than ODE

ODE Solution

x ′ = 1, x(0) = x0 x(t) = x0 + t
x ′ = 5, x(0) = x0 x(t) = x0 + 5t
x ′ = x , x(0) = x0 x(t) = x0e

t

x ′ = x2, x(0) = x0 x(t) = x0
1−tx0

x ′ = 1
x , x(0) = 1 x(t) =

√
1 + 2t . . .

y ′(x) = −2xy , y(0) = 1 y(x) = e−x
2

x ′(t) = tx , x(0) = x0 x(t) = x0e
t2

2

x ′ =
√
x , x(0) = x0 x(t) = t2

4 ± t
√
x0 + x0

x ′ = y , y ′ = −x , x(0) = 0, y(0) = 1 x(t) = sin t, y(t) = cos t
x ′ = 1 + x2, x(0) = 0 x(t) = tan t

x ′(t) = 2
t3 x(t) x(t) = e−

1
t2 non-analytic

x ′ = x2 + x4 ???

x ′(t) = et
2

non-elementary
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x ′ = y , y ′ = −x , x(0) = 0, y(0) = 1 x(t) = sin t, y(t) = cos t

x ′ = 1 + x2, x(0) = 0 x(t) = tan t

x ′(t) = 2
t3 x(t) x(t) = e−

1
t2 non-analytic

x ′ = x2 + x4 ???

x ′(t) = et
2

non-elementary
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Takeaway Message

Descriptive power of differential equations

1 Solutions of differential equations can be much more involved than
the differential equations themselves.

2 Representational and descriptive power of differential equations!

3 Simple differential equations can describe quite complicated physical
processes.

4 Local description as the direction into which the system evolves.
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Evolution Domain Constraints

Enable Cyber to interact with Physics

Definition (Evolution domain constraints)

A differential equation x ′ = f (x) with evolution domain q(x) is denoted by

x ′ = f (x) & q(x)

conjunctive notation (&) signifies that the system obeys the differential
equation x ′ = f (x) and the evolution domain q(x).

t

x

q(x)

x′ = f (x)

0 r0
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Semantics of ODE with Evolution Constraints

Definition (Semantics of differential equations)

A function ϕ : [0, r ]→ S of some duration r ≥ 0 satisfies the differential
equation x ′ = f (x) & q(x), written K , ϕ |= x ′ = f (x) ∧ q(x), iff:

1 ϕ(ζ)(x ′) = dϕ(t)(x)
dt (ζ) exists at for all times 0 ≤ ζ ≤ r

2 ϕ(ζ) ∈ [[x ′ = f (x) ∧ q(x)]] for all times 0 ≤ ζ ≤ r

t

x

q(x)
x′ = f (x)

0 r
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Quantum the Acrophobic Bouncing Ball

Example (Quantum the Bouncing Ball)

(
x ′ = v , v ′ = −g & x ≥ 0;

if(x = 0) v :=−cv
)∗
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Quantum the Acrophobic Bouncing Ball

Example (Quantum the Bouncing Ball)

(

x ′ = v , v ′ = −g & x ≥ 0

;

if(x = 0) v :=−cv
)∗
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Quantum Discovered a Crack in the Fabric of Time

Example (Quantum the Bouncing Ball)
(
x ′ = v , v ′ = −g & x ≥ 0;

if(x = 0) v :=−cv
)∗
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Quantum Discovered a Crack in the Fabric of Time
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Differential Dynamic Logic dL: Semantics

Definition (Hybrid program semantics) ([[·]] : HP→ ℘(S × S))

[[x := e]] = {(ω, ν) : ν = ω except [[x ]]ν = [[e]]ω}
[[?Q]] = {(ω, ω) : ω ∈ [[Q]]}

[[x ′ = f (x)]] = {(ϕ(0), ϕ(r)) : ϕ |= x ′ = f (x) for some duration r}
[[α ∪ β]] = [[α]] ∪ [[β]]

[[α;β]] = [[α]] ◦ [[β]]

