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I Do you know set theory? AT
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I Do you know axiomatic set theory? AT

Vz(zEx+rzey) > x=y.
Jy(y € x) = y(y e xAVzo(z € x ANz €y)).

yVz(z €y > z € x A\ ¢(2)).

for any formula ¢ not containing y.

JyVx(x € y).
YyVx(x Ey & x =21V x = 2).
IyVz(z €y > Vu(u € z — u € x)).
yVz(z €y <> Ju(z € uAu € X)).

w@ewn Vx(xew—
dz(z € wA
Vu(u € z <> u € x V u = x)))).
Vx,y, 2((x, y) Np(x,2) = y = 2) —
JuvVwi(wi € u <> Ime(we € a A Y(we, wr))).
Vx(x € z = x # 0N

Vy(y€z—=xNy=0Vx=y))
_>

JuVxIv(x € z — unx = {v}).
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I Georg Cantor
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Georg F.L.P. Cantor

1845

1862
- 1867

1872
- 1884

1869
- 1918

1918

born in St. Petersburg

studies in Ziirich, Géttingen
and Berlin

foundations of
axiomatic set theory

Professor
in Halle (Saale)

died in Halle
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I Georg Cantor T
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Pioneering Publications:

Uber unendliche Punctmanichfaltigkeiten.
Math. Ann. 15(1879), 1-7, 17(1880), 355-358, 20(1882), 113-121,
21(1883), 51-58 and 545-586, 23(1884), 453-488

Beitrdge zur Begriindung der transfiniten Mengenlehre.
Math. Ann. 46(1895), 481-512, 49(1897), 207—245.

Beckert, Ulbrich — Formale Systeme |l: Theorie 6/65



I Georg Cantor T

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Pioneering Publications:
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Math. Ann. 15(1879), 1-7, 17(1880), 355-358, 20(1882), 113-121,
21(1883), 51-58 and 545-586, 23(1884), 453-488

Beitrdge zur Begriindung der transfiniten Mengenlehre.
Math. Ann. 46(1895), 481-512, 49(1897), 207—245.

Beckert, Ulbrich — Formale Systeme |l: Theorie 6/65



‘Naive’ Set Theory

Karlsruhe Institute of Technology

Beitréige zur Begriindung der transfiniten Mengenlehre.
Von

Guore Caxtor in Halle a./S.
(Erster Artikel.)

wHypotheses non fingo.*

nNeque enim leges intellectui aut rebus damus
ad arbitrium nostrum, sed tanquam scribae fideles
=b ipsius naturse voce latas et prolatas excipimus

et describimus.”
,,‘Vanin tempus, quu (lh quae nunc latent, in
G DZ lucem dies aevi d:
III
Gattinger Dighaliserungszentrum § 1

' Der Michtigkeitsbegriff oder die Cardinalzahl.

Unter einer ,Menge‘ verstehen wir jede Zusammenfassung M von
bestimmten wohlunterschiedenen Objecten m unsrer Anschauung oder
unseres Denkens (welche die ,Elemente’ von M genannt werden) zu
einem Ganzen.

In Zeichen driicken wir dies so aus:

(1) M= {m}.
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I Antinomies A“(IT

Naive Set Theory is not consistent
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I Antinomies ﬂ("'

ruhe Institute of Technology

Naive Set Theory is not consistent

Cantor's Antinomy

The “set of all conceivable objects” cannot exist:
Its powerset would have to have larger cardinality.

Beckert, Ulbrich — Formale Systeme |l: Theorie 8/65



I Antinomies AT
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Naive Set Theory is not consistent

Cantor's Antinomy

The “set of all conceivable objects” cannot exist:
Its powerset would have to have larger cardinality.

Russell's Antinomy (1903)

Let R:= {x | x € x}. Now R € R is neither true nor false.
= Sudden end for naive set theory.
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I Antinomies

Naive Set Theory is not consistent

Cantor's Antinomy

The “set of all conceivable objects” cannot exist:
Its powerset would have to have larger cardinality.

Russell's Antinomy (1903)

Let R:= {x | x € x}. Now R € R is neither true nor false.
= Sudden end for naive set theory.

Insight:

A class term {x | ¢(x)} does not necessarily describe a set!
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I (Historical Sidenote)

Gottlieb Frege (1903):

Grundgesetze der Arithmetik, Nachwort

Einem wissenschaftlichen Schriftsteller
kann kaum etwas Unerwiinschteres
begegnen, als daB ihm nach Vollendung
einer Arbeit eine der Grundlagen seines
Baues erschiittert wird. In diese Lage
wurde ich durch einen Brief des Herrn
Bertrand Russell versetzt, als der Druck
dieses Bandes sich seinem Ende niherte.
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I Logicism (G. Frege)

Philosophical views:

What is the relationship betwen logics and mathematics?
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I Logicism (G. Frege)

Philosophical views:

What is the relationship betwen logics and mathematics?

w Logical reasoning is a branch of mathematics.
Mathematical subjects are “there” and wait to be described,
formally captured.
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I Logicism (G. Frege) ﬂ("'

stitute of Technology

Philosophical views:

What is the relationship betwen logics and mathematics?

w Logical reasoning is a branch of mathematics.
Mathematical subjects are “there” and wait to be described,
formally captured.

or

m Mathematics is an application of logical reasoning.

@ There are valid axioms which are evidently true.
@ All true propositions must be formally derived from axioms.
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This lecture ﬂ("'
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History of set theory, logicism
m Zermelo-Fraenkel as a prominent first order theory
a Zermelo-Fraenkel as an example of modelling in FOL

a Zermelo-Fraenkel as foundations of mathematics
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First Order Logic —
Conservative Extension
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I Conservative Extension AT
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Definition (proof-theoretic)

Let > C X5 be signatures, and T; set of sentences in Fmls,.
T> is called a conservative extension of 77 if

TiEp < ThEy for all sentences ¢ € Fmly,
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I Conservative Extension AT
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Definition (proof-theoretic)

Let > C X5 be signatures, and T; set of sentences in Fmls,.
T> is called a conservative extension of 77 if

TiEp < ThEy for all sentences ¢ € Fmly,

Sufficient criterion (model-theoretic)

m Every model for T; can be extended to a model of T».
and

a Every restriction of a model of T, is a model of T;.
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I Conservative Extension — Example AT
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Let 2o = {(0,5)7 (:)7a}

Axioms T0
a Vx. 0s(x) =0
wnVx,y.s(x)=s(y) > x=y
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I Conservative Extension — Example

Let o = {(0,5), (=), a}
Axioms TO
a Vx. 0s(x) =0
wnVx,y.s(x)=s(y) > x=y
Axioms T1: X7 includes 1

a Axioms T0O
a 1=5(0)
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I Conservative Extension — Example AT
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Let 2o = {(0,5)7 (:)7a}

Axioms TO
a Vx. 0s(x) =0
wVx,y. s(x)=s(y) > x=y

Axioms T1: 7 includes 1 conservative extension of TO
a Axioms T0O
a 1=5(0)
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I Conservative Extension — Example

Let 2o = {(0, 5)7 (:)7 a}
Axioms T0O
® Vx. 5s(x) =0
wVx,y.s(x)=s(y) = x=y

Axioms T1: 7 includes 1 conservative extension of TO
a Axioms T0O
a 1=5(0)

