
Formal Systems 2

P. H. Schmitt

May 2016

Contents

Contents . 1

List of Figures . 4

1 Introduction 6

1.1 Prerequisites . 7

1.2 Exercises . 9

2 Axiomatic Set Theory 10

2.1 Basics . 11

2.2 The Natural Numbers . 16

2.3 Recursion . 20

2.4 Integers . 23

2.5 Ordinals . 26

2.6 König’s Lemma (Optional) . 37

2.7 Cardinals (Optional) . 41

2.8 Ramsey Theory(Optional) . 43

2.8.1 Infinite Ramsey Theory 43

2.8.2 Finite Ramsey Theory 47

2.9 Peano Arithmetic with Finite Sets
(Optional) . 49

2.10 Comments . 68

2.11 Exercises . 68

1

3 Modal Logic 72

3.1 Syntax and Semantics . 74

3.2 Correspondence Theory . 82

3.3 The Tree-Property . 93

3.4 Second Order Logic . 97

3.5 A Tableau Calculus . 106

3.6 Description Logic . 116

3.7 Knowledge Representation in the Semantic Web 135

3.8 Translation into First-Order Logic 147

3.8.1 Decidable Fragments of First-Order Logic 149

3.9 Exercises . 151

4 Dynamic Logic 158

4.1 Motivating Example . 159

4.2 Syntax and Semantics of Regular Dynamic Logic 162

4.2.1 Boogie PL . 172

4.3 Propositional Dynamic Logic 178

4.4 Decidability of Propositional Dynamic Logic 182

4.5 Alternatives in PDL . 194

4.6 Axiomatizations of Dynamic Logic 200

4.7 Exercises . 205

5 Temporal Logics 208

5.1 Büchi Automata . 211

5.2 Linear Temporal Logic . 221

5.2.1 Expressiveness of Linear Temporal Logic 228

5.3 Bounded Model Checking (Optional) 230

5.4 Computation Tree Logic . 237

5.5 CTL Model Checking . 250

5.6 Exercises . 264

2

6 Solutions to Exercises 267

References . 305

Index . 311

3

List of Figures

2.1 Axioms of Zermelo-Fraenkel Set Theory 36

2.2 Peano Axioms for PAFin . 49

2.3 Axioms of finite set theory for PAFin 51

3.1 Example of a Kripke structure 75

3.2 Some properties of frames . 83

3.3 Visualization of the C property 85

3.4 Examples of non-characterizable frame classes 88

3.5 Modal Tableau Rules . 108

3.6 Tableau Rules for ALC . 125

3.7 XML representation of of meta-data for DC20030602 137

3.8 Axiomatic Tripels for RFDS 139

3.9 Translated Axiomatic Triples for RFDS 141

3.10 A simple RDF graph . 145

3.11 A simple RDF graph with blank nodes 146

3.12 Translation from Modal to First-order Formulas 147

4.1 The Towers of Hanoi . 159

5.1 The Büchi automaton Nafin 212

5.2 The example automaton Adbp 231

5.3 Cyclic Semantics for LTL formulas 234

4

5.4 M3 for the example automaton Adbp and F ≡ FGp 235

5.5 Mutual Exclusion (first attempt) 238

5.6 Mutual Exclusion (second attempt) 239

5.7 Transition system for AFAGp 249

5.8 Mutual Exclusion (repeated from Figure 5.6) 261

6.1 Counterexample to (2P → 2Q)→ 2(P → Q) 278

6.2 Counterexample to 2(P ∨Q)→ (2P ∨2Q) 278

6.3 A Büchi automaton accepting Kp,q 300

6.4 Transition system for AGEFp 302

5

Chapter 1

Introduction

6

1.1 Prerequisites

We assume that the reader has had some previous exposure to propositional
and first-order logic. The lecture notes [Schmitt, 2008] will certainly be good
enough. But, also any good textbook on the subject [Fitting, 1990, Monk,
1976, Huth & Ryan, 2000] will do.

Here we will occupy ourselves with some interesting yet not mainstream
results to get back into the mood. The emphasis is on providing exercises to
work on.

Meagre Vocabularies

To get a better insight into first-order logic logicians have taken a great
interest in studying the expressive power of various fragments of first-order
formulas. Well know examples are the fragments of Horn formulas, existential
or universal formulas or quantifier-free formulas. Here will will not restrict
the use of the logical operations, but put limitations on the vocabularies. It
is for example well know that it is no restricition to use only relation symbols
and forget function symbols of arity strictly greater than 0.