[[α∗]] =
⋃

n∈N
[[αn]]

Definition (dL semantics) ([[·]] : Fml→ ℘(S))

[[θ ≥ η]] = {ω : [[θ]]ω ≥ [[η]]ω}
[[¬φ]] = ([[φ]]){

[[φ ∧ ψ]] = [[φ]] ∩ [[ψ]]
[[〈α〉φ]] = [[α]] ◦ [[φ]] = {ω : ν ∈ [[φ]] for some ν : (ω, ν) ∈ [[α]]}
[[[α]φ]] = [[¬〈α〉¬φ]] = {ω : ν ∈ [[φ]] for all ν : (ω, ν) ∈ [[α]]}
[[∃x φ]] = {ω : ωr

x ∈ [[φ]] for some r ∈ R}
André Platzer (CMU) FCPS / 05: Dynamical Systems & Dynamic Axioms 6 / 12



Differential Dynamic Logic dL: Transition Semantics

ω ν
x := e

t

x

0

ω

ν if ν(x) = [[e]]ω
and ν(z) = ω(z) for z 6= x

ω ν
x ′ = f (x) &Q

t

x

Q
ν

ω

ϕ(t)

0 r
x ′ = f (x) &Q

ω

?Q

if ω ∈ [[Q]]
t

x

0

ω no change if ω ∈ [[Q]]
otherwise no transition
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Differential Dynamic Logic dL: Transition Semantics

ω

ν1

ν2

α

β

α ∪ β

t

x
ω ν1

ν2

ω µ ν

α ;β

α β t

x

s

ω ν

ω ω1 ω2 ν

α∗

α α α

α β α β α β

t

x
ω ν
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Differential Dynamic Logic dL: Transition Semantics
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Conjecture: Quantum the Acrophobic Bouncing Ball

Example (Quantum the Bouncing Ball) )

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0→
[(
x ′ = v , v ′ = −g & x ≥ 0; (?x = 0; v :=−cv∪?x 6= 0)

)∗]
(0 ≤ x∧x ≤ H)

Removing the repetition grotesquely changes the behavior to a single hop

André Platzer (CMU) FCPS / 05: Dynamical Systems & Dynamic Axioms 8 / 12



Conjecture: Quantum the Acrophobic Bouncing Ball

Example (Quantum the Bouncing Ball) (Single-hop)

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0→
[

(

x ′ = v , v ′ = −g & x ≥ 0; (?x = 0; v :=−cv∪?x 6= 0)

)∗

]
(0 ≤ x∧x ≤ H)

Removing the repetition grotesquely changes the behavior to a single hop
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A Proof of a Short Single-hop Bouncing Ball

A ` ∀t≥0
(
(H−g

2 t
2=0→B(H− g

2
t2,−c(−gt))) ∧ (H−g

2 t
2≥0→B(H− g

2
t2,−gt))

)

[:=] A ` ∀t≥0 [x := H − g
2 t

2]
(
(x=0→ B(x ,−c(−gt))) ∧ (x≥0→ B(x ,−gt))

)

[:=] A ` ∀t≥0 [x := H − g
2 t

2][v :=−gt]
(
(x=0→ B(x ,−cv)) ∧ (x≥0→ B(x ,v))

)

[;] A ` ∀t≥0 [x := H − g
2 t

2; v :=−gt]
(
(x=0→ B(x ,−cv)) ∧ (x≥0→ B(x ,v))

)

[′] A ` [x ′′ = −g ]
(
(x = 0→ B(x ,−cv)) ∧ (x ≥ 0→ B(x ,v))

)

[:=] A ` [x ′′ = −g ]
(
(x = 0→ [v :=−cv ]B(x ,v)) ∧ (x ≥ 0→ B(x ,v))

)

[?],[?]A ` [x ′′ = −g ]
(
[?x = 0][v :=−cv ]B(x ,v) ∧ [?x ≥ 0]B(x ,v)

)