Axioms T2: ¥ =34
a Axioms T2
e x=0V3dy.x=s(y)
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I Conservative Extension — Example AT
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Let 2o = {(0,5)7 (:)7a}

Axioms TO
a Vx. 0s(x) =0
wnVx,y.s(x)=s(y) > x=y

Axioms T1: 7 includes 1 conservative extension of TO
a Axioms T0O
a 1=5(0)

Axioms T2: ¥ =34 not conservative extension of T1
a Axioms T2

e x=0V3dy.x=s(y)
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I Conservativity Theorem AKIT
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Let X be a signature, T a X-theory and ¢(x, y) a X-formula.
Let f € ¥ be new function symbol

If T=Vy. 3x. o(x,¥)
then

T U{Vy. o(f(y),y) is a conservative extension of T (over X U {f})

Example
If Vydx.y=x-x isa theorem of some theory R+, then

function symbol sqrt can be added as conservative extension to
R+ with definition Vy. y = sqrt(y) - sqrt(y).
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Zermelo-Fraenkel Axiom System
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I Zermelo and Fraenkel

Ernst Zermelo (1871-1953)  Abraham Fraenkel (1891-1965)
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Ernst Zermelo (1871-1953)  Abraham Fraenkel (1891-1965)

1907 Zermelo proposes an axiom system with 7 axioms
1921 Fraenkel adds the replacement axiom
1930 Zermolo adds the foundation axiom

Axiom of choice was in initial set
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I Signature AIT
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Y = {F,P,a} with
e F=10
e P={g,=}
v afe)=a(=)=2
The semantics of equality is “built in”, as usual.
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I Signature AIT
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Y ={F,P,a} with
s F=10
e P={g,=}
v afe)=a(=)=2

The semantics of equality is “built in”, as usual.

That's it. ...

Only two predicate symbols in the signature.
All other symbols often used (), U, C,...) are derived symbols.
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We will look at the axioms individually:

@ Original textual formulation, from
Ernst Zermelo:
Untersuchungen liber die Grundlagen der Mengenlehre.
In: Mathematische Annalen. 65 (1908)

@ As FOL formulas over the above signature, in modern notation
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I Zermelo-Fraenkel Axiom System AT
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Al: Extensionality

,Ist jedes Element einer Menge M gleichzeitig Element der Menge
N und umgekehrt [...], so ist immer M = N.

Oder kiirzer: jede Menge ist durch ihre Elemente bestimmt.”
[Zermelo, 1907]

Vz.(z€xrzey) > x=y
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I Zermelo-Fraenkel Axiom System AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Al: Extensionality

,Ist jedes Element einer Menge M gleichzeitig Element der Menge
N und umgekehrt [...], so ist immer M = N.

Oder kiirzer: jede Menge ist durch ihre Elemente bestimmt.”
[Zermelo, 1907]

Vz.(z€xrzey) > x=y

a Free variables in axioms are implicitly universally quantified.
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I Zermelo-Fraenkel Axiom System AT
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Al: Extensionality

,Ist jedes Element einer Menge M gleichzeitig Element der Menge
N und umgekehrt [...], so ist immer M = N.

Oder kiirzer: jede Menge ist durch ihre Elemente bestimmt.”
[Zermelo, 1907]

Vz.(z€xrzey) > x=y

a Free variables in axioms are implicitly universally quantified.

a What about the converse implication?
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I Zermelo-Fraenkel Axiom System AT
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Al: Extensionality

,Ist jedes Element einer Menge M gleichzeitig Element der Menge
N und umgekehrt [...], so ist immer M = N.

Oder kiirzer: jede Menge ist durch ihre Elemente bestimmt.”
[Zermelo, 1907]

Vz.(z€xrzey) > x=y

a Free variables in axioms are implicitly universally quantified.
a What about the converse implication?

(Hint: Remember semantics of “="1)
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I Zermelo-Fraenkel Axiom System AT
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A2: Foundation / Regularity

,,Jede (riickschreitende) Kette von Elementen, in welcher jedes
Glied Element des vorangehenden ist, bricht mit endlichem Index
ab [...].

Oder, was gleichbedeutend ist: Jeder Teilbereich T enthilt
wenigstens ein Element tg, das kein Element t in T hat.” [Zermelo,
1930]

By.yex)—=3y. (yexAVz. 2(z€xNzey))
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I Zermelo-Fraengel Axiom System AT
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A3: Separation Schema

,,Ist die Klassenaussage F(x) definit* fiir alle Elemente einer
Menge M, so besitzt M immer eine Untermenge Mg, welche alle
diejenigen Elemente x von M, fiir welche F(x) wahr ist, und nur
solche als Elemente enthalt.”

* ~ F(x) ist eine Formel. [Zermelo, 1908]

dyVz(zey+zexN¢(z))

for any formula ¢ not containing y.

m is an axiom schema, contains a placeholder symbol
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I Zermelo-Fraengel Axiom System ST
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A4: Empty set
,,Es gibt eine (uneigentliche) Menge, die Nullmenge O, welche gar

keine Elemente enthalt.” [Zermelo, 1908]

dy . Vx.=(x € y).
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I Zermelo-Fraenkel Axiom System AT
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Ab5: Pair set

w[---]; sind a, b irgend zwei Dinge des Bereiches, so existiert
immer eine Menge {a, b}, welche sowohl a als b, aber kein von
beiden verschiedenes Ding x als Element enthalt.” [Zermelo, 1908]

JyVx(x €y x=2z1Vx=2)
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I Zermelo-Fraenkel Axiom System AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

A6: Power set

.,Jeder Menge T entspricht eine zweite Menge UT (die
Potenzmenge von T), welche alle Untermengen yon T und nur
solche als Elemente enthalt.” [Zermelo, 1908]

JdyVz(zey < Vu(u e z— ueEx))
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I Zermelo-Fraenkel Axiom System AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

A6: Power set

.,Jeder Menge T entspricht eine zweite Menge UT (die
Potenzmenge von T), welche alle Untermengen yon T und nur
solche als Elemente enthalt.” [Zermelo, 1908]

JdyVz(zey < Vu(u e z— ueEx))

a Countable infinite set = uncountable power set expected.
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I Zermelo-Fraenkel Axiom System AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

A6: Power set

.,Jeder Menge T entspricht eine zweite Menge UT (die
Potenzmenge von T), welche alle Untermengen yon T und nur
solche als Elemente enthalt.” [Zermelo, 1908]

JdyVz(zey < Vu(u e z— ueEx))

a Countable infinite set = uncountable power set expected.

m Lowenheim-Skolem: There is a countable model of set theory.
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I Zermelo-Fraenkel Axiom System AT
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A6: Power set

.,Jeder Menge T entspricht eine zweite Menge UT (die
Potenzmenge von T), welche alle Untermengen yon T und nur
solche als Elemente enthalt.” [Zermelo, 1908]

JdyVz(zey < Vu(u e z— ueEx))

a Countable infinite set = uncountable power set expected.
m Lowenheim-Skolem: There is a countable model of set theory.