Definition 1 (Vocabularies)
A vocabulary Σ is called

1. a relational vocabulary if it possibly contains constant symbols, but no
function symbols of arity greater than 0.

2. a binary vocabulary if it is relational and all relations symbols in Σ are
binary.

3. a triple vocabulary if it is relational and contains exactly on relation
symbol rel and this is ternary.

We also need a way to compare different types of vocabularies with regard
to their expressiveness.

Definition 2 (Comparing Vocabularies)
Let V1, V2 be two classes of vocabularies. V2 is called as expressive as V1

if for every signature Σ1 in class V1 there is a signature Σ2 in class V2 such
that

7

1. for every Σ1-formula F1 there is a Σ2-formula F2 and for every Σ2-
structure M there is a Σ1-structure M1 such that

M1 |= F1 ⇔M |= F2

2. and for every Σ1-structure N there is a Σ2-structure M such that

M1 ' N

This definition may at first sound complicated. But, in the end it is just a
formal rendering of what you would intuitivly assume. To get some under-
standing for this definition try to do excercise 1.2.2.

Definition 2 describes the ideal situation. In most cases, in particular also
for Exercises 1.2.4 and 1.2.5, the transition from M to M1 is only possible
for structures M that are big enough.

Order Relations

Definition 3 (Order) A structure (M,R) where R is a binary relation on
M is called an order if it satisfies the following axioms

1. ∀x∀y∀z(R(x, y) ∧R(y, z)→ R(x, z)) (transitivity)

2. ∀x(¬R(x, x)) (anti-reflexivity)

Definition 4 (Linear Order) A order relation (M,R) is called a linear
order if it satisfies the following axiom

1. ∀x∀y∀z(R(x, y) ∨R(y, x) ∨ x = y) (linearity)

8

1.2 Exercises

Exercise 1.2.1
Let F be a formula in first-order logic, that is true in all infinite structures.

Then there is a natural number k such that F is even true in all structures
with k or more elements.

Exercise 1.2.2
Assume that Σ1, Σ2, F1, F2 satisfy the two statements from Definition 2 on

page 7.
Then F1 is a Σ1-tautology iff F2 is a Σ2-tautology.

Exercise 1.2.3
Assume that Σ1, Σ2, F1, F2 satisfy the two statements from Definition 2 on

page 7.
If validity of Σ1-formulas is undecidable then also validity of Σ2-formulas is
undecidable.

Exercise 1.2.4
Show that the class of triple vocabularies is as expressive as the class of

binary vocabularies.

Exercise 1.2.5
Show that the class of binary vocabularies is as expressive as the class of

unrestricted relational vocabularies.

See also Exercise 3.9.23.

9

Chapter 2

Axiomatic Set Theory

10

Many formal specification languages, among them as prime examples Z and
B, use set theoretical concepts and notations. This is an appealing choice,
because these concepts are easy to understand and accessible without mathe-
matical training. Another advantage is the fact, that there is a well developed
mathematical theory of sets. In fact, before set theory was perceived as a
foundation for specification languages it was considered as a foundation for
all of mathematics. A very intriguing idea: once you accept a few axioms of
set theory all mathematical results can be derived from them. In this chapter
we will convey a first idea of how this works.

2.1 Basics

We will use the Zermelo-Fraenkel (ZF for short) axiom system for set theory.
In our presentation we follow the textbooks [Takeuti & Zaring, 1971], [Rubin,
1967], and [R.Drake, 1974].

The full set of ZF axioms is given in Figure 2.1 on page 36.

The language of ZF set theory is the language for first-order predicate logic
with the binary relation symbol ∈ as its only non-logical symbol. In the
formulation of the axioms the equality symbol = is also used. But note,
that using axiom A1 and formula t1 = t2 may be equivalently replaced by
a formula containing only ∈. More precisely, axiom A1 states only one
implication. The reverse implication, i.e.

x = y → ∀z(z ∈ x↔ z ∈ y)

has nothing to do with set theory, it is a simple consequence of the congruence
axioms

x = y → (p(z, x)↔ p(z, y))

for any binary relation symbol p.