[;] A ` [x ′′ = −g ]
(
[?x = 0; v :=−cv ]B(x ,v) ∧ [?x ≥ 0]B(x ,v)

)

[∪] A ` [x ′′ = −g ][?x = 0; v :=−cv ∪ ?x ≥ 0]B(x ,v)

[;] A ` [x ′′ = −g ; (?x = 0; v :=−cv ∪ ?x ≥ 0)]B(x ,v)

A
def≡ 0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0

B(x ,v)
def≡ 0 ≤ x ∧ x ≤ H

(x ′′ = −g)
def≡ (x ′ = v , v ′ = −g)
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A Proof of a Short Single-hop Bouncing Ball

Resolving abbreviations at the premise yields:

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0→
∀t≥0

(
(H − g

2
t2 = 0→ 0 ≤ H − g

2
t2 ∧ H − g

2
t2 ≤ H)

∧ (H − g

2
t2 ≥ 0→ 0 ≤ H − g

2
t2 ∧ H − g

2
t2 ≤ H)

)

which is provable by arithmetic (since g > 0 and t2 ≥ 0).

Exciting!

We have just formally verified our very first CPS!

Okay, alright, it was a grotesquely simplified single-hop bouncing ball.
But the axioms of our proof technique were completely general and not
specific to bouncing balls, so they should carry us forward to true CPS.
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Real arithmetic is decidable

Let ϕ be a first-order formula using addition and multiplication
(possibly with ∀/∃).

Reminder:

N |= ϕ is not decidable, not even recursive enumerable (Gödel).

Tarski-Seidenberg theorem (c. 1948)

R |= ϕ is decidable.
Complexity is double exponential (c. 1988).

Idea: Quantifier elimination

Find formula ψ such that (∃x .ϕ(x , y))↔ ψ(y).
Computer algebra systems do this: Redlog, Mathematica, (Z3)
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Semialgebraic sets

Semialgebraic set

S ⊆ Rn is called semialgebraic if it is a boolean combination of
sets of the shape {x̄ ∈ Rn | p(x̄) > 0} for polynomials p ∈ Z[x̄ ].

S is semialgebaric iff there is a quantifier-free FOL-formula ϕ(S)
with n free variables x1, ..., xn such that

(s1, ..., sn) ∈ S ⇐⇒ R, [x1 7→ s1, ..., xn 7→ sn] |= ϕ(S)

Beckert, Ulbrich – Formale Systeme II: Theorie 6/15



Semialgebraic sets

Semialgebraic set

S ⊆ Rn is called semialgebraic if it is a boolean combination of
sets of the shape {x̄ ∈ Rn | p(x̄) > 0} for polynomials p ∈ Z[x̄ ].

S is semialgebaric iff there is a quantifier-free FOL-formula ϕ(S)
with n free variables x1, ..., xn such that

(s1, ..., sn) ∈ S ⇐⇒ R, [x1 7→ s1, ..., xn 7→ sn] |= ϕ(S)

Beckert, Ulbrich – Formale Systeme II: Theorie 6/15



Tarski-Seidenberg Theorem

Definition: Projection πn : Rn → Rn−1

πn((s1, ..., sn)) := (s1, ..., sn−1)

πn(S) := {πn(s̄) | s̄ ∈ S} (extended to 2R)

(s1, ..., sn−1) ∈ πn(S) ⇐⇒ R, [x1 7→ s1, ..., xn−1 7→ sn−1] |= ∃xn. ϕ(S)

Tarski-Seidenberg Theorem (Projektionssatz)

Let S ⊆ Rn be semialgebraic.
Then πn(S) ∈ Rn−1 is also semialgebraic.
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Example

Single variable, single quadratic equation

Let Squad be the solutions of ax2 + bx + c = 0.
(is semialgebraic: ax2 + bx + c ∈ R[a, b, c , x ])

Due to Tarski-Seidenberg, there must be an equiv. quantifier-free
formula ϕ(π4(Squad)) with free variables a, b, c .