= Not all subsets can be guaranteed to exist
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I Zermelo-Fraenkel Axiom System AT
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AT7: Union / Sum

Jeder Menge T entspricht eine Menge GT (die Vereinigungsmenge
von T), welche alle Elemente der Elemente yon T und nur solche
als Elemente enthilt.

yVz(z ey <> Ju(z € uNu € X))
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I Zermelo-Fraenkel Axiom System AT
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AT7: Union / Sum

Jeder Menge T entspricht eine Menge GT (die Vereinigungsmenge
von T), welche alle Elemente der Elemente yon T und nur solche
als Elemente enthilt.

yVz(z ey <> Ju(z € uNu € X))
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I Zermelo-Fraenkel Axiom System AT
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AT7: Union / Sum

Jeder Menge T entspricht eine Menge GT (die Vereinigungsmenge
von T), welche alle Elemente der Elemente yon T und nur solche
als Elemente enthilt.

yVz(z ey <> Ju(z € uNu € X))

GT:UT
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I Zermelo-Fraenkel Axiom System AT
A8: Infinity

Different Notion

.,Der Bereich* enthilt mindestens eine Menge Z, welche die
Nullmenge als Element enthalt und so beschaffen ist, da jedem
ihrer Elemente a ein weiteres Element der Form {a} entspricht,
oder welche mit jedem ihrer Elemente a auch die entsprechende
Menge {a} als Element enthalt.”

* Universum/Doméne [Zermelo, 1907]

w.(dewn Vx(xew—
Jz(z € wA
Vu(u € z4> u € xVu=x))))
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Zermelo-Fraenkel Axiom System AT
A8: Infinity

Different Notion

.,Der Bereich* enthilt mindestens eine Menge Z, welche die
Nullmenge als Element enthalt und so beschaffen ist, da jedem
ihrer Elemente a ein weiteres Element der Form {a} entspricht,
oder welche mit jedem ihrer Elemente a auch die entsprechende
Menge {a} als Element enthalt.”

* Universum/Doméne [Zermelo, 1907]

w.(dewn Vx(xew—
Jz(z € wA
Vu(u € z4> u € xVu=x))))

a)eZANVa (aeZ— {a}eZ)
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Zermelo-Fraenkel Axiom System AT
A8: Infinity

Different Notion

.,Der Bereich* enthilt mindestens eine Menge Z, welche die
Nullmenge als Element enthalt und so beschaffen ist, da jedem
ihrer Elemente a ein weiteres Element der Form {a} entspricht,
oder welche mit jedem ihrer Elemente a auch die entsprechende
Menge {a} als Element enthalt.”

* Universum/Doméne [Zermelo, 1907]

w.(dewn Vx(xew—
Jz(z € wA
Vu(u € z4> u € xVu=x))))

a)eZANVa (aeZ— {a}eZ)
wa)eZANVa. (aeZ— aU{a} € 2)
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I Zermelo-Fraenkel Axiom System A[{]]

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

A9: Replacement

,,Ist M eine Menge und wird jedes Element von M durch ein ,,Ding
des Bereiches” [...] ersetzt, so geht M wiederum in eine Menge
iiber.” [Fraenkel, 1921]

VX, y,z. (Y(x,y) ANY(x,2) = y = z) =
JuVwy. (w1 € u > Iwn(wa € a A P(wa, wy)))
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I Zermelo-Fraenkel Axiom System

A9: Replacement

,,Ist M eine Menge und wird jedes Element von M durch ein ,,Ding
des Bereiches” [...] ersetzt, so geht M wiederum in eine Menge
iiber.” [Fraenkel, 1921]

VX, y,z. (Y(x,y) ANY(x,2) = y = z) =
JuVwy. (w1 € u > Iwn(wa € a A P(wa, wy)))

(Vx. x € u = Jy.p(x,y)) A
(VX,y,Z. (w(va) A 1/J(Xa Z) -y = Z)) -
vVy.(y € v Ix. x € uANY(x,y))
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I Zermelo-Fraenkel Axiom System

A9: Replacement

,,Ist M eine Menge und wird jedes Element von M durch ein ,,Ding
des Bereiches” [...] ersetzt, so geht M wiederum in eine Menge
iiber.” [Fraenkel, 1921]

VX, y,z. (Y(x,y) ANY(x,2) = y = z) =
JuVwy. (w1 € u > Iwn(wa € a A P(wa, wy)))

(Vx. x € u = Jy.p(x,y)) A
(vx,y,z. (V0 y) Ap(x,2) =y = 2)) —
vVy.(y € v Ix. x € uANY(x,y))
w ¢ is function with dom u — 9(u) is a set
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I Zermelo-Fraenkel Axiom System AT
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A10 : Axiom of Choice

,Ist T eine Menge, deren samtliche Elemente yon 0 verschiedene
Mengen und untereinander elementenfremd sind, so enthalt ihre
Yereinigung |J T mindestens eine Untermenge S1, welche mit
jedem Elemente yon T ein und nur ein Element gemein hat.”
[Zermelo, 1907]

Vx(x€z—=x#0DA
Vy(yez—=xNy=0Vx=y))
N
JuVx3v(x € z > unx = {v})

Beckert, Ulbrich — Formale Systeme |l: Theorie 29/65



I Zermelo-Fraenkel Axiom System AT
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A10 : Axiom of Choice

,Ist T eine Menge, deren samtliche Elemente yon 0 verschiedene
Mengen und untereinander elementenfremd sind, so enthalt ihre
Yereinigung |J T mindestens eine Untermenge S1, welche mit
jedem Elemente yon T ein und nur ein Element gemein hat.”
[Zermelo, 1907]

Vx(x€z—=x#0DA
Vy(yez—=xNy=0Vx=y))
N
JuVx3v(x € z > unx = {v})

a “additional” axiom
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I Zermelo-Fraenkel Axiom System AT
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A10 : Axiom of Choice

,Ist T eine Menge, deren samtliche Elemente yon 0 verschiedene
Mengen und untereinander elementenfremd sind, so enthalt ihre
Yereinigung |J T mindestens eine Untermenge S1, welche mit
jedem Elemente yon T ein und nur ein Element gemein hat.”
[Zermelo, 1907]

Vx(x€z—=x#0DA
Vy(yez—=xNy=0Vx=y))
N
JuVx3v(x € z > unx = {v})

a “additional” axiom
a ZF versus ZFC
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I Conservative Extensions AT
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Ad4: Jy Vx.=(x € y)
new symbol (} “Z= Vx. —x € ()
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I Conservative Extensions AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Ad4: Jy Vx.=(x € y)
new symbol (} “Z= Vx. —x € ()

A5:Vz1, 20y ¥x.(x Ey &> x =21V x = 23)
new symbol {-,-} “T= Yz, 20, x.(x € {z1, 22} <3 x = 21 V x = 27)
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Conservative Extensions AT
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Ad4: Jy Vx.=(x € y)
new symbol ) ““=57 ¥x. —x € ()

A5:Vz1, 20y ¥x.(x Ey &> x =21V x = 23)
new symbol {-,-} “T= Yz, 20, x.(x € {z1, 22} <3 x = 21 V x = 27)

Ab: Powerset
new symbol P(-) “C=5Vx, z.(z € P(x) « Yu.(u € z — u € X))
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I Class Terms AT
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We will use for any formula ¢(x) the syntactical construct

{x|o(x)},

called a class term.

Intuitively {x | ¢(x)} is the collection of all sets a satisfying the
formula ¢(a).
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We will use for any formula ¢(x) the syntactical construct

{x|o(x)},

called a class term.

Intuitively {x | ¢(x)} is the collection of all sets a satisfying the
formula ¢(a).