Any free variables in the axioms are implicitely universally quantified.

Before we go on, we need some notational conventions, otherwise our formulas
would soon be unintelligible.

We will use for any formula φ(x) the syntactical construct {x | φ(x)}, called
a class term. We intuitively think of {x | φ(x)} as the collection of all sets

11

a satisfying the formula φ(a). This is only for notational convenience. The
new terms can be eliminated as follows:

y ∈ {x | φ(x)} is replaced by φ(y)
{x | φ(x)} ∈ y is replaced by ∃u(u ∈ y∧

∀z(z ∈ u↔ φ(z)))
{x | φ(x)} ∈ {y | ψ(y)} is replaced by ∃u(ψ(u)∧

∀z(z ∈ u↔ φ(z)))

Note, that using a class term {x | φ(x)}, does by far not imply that {x | φ(x)}
is a set. For φ(x) := x 6∈ x this would immediately result in a contradiction.
Only after we can prove that ∃y(y = {x | φ(x)}) can be derived from the
axioms, can we use {x | φ(x)} as a set.

Having class terms is already very handy, but still further abbreviations are
necessary. Here is the first bunch:

Definition 5 (Abbreviations for sets)
∅ = {x | x 6= x}
{a, b} = {x | x = a ∨ x = b}
{a} = {x | x = a}
〈a, b〉 = {{a}, {a, b}} This is called the ordered pair of a and b

Note, that some of these abbreviations have already been used in the axioms
in Figure 2.1.

Let us look at some easy logical derivations from the ZF axioms.

Lemma 1 The following formulas follow from the ZF axioms

1. ∃x(x = ∅)

2. ∀x, y∃z(z = {x, y})

3. ∀x∃z(z = {x})

4. ∀x, y∃z(z = 〈x, y〉)

12

Proof: The first step in all four proofs will be to unfold the abbreviating
notation of class terms.

1. In a first step we eliminate the = symbol in ∃x(x = ∅) using the
extensionality axiom, which yields: ∃x∀u(u ∈ x ↔ u ∈ ∅). Now the
class term ∅ is replaced as explained above: ∃x∀u(u ∈ x ↔ u 6= u).
Since u 6= u is contradictory, this is equivalent to ∃x∀u(u ∈ x→ u 6= u).
Which is logically equivalent to ∃x∀u(u 6∈ x), and this is Axiom A4.

2. Eliminating = and the class term in ∀x, y∃z(z = {x, y}) yields
∀x, y∃z∀u(u ∈ z ↔ u = x∨u = y). This is, after renaming of variables,
axiom A5.

3. Special case of 2.

4. Unfolding the definition of an ordered pair, we get ∀x, y∃z(z =
{{x}, {x, y}}).
In first-order logic

∀wψ
∀~wψ[t/w]

is a valid rule, where ψ[t/w] results from ψ by replacing all free oc-
curences of the variable w by the term t and ~w are all variables in t.
Can this also be done with class terms? In general the answer is, no.
But, if we can prove for a class term ct ∀~w∃u(u = ct), then the same
replacement principle is true in ZF. Now, claim 4 follows from 2 and 3.

Lemma 2

1. If a and b are sets, then there is a set c satisfying

∀z(z ∈ c↔ z ∈ a ∧ z ∈ b)

c is called the intersection of a and b, in symbols c = a ∩ b.

2. If a and b are sets, then there is a set c satisfying

∀z(z ∈ c↔ z ∈ a ∨ z ∈ b)

c is called the union of a and b, in symbols c = a ∪ b.

13

3. If A is a non-empty class term, then there is a set c satisfying

∀z(z ∈ c↔ ∀u(u ∈ A→ z ∈ u))

c is called the intersection of A, in symbols c =
⋂
A.

4. If a is a set, then there is a set c satisfying

∀z(z ∈ c↔ ∃u(u ∈ a ∧ z ∈ u))

c is called the union of a, in symbols c =
⋃
a.

Proof: Let us for the moment be pedantic.

1. This requires the subset axiom A3

∃y∀z(z ∈ y ↔ z ∈ x ∧ φ(z)).

We replace the free variable x by a, the formula φ(z) by z ∈ b and
name the element whose existence is guaranteed by the axiom c. This
leads to

∀z(z ∈ c↔ z ∈ a ∧ z ∈ b)
as required.