∃x .ax2 + bx + c = 0

⇐⇒

(a 6= 0 ∧ b2 − 4ac ≥ 0)

∨ (a = 0 ∧ (b = 0→ c = 0))

(
∃x .x3 + a2x

2 + a1x + a0 = 0 is trivally equivalent to true.
)
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Quantifier Elimination – Algorithm

1 Sufficient to look at ∃x .∧i φi (ȳ , x) for atomic φi . → Why?

2 Sufficient to consider φi of shape p(ȳ , x)
{
<
>
=

}
0

for p ∈ R[ȳ ][x ] → Why?

3 Every polynomial p ∈ R[x ] has finitely many connected
regions with same sign. → Board
Choose a set Rep of representatives.

4 ∃x .
∧

i

φi (x , ȳ)↔
∨

r∈Rep

∧

i

φi (r , ȳ)
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Quantifier Elimination – Linear Example

In R[z , x ]:
ψ := ∃x .x > 2 ∧ x < 3 ∧ x > z

Interesting points for x : I = {2, 3, z}
Interesting intervals: (−∞, 2), (2, 3), (3,∞), (2, z), . . .

Representatives:
Rep =

{
2, 3, z , “−∞”, “+∞”, 2+3

2 , 2+z
2 , 3+z

2

}

=
{

i1+i2
2 | i1, i2 ∈ I

}
∪ {“−∞”, “+∞”}
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More QE: Presburger Arithmetic

Presburger Arithmetic (1929)

Presburger Arithmetic is the theory of N-valid first order-formulas
over the signature which contains symbols 0, 1,+ (but not ·)

Presburger Arithmetic is axiomatizable:

1 ∀x . x + 0 = 0 ∧ ¬x + 1 = 0

2 ∀x , y . x + 1 = y + 1→ x = y

3 ∀x , y , z . (x + y) + z = x + (y + z)

4 P(0) ∧ (∀x . P(x)→ P(x + 1))→ (∀x . P(x)) for some formula P

Presburger Arithmetic is Decidable

P.A. supports quantifier elimination. (→ Cooper’s Algorithm)
(Complexity theoretically double exponential, in practice often better)
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Conjecture: Quantum the Acrophobic Bouncing Ball

Example (Quantum the Bouncing Ball) (Single-hop)

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0→
[

(

x ′ = v , v ′ = −g & x ≥ 0; (?x = 0; v :=−cv∪?x 6= 0)

)∗

]
(0 ≤ x∧x ≤ H)

Removing the repetition grotesquely changes the behavior to a single hop
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Hybrid Programs and Loop Invariants

Repeatedly bouncing ball

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 0 < c ≤ 1→
[(x ′′ = −g & x ≥ 0 ; if x = 0 then v := −c · v)∗](0 ≤ x ≤ H)

Use discrete invariant rules from DL to prove hybrid proof
obligation.
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Sequent Calculus Rules

loop
Γ ` INV ,∆ INV ` [α]INV INV ` SAFE

Γ ` [α∗]SAFE ,∆

MR
Γ ` [α]Φ,∆ Φ ` [β]SAFE

Γ ` [α ; β]SAFE ,∆

[’]
Γ ` ∀t ≥ 0.([x := X (t)]φ),∆

Γ ` [x ′ = t & Q(x)]φ,∆
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Proving Quantum the Acrophobic Bouncing Ball

[;]

MR

j (x ,v) ` [x ′′=]j (x ,v)

[∪]

∧R

[;]

[?]