Elimination of class terms:
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We will use for any formula ¢(x) the syntactical construct

{x]o(x)},

called a class term.

Intuitively {x | ¢(x)} is the collection of all sets a satisfying the
formula ¢(a).

Elimination of class terms:

y € {x | ¢(x)} is replaced by  ¢(y)
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We will use for any formula ¢(x) the syntactical construct

{x]o(x)},

called a class term.

Intuitively {x | ¢(x)} is the collection of all sets a satisfying the
formula ¢(a).

Elimination of class terms:

y € {x | ¢(x)} is replaced by  ¢(y)
{x]o(x)} ey is replaced by Ju(u e y A
Vz(z € u < ¢(2)))
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I Class Terms AT
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We will use for any formula ¢(x) the syntactical construct

{x]o(x)},

called a class term.

Intuitively {x | ¢(x)} is the collection of all sets a satisfying the
formula ¢(a).

Elimination of class terms:

y € {x] 6(x)} s replaced by 6(y)
{x]o(x)} ey is replaced by Ju(u e y A

Vz(z € u > ¢(2)))
{x[o(x)} €{y [¢(y)} is replaced by  Ju(t(u) A

Vz(z € u > ¢(2)))
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I Class Terms as Sets AT
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A class term {x | ¢(x)} does not necessarily denote a set.
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A class term {x | ¢(x)} does not necessarily denote a set.

Counterexample
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I Class Terms as Sets AT
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A class term {x | ¢(x)} does not necessarily denote a set.

Counterexample

Assume {x | x & x} is a set c, then we obtain
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I Class Terms as Sets

A class term {x | ¢(x)} does not necessarily denote a set.

Counterexample

Assume {x | x & x} is a set c, then we obtain

cececéc
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I Class Terms as Subsets AT
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A class term {x € A | ¢(x)} does denote a set.
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A class term {x € A | ¢(x)} does denote a set.

Reason
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A class term {x € A | ¢(x)} does denote a set.

Reason

A3: Vx.3yVz.(z € y <3 z € x \ ¢(z)) for all formulas ¢
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I Class Terms as Subsets AT
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A class term {x € A | ¢(x)} does denote a set.

Reason

A3: Vx.3yVz.(z € y <3 z € x \ ¢(z)) for all formulas ¢

Conservative extension: Vx, z.(z € Fy(x) <> z € x A ¢(2))
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I Class Terms as Subsets

A class term {x € A | ¢(x)} does denote a set.

Reason

A3: Vx.3yVz.(z € y <3 z € x \ ¢(z)) for all formulas ¢

Conservative extension: Vx, z.(z € Fy(x) <> z € x A ¢(2))

Different notation: Vx,z.(z € {t € x | ¢(x)} <> z € x N ¢(2))
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I Some Abbreviations for Sets AT
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0 = {x|x#x}
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0 = {x|x#x}
{a,b} = {x|x=avVvx=b}
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0 = {x|x#x}
{a,b} = {x|x=avVvx=b}
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I Some Abbreviations for Sets AT

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

0 = {x|x#x}

{a,b} = {x|x=avVvx=b}
{af = {a3}

(a,0) = {{a},{a,b}}
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I Some Abbreviations for Sets AT
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0 = {x|x#x}

{a,b} = {x|x=avVvx=b}
{af = {a3}

(a,0) = {{a},{a,b}}

(a, b) is called the ordered pair of a and b.
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I Existence Claims AT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

The following formulas follow from the ZF axioms

a Ix(x =0) A4 empty set axiom
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I Existence Claims AT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

The following formulas follow from the ZF axioms

a Ix(x =0) A4 empty set axiom

w Vx,y3dz(z = {x,y}) A5 pair axiom
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I Existence Claims AT
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The following formulas follow from the ZF axioms

e Ix(x =0) A4 empty set axiom
w Vx,y3dz(z = {x,y}) A5 pair axiom
w Vx3Jz(z = {x}) Special case of pair axiom
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I Existence Claims

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

The following formulas follow from the ZF axioms

e Ix(x =0)

w Vx,y3dz(z = {x,y})
w Vx3Jz(z = {x})

e Vx,y3z(z = (x,y))

Beckert, Ulbrich — Formale Systeme |l: Theorie

A4 empty set axiom
Ab pair axiom
Special case of pair axiom

Special case of pair axiom
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I Lemma on Unions and Intersections A\‘("'
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The following theorems are derivable in ZF:
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The following theorems are derivable in ZF:

e JyVz(zey<>z€caNzeb) y=anhb
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The following theorems are derivable in ZF:
e JyVz(zey<>z€caNzeb) y=anhb

e dyVz(zey<z€aVzeb) y=aUb
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I Lemma on Unions and Intersections ﬂ("‘
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The following theorems are derivable in ZF:
e JyVz(zey<>z€caNzeb) y=anhb
e dyVz(zey<z€aVzeb) y=aUb

a If Ais a non-empty class term, then there is a set ¢ satisfying
Vz(z € c &> Vu(u € A— z € u)) c=NA

Beckert, Ulbrich — Formale Systeme |l: Theorie 36/65



I Lemma on Unions and Intersections ﬂ("‘
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The following theorems are derivable in ZF:

yWVz(zey«rzcaNzeb) y=anhb

yWVz(zey+rz€aVzeb) y=aUb

a If Ais a non-empty class term, then there is a set ¢ satisfying
Vz(z € c &> Vu(u € A— z € u)) c=NA

yWz(zey < Ju(ueanzeu) y=Ua
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Lemma on Unions and Intersections ﬂ("‘
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The following theorems are derivable in ZF:

e JyVz(zey<>z€caNzeb) y=anhb

yWVz(zey+rz€aVzeb) y=aUb

a If Ais a non-empty class term, then there is a set ¢ satisfying

Vz(z € c &> Vu(u € A— z € u)) c=NA
w dyWz(zey < Ju(ucanzeu) y=Ua
e dyVz(zeyz€aNzgb) y=a\b
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I Proof of Existence of Intersections ﬂ("‘
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Goal dyVz(zey <+ zcaNzeb)
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I Proof of Existence of Intersections ﬂ("‘

Goal AyVz(z ey <»z€aNz € b)
Start with the subset axiom A3

AyVz(z € y 3 z € x A\ §(2)).
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I Proof of Existence of Intersections

Goal AyVz(z ey <»z€aNz € b)
Start with the subset axiom A3

AyVz(z € y 3 z € x A\ §(2)).

Replace
X by a
¢(z) by zeb
yields
dyVz(zey«<rz€aNzeb)
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I Proof of Existence of Intersections

Goal AyVz(z ey <»z€aNz € b)
Start with the subset axiom A3

AyVz(z € y 3 z € x A\ §(2)).

Replace
X by a
¢(z) by zeb
yields
dyVz(zey«<rz€aNzeb)

as required
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I Proof of Existence of Intersections

Goal AyVz(z ey <»z€aNz € b)
Start with the subset axiom A3

AyVz(z € y 3 z € x A\ §(2)).