[:=]
j (x ,v), x=0 ` j (x ,−cv)

j (x ,v), x=0 ` [v :=−cv ]j (x ,v)

j (x ,v) ` [?x=0][v :=−cv ]j (x ,v)

j (x ,v) ` [?x=0; v :=−cv ]j (x ,v)

[?]
j (x ,v), x 6=0 ` j (x ,v)

j (x ,v) ` [?x 6=0]j (x ,v)

j (x ,v) ` [?x=0; v :=−cv ]j (x ,v) ∧ [?x 6=0]j (x ,v)

j (x ,v) ` [?x=0; v :=−cv ∪ ?x 6=0]j (x ,v)

j (x ,v) ` [x ′′=][?x=0; v :=−cv ∪ ?x 6=0]j (x ,v)

j (x ,v) ` [x ′′=; (?x=0; v :=−cv ∪ ?x 6=0]j (x ,v)

loop

A ` j (x ,v)

[;]

j (x ,v) ` [x ′′=; (?x=0; v :=−cv ∪ ?x 6=0]j (x ,v)
j (x ,v) ` B(x ,v)

A ` [
(
x ′′=; (?x=0; v :=−cv ∪ ?x 6=0)

)∗
]B(x ,v)

A ≡ 0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0

B(x ,v) ≡ 0 ≤ x ∧ x ≤ H

x ′′=.. ≡ {x ′ = v , v ′ = −g & x ≥ 0}
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A ` j (x ,v)
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weaker: fails postcondition if x > H

2 j (x ,v) ≡ 0 ≤ x ∧ x ≤ H

weak: fails ODE if v � 0

3 j (x ,v) ≡ x = 0 ∧ v = 0

strong: fails initial condition if x > 0

4 j (x ,v) ≡ x = 0 ∨ x = H ∧ v = 0

no space for intermediate states

5 j (x ,v) ≡ 2gx=2gH−v2 ∧ x≥0

works: implicitly links v and x

A ≡ 0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0

B(x ,v) ≡ 0 ≤ x ∧ x ≤ H

x ′′=.. ≡ {x ′ = v , v ′ = −g & x ≥ 0}
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André Platzer (CMU) FCPS / 07: Control Loops & Invariants 9 / 12



Proving Quantum the Acrophobic Bouncing Ball

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ` j (x ,v)

j (x ,v) ` [{x ′=v , v ′=−g & x≥0}](j (x ,v))
j (x ,v), x=0 ` j (x ,(−cv))

j (x ,v), x 6=0 ` j (x ,v)

j (x ,v) ` 0 ≤ x ∧ x ≤ H

1 j (x ,v) ≡ x ≥ 0

weaker: fails postcondition if x > H

2 j (x ,v) ≡ 0 ≤ x ∧ x ≤ H

weak: fails ODE if v � 0

3 j (x ,v) ≡ x = 0 ∧ v = 0

strong: fails initial condition if x > 0

4 j (x ,v) ≡ x = 0 ∨ x = H ∧ v = 0

no space for intermediate states

5 j (x ,v) ≡ 2gx=2gH−v2 ∧ x≥0

works: implicitly links v and x

A ≡ 0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0

B(x ,v) ≡ 0 ≤ x ∧ x ≤ H

x ′′=.. ≡ {x ′ = v , v ′ = −g & x ≥ 0}
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André Platzer (CMU) FCPS / 07: Control Loops & Invariants 9 / 12



Proving Quantum the Acrophobic Bouncing Ball

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ` j (x ,v)

j (x ,v) ` [{x ′=v , v ′=−g & x≥0}](j (x ,v))
j (x ,v), x=0 ` j (x ,(−cv))

j (x ,v), x 6=0 ` j (x ,v)

j (x ,v) ` 0 ≤ x ∧ x ≤ H

1 j (x ,v) ≡ x ≥ 0 weaker: fails postcondition if x > H

2 j (x ,v) ≡ 0 ≤ x ∧ x ≤ H weak: fails ODE if v � 0

3 j (x ,v) ≡ x = 0 ∧ v = 0 strong: fails initial condition if x > 0

4 j (x ,v) ≡ x = 0 ∨ x = H ∧ v = 0 no space for intermediate states

5 j (x ,v) ≡ 2gx=2gH−v2 ∧ x≥0 works: implicitly links v and x

A ≡ 0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0

B(x ,v) ≡ 0 ≤ x ∧ x ≤ H

x ′′=.. ≡ {x ′ = v , v ′ = −g & x ≥ 0}
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André Platzer (CMU) FCPS / 07: Control Loops & Invariants 9 / 12



Proving Quantum the Acrophobic Bouncing Ball

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0 ` 2gx=2gH−v2 ∧ x≥0
2gx=2gH−v2 ∧ x≥0 ` [{x ′=v , v ′=−g & x≥0}](2gx=2gH−v2 ∧ x≥0)

2gx=2gH−v2 ∧ x≥0, x=0 ` 2gx=2gH−(−cv)2 ∧ x≥0
2gx=2gH−v2 ∧ x≥0, x 6=0 ` 2gx=2gH−v2 ∧ x≥0
2gx=2gH−v2 ∧ x≥0 ` 0 ≤ x ∧ x ≤ H

1 j (x ,v) ≡ x ≥ 0 weaker: fails postcondition if x > H

2 j (x ,v) ≡ 0 ≤ x ∧ x ≤ H weak: fails ODE if v � 0

3 j (x ,v) ≡ x = 0 ∧ v = 0 strong: fails initial condition if x > 0

4 j (x ,v) ≡ x = 0 ∨ x = H ∧ v = 0 no space for intermediate states

5 j (x ,v) ≡ 2gx=2gH−v2 ∧ x≥0 works: implicitly links v and x

A ≡ 0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0

B(x ,v) ≡ 0 ≤ x ∧ x ≤ H

x ′′=.. ≡ {x ′ = v , v ′ = −g & x ≥ 0}
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∧R

R
∗

2gx=2gH−v2 ` 2g(H−g
2 t

2)=2gH−(gt)2
id

∗
H−g

2 t
2≥0 ` H−g

2 t
2≥0

2gx=2gH−v2∧x≥0,H−g
2 t

2≥0 ` 2g(H−g
2 t

2)=2gH−(gt)2∧(H−g
2 t

2)≥0

j (x ,v), t≥0,H−g
2 t

2≥0 ` j (H− g
2
t2,−gt)

→R j (x ,v) ` t≥0→ H−g
2 t

2≥0→ j (H− g
2
t2,−gt)

∀R j (x ,v) ` ∀t≥0 (H−g
2 t

2≥0→ j (H− g
2
t2,−gt))

[:=] j (x ,v) ` ∀t≥0 [x :=H−g
2 t

2](x≥0→ j (x ,−gt))
[:=] j (x ,v) ` ∀t≥0 [x :=H−g

2 t
2][v :=−gt](x≥0→ j (x ,v))

[;] j (x ,v) ` ∀t≥0 [x :=H−g
2 t

2; v :=−gt](x≥0→ j (x ,v))
[′] j (x ,v) ` [x ′=v , v ′=−g & x≥0]j (x ,v)

Is Quantum done with his safety proof?

Oh no! The solutions we sneaked into [′] only solve the ODE/IVP if
x = 0, v = 0 which j (x ,v) can’t guarantee!

Never use solutions without proof!  redo proof with true solution
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Quantum the Provably Safe Bouncing Ball

Proposition (Quantum can bounce around safely)

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 = c →
[
(
x ′ = v , v ′ = −g & x ≥ 0; (?x = 0; v :=−cv ∪ ?x 6= 0)

)∗
](0 ≤ x∧x ≤ H)

@requires(0 ≤ x ∧ x = H ∧ v = 0)

@requires(g > 0 ∧ c = 1)

@ensures(0 ≤ x ∧ x ≤ H){
{x ′ = v , v ′ = −g & x ≥ 0};
(?x = 0; v :=−cv ∪ ?x 6= 0))

}∗
@invariant(2gx = 2gH − v2 ∧ x ≥ 0)

Invariant Contracts

Invariants play a crucial role in CPS design. Capture them if you can. Use
@invariant contracts in your hybrid programs.