Replace
X by a
¢(z) by zeb
yields
dyVz(zey«<rz€aNzeb)

as required

anb={zea|zeb}

Beckert, Ulbrich — Formale Systeme |l: Theorie
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I Proof of Existence of Unions AT
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Let a, b be sets.
We seek ¢ with Vz(z € c <+ (z € aV z € b))
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I Proof of Existence of Unions AT
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Let a, b be sets.
We seek ¢ with Vz(z € c <+ (z € aV z € b))

The pair axioms, A5, JyVx(x €y <3 x =21 V x = 2)

guarantees the existence of the set d = {a, b}
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I Proof of Existence of Unions AT
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Let a, b be sets.
We seek ¢ with Vz(z € c <+ (z € aV z € b))

The pair axioms, A5, JyVx(x €y <3 x =21 V x = 2)
guarantees the existence of the set d = {a, b}
The sum axiom, A7, 3yVz(z € y <> Ju(z € u A u € x))

yields the existence of a set ¢ satisfying

Vz(z € c > Ju(z € u A u € d))

Beckert, Ulbrich — Formale Systeme |l: Theorie 38/65



I Proof of Existence of Unions AT

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

Let a, b be sets.
We seek ¢ with Vz(z € c <+ (z € aV z € b))

The pair axioms, A5, JyVx(x €y <3 x =21 V x = 2)
guarantees the existence of the set d = {a, b}
The sum axiom, A7, 3yVz(z € y <> Ju(z € u A u € x))

yields the existence of a set ¢ satisfying
Vz(z € c > Ju(z € u A u € d))

Substituting d = {a, b} yields the claim.
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I Ordered Pairs AT
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The following formula can be proved in ZF:

VX17X27)/17Y2( <X1,X2>:<y]_,y2><—>X]_:y1/\X2:y2 )
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I Ordered Pairs AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

The following formula can be proved in ZF:
VX17X27)/17Y2( <X1,X2>:<y]_,y2><—>X]_:y1/\X2:y2 )

Proof
<ala 32> = <b17 b2>
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The following formula can be proved in ZF:
VX17X27)/17Y2( <X1,X2>:<y]_,y2><—>X]_:y1/\X2:y2 )

Proof
(a1, @) = (b1, b)) = [ a1,a2) = (((b1, b2)
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The following formula can be proved in ZF:
VX17X27)/17Y2( <X1,X2>:<y]_,y2><—>X]_:y1/\X2:y2 )

Proof
(a1, @) = (b1, b)) = ([ a1,a2) = (((b1, b2)
= NN{{a}, {a1, 22} = NN{{b1}, {b1, b2 }}
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I Ordered Pairs AT
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The following formula can be proved in ZF:
VX17X27)/17Y2( <X1,X2>:<y]_,y2><—>X]_:y1/\X2:y2 )

Proof

(a1,a2) = (b1,bo) = (a1, a2) = {b1, b2)
= Rﬂ{{al}a {ar, a2} = N {{b1}, {b1, b2}}
=

({a1} N{a1; a2}) = N({br} N {b1, ba})
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I Ordered Pairs AT
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The following formula can be proved in ZF:
VX17X27)/17Y2( <X1,X2>:<y]_,y2><—>X]_:y1/\X2:y2 )

Proof

(a1, a2) = (b1, by) NN{a1, a2) = (b1, b2)
NMN{{a1},{a1,a2}} = NN{{b}, {b1, ba}}
N({ai} N{a1, a2}) = N({b1} N {b1, bo})

(Wai}) = N{b1}

=
=
=
=

Beckert, Ulbrich — Formale Systeme |l: Theorie 39/65



I Ordered Pairs

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

The following formula can be proved in ZF:

VX17X27)/17Y2( <X1,X2>:<y]_,y2><—>X]_:y1/\X2:y2 )

Proof
<ala 32> = <b17 b2>

P4 ey
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(a1, a2) = (b1, b2)

NN{{a1}, {a1, 23} = N {1}, {b1, b2} }
N({ar} N {ar, a2}) = N({br} N {b1, ba})
Ma1}) = MN{b1}

a) = l)l
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I Ordered Pairs AT
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The following formula can be proved in ZF:
VX17X27)/17Y2( <X1,X2>:<y]_,y2><—>X]_:y1/\X2:y2 )

Proof

(a1, a2) = (b1, by) NN{a1, a2) = (b1, b2)
NMN{{a1},{a1,a2}} = NN{{b}, {b1, ba}}
N({ai} N{a1, a2}) = N({b1} N {b1, bo})
(Ma1}) = N{b}

alzbl

P4 ey

Case a1 = a»
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I Ordered Pairs AT
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The following formula can be proved in ZF:

VX17X27)/17Y2( <X1,X2>:<y]_,y2><—>X]_:y1/\X2:y2 )

Proof
(a1, @) = (b1, b2) = (a1, a2) = (b1, b2)
= NN{{ar}{ar, a1} = NN{{br}, {b1, b2}}
= N({ar} Nn{a1, a2}) = N({br} N {b1, b2})
= (Mar}) =N{b1}
= a1 = b1
Case a1 = a» Note a1 = a» & b1 = by
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The following formula can be proved in ZF:

VX17X27)/17Y2( <X1,X2>:<y]_,y2><—>X]_:y1/\X2:y2 )

Proof
(a1, @) = (b1, b2) = (a1, a2) = (b1, b2)
= NN{{ar}{ar, a1} = NN{{br}, {b1, b2}}
= N({ar} Nn{a1, a2}) = N({br} N {b1, b2})
= (Mar}) =N{b1}
= a1 = b1
Case a1 = a» Note a1 = a» & b1 = by

Case a; # ap
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I Ordered Pairs AT
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The following formula can be proved in ZF:

VX17X27)/17Y2( <X1,X2>:<y]_,y2><—>X]_:y1/\X2:y2 )

Proof

(a1,a2) = (b1, b2) = [1(Wa1,a2) = (((b1, b2)
= NN{{ar}{ar, a1} = NN{{br}, {b1, b2}}
= N({ar} Nn{a1, a2}) = N({br} N {b1, b2})
= (Ha}) =N{bs}
= a; = b1

Case a1 = a» Note a1 = a» & b1 = by

Case a; # ap

<31, 32> = <b1, b2> =
UU(a1, a2) \ (a1, a2)) = U(U(b1, b2) \ (b1, b2)
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The following formula can be proved in ZF:

VX17X27)/17Y2( <X1,X2>:<y]_,y2><—>X]_:y1/\X2:y2 )

Proof

(a1, @) = (b1, b2) = (a1, a2) = (b1, b2)
= NN{{ar}{ar, a1} = NN{{br}, {b1, b2}}
= N({ar} Nn{a1, a2}) = N({br} N {b1, b2})
= (Mar}) =N{b1}
= a1 = b1

Case a1 = a» Note a1 = a» & b1 = by

Case a; # ap

<31, 32> = <b1, b2> =
UU(a1, a2) \ (a1, a2)) = U(U(b1, b2) \ (b1, b2)
= U({a1, a2} \ {a1}) = U({ b1, b2} \ {b1})
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The following formula can be proved in ZF:

VX17X27)/17Y2( <X1,X2>:<y]_,y2><—>X]_:y1/\X2:y2 )

Proof

(a1, @) = (b1, b2) = (a1, a2) = (b1, b2)
= NN{{ar}{ar, a1} = NN{{br}, {b1, b2}}
= N({ar} Nn{a1, a2}) = N({br} N {b1, b2})
= (Mar}) =N{b1}
= a1 = b1

Case a1 = a» Note a1 = a» & b1 = by

Case a; # ap

<31, 32> = <b1, b2> =
UU(a1, a2) \ (a1, a2)) = U(U(b1, b2) \ (b1, b2)
= U({a1, a2} \ {a1}) = U({ b1, b2} \ {b1})
= U{az} = U{b2}
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The following formula can be proved in ZF:

VX17X27)/17Y2( <X1,X2>:<y]_,y2><—>X]_:y1/\X2:y2 )

Proof

(a1, @) = (b1, b2) = (a1, a2) = (b1, b2)
= NN{{ar}{ar, a1} = NN{{br}, {b1, b2}}
= N({ar} Nn{a1, a2}) = N({br} N {b1, b2})
= (Mar}) =N{b1}
= a1 = b1

Case a1 = a» Note a1 = a» & b1 = by

Case a; # ap

<31, 32> = <b1, b2> =
UU(a1, a2) \ (a1, a2)) = U(U(b1, b2) \ (b1, b2)
= U({a1, a2} \ {a1}) = U({ b1, b2} \ {b1})
= U{az} = U{b2}

= a=b
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I Relations and Functions AT
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m A relation r is a set of ordered pairs, i.e.

rel(r) = Vx(x € r — Ixy, xo(x = (x1, x2)))
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I Relations and Functions AT
m A relation r is a set of ordered pairs, i.e.
rel(r) = Vx(x € r — Ix1, xe(x = (x1, x2)))
a The relation r is said to be a relation on the set s if

rel(r,s) = rel(r) AVxi, xo({(x1,x2) Er — x1 ESAxp €5)
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I Relations and Functions AT
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m A relation r is a set of ordered pairs, i.e.
rel(r) = Vx(x € r — Ix1, xe(x = (x1, x2)))
m The relation r is said to be a relation on the set s if
rel(r,s) = rel(r) ANVxi, xo((x1,x2) € r = x1 €S AXx2 €5)
a A (weak) function is a one-valued relation, i.e.
func(r) = rel(r)A
VX, y1, y2((X, y1) € r A (X, y2) € 1 = y1 = y2)
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m A relation r is a set of ordered pairs, i.e.
rel(r) = Vx(x € r — Ix1, xe(x = (x1, x2)))
m The relation r is said to be a relation on the set s if
rel(r,s) = rel(r) ANVxi, xo((x1,x2) € r = x1 €S AXx2 €5)
a A (weak) function is a one-valued relation, i.e.
func(r) = rel(r)A

Vx, y1, Y2 (X, y1) € rA (X, y2) € r = y1 = y2)
a A function f is said to be a function from a set a to a set b if

func(f,a, b) = func(f) AVx1,x({x1,x) € f = x1 €EaAxy €
b)
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I Existence Proofs AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

From the ZF axioms we can prove for any sets a, b the existence
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m of the set of all relations on a

a of the set of all functions from a to b
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From the ZF axioms we can prove for any sets a, b the existence
a of the set of all relations on a
a of the set of all functions from a to b

mie.
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From the ZF axioms we can prove for any sets a, b the existence
a of the set of all relations on a
a of the set of all functions from a to b
mie.

w Vx3JyVz(z € y > rel(z,x))
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I Existence Proofs AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

From the ZF axioms we can prove for any sets a, b the existence
m of the set of all relations on a
a of the set of all functions from a to b
mie
w Vx3JyVz(z € y > rel(z,x))
® Vu,wiyVz(z € y <> func(z, u, w))
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I The Axiom of Choice AT

a Is independent from the other axioms
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a Is independent from the other axioms

m not universally accepted
(e.g., provides a handle on objects of which only existence is known)
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m not universally accepted
(e.g., provides a handle on objects of which only existence is known)
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m not universally accepted
(e.g., provides a handle on objects of which only existence is known)

a Equivalent modulo ZF to
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a Is independent from the other axioms

m not universally accepted
(e.g., provides a handle on objects of which only existence is known)

a Equivalent modulo ZF to

u Every vector space has a basis.
a Every set can be well-ordered.
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a Is independent from the other axioms

m not universally accepted
(e.g., provides a handle on objects of which only existence is known)

a Equivalent modulo ZF to
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m not universally accepted
(e.g., provides a handle on objects of which only existence is known)

a Equivalent modulo ZF to

u Every vector space has a basis.
Every set can be well-ordered.
Every surjective function has a right inverse.
Every connected graph has a spanning tree.
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The Axiom of Choice A“(IT

a Is independent from the other axioms

m not universally accepted
(e.g., provides a handle on objects of which only existence is known)

a Equivalent modulo ZF to

u Every vector space has a basis.

Every set can be well-ordered.

Every surjective function has a right inverse.
Every connected graph has a spanning tree.
Zorn's lemma
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The Axiom of Choice A“(IT

a Is independent from the other axioms

m not universally accepted
(e.g., provides a handle on objects of which only existence is known)

a Equivalent modulo ZF to

u Every vector space has a basis.

Every set can be well-ordered.

Every surjective function has a right inverse.
Every connected graph has a spanning tree.
Zorn's lemma
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Towards Macro Structures
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I Natural Numbers N AT
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Define for any set a its successor set a™:

at =auU{a}
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Define for any set a its successor set a™:
at =auU{a}
We want to define the set of natural numbers N as

{0,00,07F,.. .}
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I Natural Numbers N

Define for any set a its successor set a™:
at =auU{a}
We want to define the set of natural numbers N as

{0,00,07F,.. .}
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Natural Numbers N AT
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Define for any set a its successor set a™:
at =auU{a}
We want to define the set of natural numbers N as

{0,00,07F,.. .}

+ +
I
s

N = O
Il
S

0,{03}
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Natural Numbers N AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Define for any set a its successor set a™:
at =auU{a}

We want to define the set of natural numbers N as

{0,007, ..}
0=10
1=0%= {0}
3=2"={0,{0},{0,{0}}}
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I Formal Definition of N AT
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Ded(a) =0 € aAVx(x € a— xT € a)
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I Formal Definition of N AT
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Ded(a) =0 € aAVx(x € a— xT € a)

a is called a Dedekind set or inductive if Ded(a) is true.
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I Formal Definition of N

Ded(a) =0 € aAVx(x € a— xT € a)

a is called a Dedekind set or inductive if Ded(a) is true.

N =(){a| Ded(a)}
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I Peano’s Axioms AT
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@ 0cN.
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I Peano’s Axioms

@ 0eN.
@ If n € N then nt € N.

Beckert, Ulbrich — Formale Systeme |l: Theorie 46/65



I Peano’s Axioms AT
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@ 0eN.
@ If ne€ N then nt € N.
@ Vn(ne N — nt #£0).
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@0eN.

@ If n€ N then nt € N.

@ Vn(ne N — nt #0).

@ Vnm(neNAmeNAnt =mT - n=m).
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I Peano’s Axioms AT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

@0eN.

@ If n€ N then nt € N.

@ Vn(ne N — nt #0).

@ Vnm(neNAmeNAnt =mT - n=m).

@ Vx(0exAVy(y ex =yt € x) > NCx).
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I Proof of Axiom 4

Vnom(ne NAmeNAnt =mt = n=m).
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I Proof of Axiom 4 AT
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Vnom(ne NAmeNAnt =mt = n=m).

By Definition nt = m™ is equivalent to nU {n} = mU {m}.
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I Proof of Axiom 4 AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Vnom(ne NAmeNAnt =mt = n=m).