Note: constants c = 1 ∧ g > 0 that never change are often elided
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ODE Examples Solutions more complicated than ODE

ODE Solution

x ′ = 1, x(0) = x0 x(t) = x0 + t
x ′ = 5, x(0) = x0 x(t) = x0 + 5t
x ′ = x , x(0) = x0 x(t) = x0e

t

x ′ = x2, x(0) = x0 x(t) = x0
1−tx0

x ′ = 1
x , x(0) = 1 x(t) =

√
1 + 2t . . .

y ′(x) = −2xy , y(0) = 1 y(x) = e−x
2

x ′(t) = tx , x(0) = x0 x(t) = x0e
t2

2

x ′ =
√
x , x(0) = x0 x(t) = t2

4 ± t
√
x0 + x0

x ′ = y , y ′ = −x , x(0) = 0, y(0) = 1 x(t) = sin t, y(t) = cos t
x ′ = 1 + x2, x(0) = 0 x(t) = tan t

x ′(t) = 2
t3 x(t) x(t) = e−

1
t2 non-analytic

x ′ = x2 + x4 ???

x ′(t) = et
2

non-elementary
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Global Descriptive Power of Local Differential Equations

Descriptive power of differential equations

1 Simple differential equations can describe quite complicated physical
processes.

2 Solution is a global description of the system evolution.

3 ODE is a local characterization.

4 Complexity difference between local description and global behavior

5 Let’s exploit that phenomenon for proofs!
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Differential Equations vs. Loops

Lemma (Differential equations are their own loop)

[[(x ′ = f (x))
∗
]] = [[x ′ = f (x)]]

loop α∗ ODE x ′ = f (x)
repeat any number n ∈ N of times evolve for any duration r ∈ R
can repeat 0 times can evolve for duration 0
effect depends on previous loop iteration effect depends on the past solution
local generator α local generator x ′ = f (x)
full global execution trace global solution ϕ : [0, r ]→ S
unwinding proof by iteration [∗] proof by global solution with [′]
inductive proof with loop invariant proof with differential invariant
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Intuition for Differential Invariants

Differential Invariant

Γ ` F ,∆ F ` ???F F ` P

Γ ` [x ′ = f (x)]P,∆

Want: F remains true in
the direction of the dynamics

¬ ¬FF F

[′] [x ′ = f (x)]P ↔ ∀t≥0 [x := y(t)]P (y’ =f(y), y(0)=x)

Don’t need to know where exactly the system evolves to. Just that it
remains somewhere in F .
Show: only evolves into directions in which formula F stays true.
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Guiding Example

: Rotational Dynamics

v2+w2 = r2 → [v ′ = w ,w ′ = −v ]v2+w2 = r2

∗

R ` 2v(w) + 2w(−v) = 0

[′:=] ` [v ′:=w ][w ′:=−v ]2vv ′ + 2ww ′ − r ′ = 0

DI=0v2+w2−r2=0 ` [v ′ = w ,w ′ = −v ]v2 + w2 − r2 = 0

→R ` v2+w2−r2=0→ [v ′ = w ,w ′ = −v ]v2+w2−r2=0

Simple proof without solving ODE
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Derivatives for a Change

Syntax e ::= x | c | e + k | e − k | e · k | e/k

Derivatives

(e + k)′ = (e)′ + (k)′

(e − k)′ = (e)′ − (k)′

(e · k)′ = (e)′ · k + e · (k)′

(e/k)′ =
(
(e)′ · k − e · (k)′

)
/k2

same singularities

(c())′ = 0 for constants/numbers c()

. . . What do these primes mean? . . .
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Augmented states

For every variable x used in a differential equation, we add new
variable x ′.

Semantics of diff. eq.

(s1, s2) ∈ ρ(x ′ = e & Q)
⇐⇒

ex. t > 0 and X : [0, t]→ R with

1 X (0) = s1(x)

2 X ′(u) = vals[x 7→X (u)](e) for all 0 ≥ u ≤ t

3 X (t) = s2(x)

4 s1[x 7→ X (u)] |= Q for all 0 ≥ u ≤ t

5 s1(y) = s2(y) for all other variables y .
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Derivatives for a Change

Syntax e ::= x | c | e + k | e − k | e · k | e/k | (e)′

Derivatives

(e + k)′ = (e)′ + (k)′

(e − k)′ = (e)′ − (k)′

(e · k)′ = (e)′ · k + e · (k)′

(e/k)′ =
(
(e)′ · k − e · (k)′

)
/k2 same singularities

(c())′ = 0 for constants/numbers c()

. . . What do these primes mean? . . .

internalize primes into dL syntax
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Differential Substitution Lemmas

Lemma (Differential lemma) (Differential value vs. Time-derivative)

If ϕ |= x ′ = f (x) ∧ Q for duration r > 0, then for all 0 ≤ z ≤ r :

Syntactic [[(e)′]]ϕ(z) =
d[[e]]ϕ(t)

dt
(z) Analytic

Lemma (Differential assignment) (Effect on Differentials)

If ϕ |= x ′ = f (x) ∧ Q then ϕ |= P ↔ [x ′ := f (x)]P

Lemma (Derivations) (Equations of Differentials)

(e + k)′ = (e)′ + (k)′

(e · k)′ = (e)′ · k + e · (k)′

(c())′ = 0 for constants/numbers c()

(x)′ = x ′ for variables x ∈ V
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Differential Substitution Lemmas

Lemma (Differential lemma) (Differential value vs. Time-derivative)

If ϕ |= x ′ = f (x) ∧ Q for duration r > 0, then for all 0 ≤ z ≤ r :

[[(e)′]]ϕ(z) =
d[[e]]ϕ(t)

dt
(z)

Lemma (Differential assignment) (Effect on Differentials)

If ϕ |= x ′ = f (x) ∧ Q then ϕ |= P ↔ [x ′ := f (x)]P

Axiomatics

DE [x ′ = f (x) &Q]P ↔ [x ′ = f (x) &Q][x ′ := f (x)]P

DI
` [x ′ = f (x) &Q](e)′ = 0

e = 0 ` [x ′ = f (x) &Q]e = 0
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Differential Invariants for Differential Equations

Differential Invariant

DI=0
` [x ′ := f (x)](e)′ = 0

e = 0 ` [x ′ = f (x)]e = 0

DI
` [x ′ = f (x)](e)′ = 0

e = 0 ` [x ′ = f (x)]e = 0
DE [x ′ = f (x)]P ↔ [x ′ = f (x)][x ′ := f (x)]P

DI=0 is a derived rule:

` [x ′ := f (x)](e)′ = 0

G ` [x ′ = f (x)][x ′ := f (x)](e)′ = 0

DE ` [x ′ = f (x)](e)′ = 0

DIe = 0 ` [x ′ = f (x)]e = 0

G
P

[α]P
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Guiding Example: Rotational Dynamics

v2+w2 = r2 → [v ′ = w ,w ′ = −v ]v2+w2 = r2

v

w

w
=

r
co

s
ϑ

v
r sinϑ

r

∗

R ` 2v(w) + 2w(−v) = 0

[′:=] ` [v ′:=w ][w ′:=−v ]2vv ′ + 2ww ′ − r ′ = 0

DI=0v2+w2−r2=0 ` [v ′ = w ,w ′ = −v ]v2 + w2 − r2 = 0

→R ` v2+w2−r2=0→ [v ′ = w ,w ′ = −v ]v2+w2−r2=0

Simple proof without solving ODE
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Strengthening Induction Hypotheses

Stronger Induction Hypotheses

1 As usual in math and in proofs with loops:

2 Inductive proofs may need stronger induction hypotheses to succeed.

3 Differentially inductive proofs may need a stronger differential
inductive structure to succeed.

4 Even if {(x , y) ∈ R2 : x2 + y2 = 0} = {{(x , y) ∈ R2 : x4 + y4 = 0}
have the same solutions, they have different differential structure.
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