By Definition nt = m™ is equivalent to nU {n} = mU {m}.
Thus we must have

@ menuU{n} ie.n=mormen.
@ nemU{m},ie.n=mornéem.

The foundation axiom, A2,

Jy(y € x) > y(y € x AVz=(z € x Nz € y)),

instantiated for x = {n, m} yields

Jy(y € {n,m} ANVz(z € {n,m} — z & y)).
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I Proof of Axiom 4 AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Vnom(ne NAmeNAnt =mt = n=m).

By Definition nt = m™ is equivalent to nU {n} = mU {m}.
Thus we must have

@ menuU{n} ie.n=mormen.
@ nemU{m},ie.n=mornéem.

The foundation axiom, A2,
Jy(y € x) > y(y € x AVz=(z € x Nz € y)),
instantiated for x = {n, m} yields
Jy(y € {n,m} ANVz(z € {n,m} — z & y)).

Thus n ¢ mor m¢ n.
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I Set Theoretic Properties of N AT
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For all n € N with n #0
0en
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Show by induction axiom x = N for
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For all n € N with n #0
0en

Show by induction axiom x = N for

x={neN|0en}u{0}

Induction basis: 0 € x obvious
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For all n € N with n #0
0en

Show by induction axiom x = N for

x={neN|0en}u{0}

Induction basis: 0 € x obvious
Induction step: n € x — nT € x
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I Set Theoretic Properties of N AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

For all n € N with n #0
0en

Show by induction axiom x = N for

x={neN|0en}u{0}

Induction basis: 0 € x obvious

Induction step: n € x — nT € x

Case n#0

This implies 0 € n.

From n C n* = nU {n} we get 0 € n™ and thus n* € x.
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I Set Theoretic Properties of N AT
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For all n € N with n #0
0en

Show by induction axiom x = N for

x={neN|0en}u{0}

Induction basis: 0 € x obvious

Induction step: n € x — nT € x

Case n#£0

This implies 0 € n.

From n C n* = nU {n} we get 0 € n™ and thus n* € x.
Case n=0

By definition n* = {0}.

Thus obviously 0 € n* and also n™ € x.
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I Transitive Sets AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

A set a is called transitive if every element of a is also a subset of a.

In symbols
trans(a) <» Vx(x € a — x C a)
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I Transitive Sets AT
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A set a is called transitive if every element of a is also a subset of a.

In symbols
trans(a) <» Vx(x € a — x C a)

Lemma

@ n is transitive for all n € N .
@ N is transitive.
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I n is transitive for all n € N

By induction.
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I n is transitive for all n €¢ N AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

By induction.

The empty set 0 is transitive by definition.
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I n is transitive for all n €¢ N AT

By induction.
The empty set 0 is transitive by definition.

Assume n is transitive
and consider x € n™ = nU {n} with the aim to show x C n™.
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I n is transitive for all n €¢ N A\‘("'

By induction.
The empty set 0 is transitive by definition.

Assume n is transitive
and consider x € n™ = nU {n} with the aim to show x C n™.

If x € n then by hypothesis x C n C n™.
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I n is transitive for all n €¢ N A\‘("'

By induction.
The empty set 0 is transitive by definition.

Assume n is transitive
and consider x € n™ = nU {n} with the aim to show x C n™.

If x € n then by hypothesis x C n C n™.

If x = n, then by definition x C nT.
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I N is transitive

Prove Vn(n € N — n C N) by induction.
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I N is transitive

Prove Vn(n € N — n C N) by induction.

For n = 0 this is clear.
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I N is transitive AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Prove Vn(n € N — n C N) by induction.
For n = 0 this is clear.
If n € N and by induction hypothesis n C N

then also n* = nu {n} CN.
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I The order relation on N AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Claim

The &-relation is the smallest transitive relation r on N with
(n,n™) € rforall n.ie.

Vn,m(n € m— (n,m) € r)
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Claim

The &-relation is the smallest transitive relation r on N with
(n,n™) € rforall n.ie.

Vn,m(n € m— (n,m) € r)

Induction on m.
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Claim

The &-relation is the smallest transitive relation r on N with
(n,n™) € rforall n.ie.

Vn,m(n € m— (n,m) € r)

Induction on m.

For m = 0 the statement is vacuously true.
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I The order relation on N AT
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Claim
The &-relation is the smallest transitive relation r on N with
(n,n™) € rforall n.ie.

Vn,m(n € m— (n,m) € r)

Induction on m.
For m = 0 the statement is vacuously true.

Assume ¥Yn(n € m — (n,m) € r)
Prove Vn(n € m™ — (n,m") € r).
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Claim
The &-relation is the smallest transitive relation r on N with
(n,n™) € rforall n.ie.

Vn,m(n € m— (n,m) € r)

Induction on m.
For m = 0 the statement is vacuously true.

Assume ¥Yn(n € m — (n,m) € r)
Prove Vn(n € m™ — (n,m") € r).

Case n € m Hypothesis (n,m) € r.
From (m, m™) and transitivity of r we get (n,m™) € r.
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I The order relation on N AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Claim
The &-relation is the smallest transitive relation r on N with
(n,n™) € rforall n.ie.

Vn,m(n € m— (n,m) € r)

Induction on m.
For m = 0 the statement is vacuously true.

Assume ¥Yn(n € m — (n,m) € r)

Prove Vn(n € m™ — (n,m") € r).

Case n € m Hypothesis (n,m) € r.

From (m, m™) and transitivity of r we get (n,m™) € r.
Case n = m We immediately have (m, m*) € r.
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I Set Theoretic Properties of N (I1) AT

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

The <-relation on N coincides with the &-relation.
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I Set Theoretic Properties of N (I1) A\K"'

The <-relation on N coincides with the &-relation.
Any natural number n is the set of all its predecessors, i.e.

n={m| m< n}.
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I The Recursion Theorem AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Let F be a function satisfying rng(F) C dom(F) and
let u be an element in dom(F).
Then there exists exactly one function f satisfying

@ dom(f) =N,
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Let F be a function satisfying rng(F) C dom(F) and
let u be an element in dom(F).
Then there exists exactly one function f satisfying

@ dom(f) =N,
@ f(0)=u,
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Let F be a function satisfying rng(F) C dom(F) and
let u be an element in dom(F).
Then there exists exactly one function f satisfying

@ dom(f) =N,
@ 7(0) =u,
@ f(n") = F(f(n)) forall ne N
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Let F be a function satisfying rng(F) C dom(F) and
let u be an element in dom(F).
Then there exists exactly one function f satisfying

@ dom(f) =N,
@ 7(0) =u,
@ f(n") = F(f(n)) forall ne N
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I The Recursion Theorem

Let F be a function satisfying rng(F) C dom(F) and
let u be an element in dom(F).
Then there exists exactly one function f satisfying

@ dom(f) =N,
@ f(0)=u,
@ f(n") = F(f(n)) forall ne N

The assumptions rng(F) € dom(F) and u € dom(F) are needed to
make sure that all function applications of F are defined.
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I Uniqueness

Consider two functions f and g both satisfying 1-3 from the
theorem.
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Consider two functions f and g both satisfying 1-3 from the
theorem.

Set
x={y e N|f(y)=g(y)}
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I Uniqueness

Consider two functions f and g both satisfying 1-3 from the
theorem.

Set
x={y e N|f(y)=g(y)}

Since 1(0) = g(0) = u we get 0 € x
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Uniqueness T

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Consider two functions f and g both satisfying 1-3 from the
theorem.

Set
x={y e N|f(y)=g(y)}

Since 1(0) = g(0) = u we get 0 € x

n € x implies n™ € x
since f(n™) = F(f(n)) = F(g(n)) = g(n™)
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Uniqueness A\KIT

Consider two functions f and g both satisfying 1-3 from the
theorem.

Set
x={y eN|f(y) =g}
Since 1(0) = g(0) = u we get 0 € x

n € x implies n™ € x
since f(n™) = F(f(n)) = F(g(n)) = g(n™)

Thus by the last Peano axiom induction axiom, we get
x=N

ie. f=g.
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I Idea of Existence Proof AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Idea

H = {h| func(h) A h(0)=uA3n(n+#0Adom(h)=n
AYm(mt € n— h(m™) = F(h(m))))}
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I Idea of Existence Proof AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Idea

H = {h| func(h) A h(0)=uA3n(n+#0Adom(h)=n
AYm(mt € n— h(m™) = F(h(m))))}

and

f=JH
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| Addition T
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for every m € N there is a unique function add,, such that

addm(0) = m
addm(n™) = (addm(n))*
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| Addition T

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

for every m € N there is a unique function add,, such that

addm(0) = m
addm(n™) = (addm(n))*

Apply the recursion theorem with u = m and F(x) = x™
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I Multiplication T
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for every m € N there is a unique function mult,, such that

multy,(0) 0
mult,(nt) = addy,(multy,(n))

Beckert, Ulbrich — Formale Systeme |l: Theorie 58/65



I Multiplication T

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

for every m € N there is a unique function mult,, such that

mult,(0) = 0
mult,(nt) = addy,(multy,(n))

Apply the recursion theorem with u = 0 and Fp,(x) = addm(x).
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I The Integers A“(IT

The idea is to reconstruct an integer
z
as a pair (m, n) of natural numbers with

Z=m-—n

Beckert, Ulbrich — Formale Systeme |l: Theorie 59/65



The Integers A\KIT

The idea is to reconstruct an integer
z
as a pair (m, n) of natural numbers with
z=m-—n
Since (5,7) and (8,10) would both represent the same number, we

have to use equivalence classes of ordered pairs instead of pairs
themselves.
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I The Ordinal Numbers

An ordinal x is a set such that (x, €) is a well-ordered set.
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I The Ordinal Numbers AT
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An ordinal x is a set such that (x, €) is a well-ordered set.

A set a is called an ordinal if

(equivalently: a transitive set of transitive sets)
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An ordinal x is a set such that (x, €) is a well-ordered set.

A set a is called an ordinal if

@ it is transitive, and

(equivalently: a transitive set of transitive sets)
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I The Ordinal Numbers AT
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An ordinal x is a set such that (x, €) is a well-ordered set.

A set a is called an ordinal if

@ it is transitive, and

@ it is totally ordered by inclusion

(equivalently: a transitive set of transitive sets)
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An ordinal x is a set such that (x, €) is a well-ordered set.

A set a is called an ordinal if

@ it is transitive, and

@ it is totally ordered by inclusion

(equivalently: a transitive set of transitive sets)
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An ordinal x is a set such that (x, €) is a well-ordered set.

I The Ordinal Numbers AT

Definition
A set a is called an ordinal if
@ it is transitive, and
@ it is totally ordered by inclusion

(equivalently: a transitive set of transitive sets)

We will denote ordinals by lowercase Greek letter, o, 5, .. ..
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I Lemma 1l

Karlsruhe Institute of Technology

@ 0 is an ordinal
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I Lemma 1 AT

Karlsruhe Institute of Technology

@ 0 is an ordinal

@ If o is an ordinal the o™ is an ordinal.
Thus every natural number is an ordinal.
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I Lemma 1l A“(IT

@ 0 is an ordinal

@ If o is an ordinal the o™ is an ordinal.
Thus every natural number is an ordinal.

@ The set of all natural numbers, traditionally denoted by the
letter w, is an ordinal.
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I Lemma 1l A“(IT

@ 0 is an ordinal

@ If o is an ordinal the o™ is an ordinal.
Thus every natural number is an ordinal.

@ The set of all natural numbers, traditionally denoted by the
letter w, is an ordinal.

@ If o is an ordinal, then every element 8 € « is an ordinal.
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I Two Types of Ordinals AT
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@ An ordinal a
such that a = 81t = S U {3} for some
is called a successor ordinal.
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I Two Types of Ordinals AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

@ An ordinal a
such that a = 81t = S U {3} for some
is called a successor ordinal.

@ An ordinal «
such that for all 5 with 5 €
there is v such that 5 € v and v € «
is called a limit ordinal.
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I Representation Theorem T
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For every well-ordered set (G, <) there is a unique ordinal « such
that
(6,<) = (a¢)
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I Examples of Ordinals T

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

@00 =10""=2...,n,...
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@00tT=10"1t=2....n, ...
Q@ uw w+l, w+2, ...w+n...

Beckert, Ulbrich — Formale Systeme |l: Theorie 64/65



I Examples of Ordinals T

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

@00tT=10"1t=2....n, ...
Q@ uw w+l, w+2, ...w+n...
Q@ Upepwtn=wtw wt+w+l, ..., wtw+tn, ...

Beckert, Ulbrich — Formale Systeme |l: Theorie 64/65



I Examples of Ordinals T
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@00 =10""=2...,n,...

Q@ uw w+l, w+2, ...w+n...

Q@ Upepwtn=wtw wt+w+l, ..., wtw+tn, ...
@ Upepwtwt+n=3*w 3xw+1,...,3xw+n, ...
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@00 =10""=2...,n,...

Q@ uw w+l, w+2, ...w+n...

Q@ Upepwtn=wtw wt+w+l, ..., wtw+tn, ...
@ Upepwtwt+n=3*w 3xw+1,...,3xw+n, ...

@ Upepnrw=wrw, wxw+1, ..., wxw+n, ...
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I Examples of Ordinals T
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@00 =10""=2...,n,...

Q@ uw w+l, w+2, ...w+n...

Q@ Upepwtn=wtw wt+w+l, ..., wtw+tn, ...
@ Upepwtwt+n=3*w 3xw+1,...,3xw+n, ...
@ Upepnrw=wrw, wxw+1, ..., wxw+n, ...

@ U, ,wrwtn=w’ w+1, ..., +n, ...
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I Examples of Ordinals IT

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

@00 =10""=2...,n,...

Q@ uw w+l, w+2, ...w+n...

Q@ Upepwtn=wtw wt+w+l, ..., wtw+tn, ...
@ Upepwtwt+n=3*w 3xw+1,...,3xw+n, ...

@ Upepnrw=wrw, wxw+1, ..., wxw+n, ...
@ UnENW*w+n:w3,w3—l—1,...,w3—i—n,...
@ Un@]w”:w“’,
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I Visualisation
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I Limitations of ZFC AT
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Godel’s Second Incompleteness Theorem

Assume T is a consistent theory which contains elementary
arithmetic. Then T I/ Cons(T); the consistency of T cannot be
proved from T.

Continuuom Hypothesis independent from ZFC

There is no set whose cardinality lies strictly between that of the
integers and the reals.
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