2. Despite the fact that set theoretical union is such a simple concept, it
does need two axioms to guarantee its existence. From the pair axioms,
A5, we get the existence of a the set d = {a, b} and the sum axiom, A7
yields the existence of a set c satisfying

∀z(z ∈ c↔ ∃u(u ∈ d ∧ z ∈ u))

Substituting d = {a, b} yields the claim.

3. Let A = {u | ψ(u)}. Since A is assumed to be non-empty, we may pick
an arbitrary element b ∈ A, i.e. an arbitrary b such that ψ(b) is true.
Let φ(z) be the formula ∀u(ψ(u)→ z ∈ u). We will, again, use Axiom
A3

∃y∀z(z ∈ y ↔ z ∈ b ∧ φ(z)).

The element, whose existence is guaranteed is named c. This yields the
claim, when we observe the trivial equivalence

∀z∀u(ψ(u)→ z ∈ u)↔ z ∈ b ∧ ∀u(ψ(u)→ z ∈ u)

14

4. Use axiom A7.

Likewise it is easy to prove

Lemma 3
∀x1, x2, y1, y2(〈x1, x2〉 = 〈y1, y2〉 ↔ x1 = y1 ∧ x2 = y2)

Definition 6

1. A relation r is a set of ordered pairs, i.e.
rel(r) ≡ ∀x(x ∈ r → ∃x1, x2(x = 〈x1, x2〉))

2. The relation r is said to be a relation on the set s if
rel(r, s) ≡ rel(r) ∧ ∀x1, x2(〈x1, x2〉 ∈ r → x1 ∈ s ∧ x2 ∈ s)

3. A function is a one-valued relation, i.e.
func(r) ≡ rel(r) ∧ ∀x, y1, y2(〈x, y1〉 ∈ r ∧ 〈x, y2〉 ∈ r → y1 = y2)

4. A function f is said to be a function from a set a to a set b if
func(f, a, b) ≡ func(f) ∧ ∀x1, x2(〈x1, x2〉 ∈ f → x1 ∈ a ∧ x2 ∈ b)

Lemma 4
From the ZF axioms we can prove for any sets a, b the existence of the set
of all relations on a and of all functions from a to b, i.e.

1. ∀x∃y∀z(z ∈ y ↔ rel(z, x))

2. ∀u,w∃y∀z(z ∈ y ↔ func(z, u, w))

Proof: For this proof we need (for the first time in this text) the power
set axiom ∃y∀z(z ∈ y ↔ ∀u(u ∈ z → u ∈ x)). We denote the set whose
existence is stipulated by this axiom by P(x).

1. For x, y ∈ a the ordered pair 〈x, y〉 is an element of P(P(a)). The class
termRel(a) of all relations on a is thus a subset of P(P(P(a))) = P3(a).
The power set axiom tells us that P3(a) exists. Since we can describe by
a first-order formula exactly which elements of P3(a) belong to Rel(a)
we get its existence by the subset axiom.

15

2. Similar.

We will have occasion to use the following, well known, definitions:

Definition 7 Let r be a relation.

1. the set dom(r) = {x | ∃y(〈x, y〉 ∈ r)} is called the domain of r

2. the set ran(r) = {x | ∃y(〈y, x〉 ∈ r)} is called the range of r

If r is furthermore a function and a ∈ dom(r)

3. r(a) is the unique element b satisfying 〈a, b〉 ∈ r.
Note that we can write r(a) as the class term r(a) =

⋃{y | 〈a, y〉 ∈ r}.
2.2 The Natural Numbers

Definition 8 (Successor) For any set a the set

a+ = a ∪ {a}

is called the successor set of a.

From our previous results it is obvious that a+ is a set, when a is. In the
following we will no longer mention facts of this simple kind explicitely.

We will use the empty set ∅ to represent the natural number 0, ∅+ = {∅} =
{0} to represent 1, 1+ = ∅++ = {∅, {∅}} = {0, 1} to represent 2. In general,
for any natural number n we let n+ represent its successor. We want the
set of natural numbers to be N = {0, 0+, 0++, 0+++, . . .}. It remains to be
explain how this can be turned into a legal definition and prove the existence
of N from the ZF axioms.

Definition 9 A set a is called a Dedekind set if 0 ∈ a and for all b ∈ a also
b+ ∈ a. In symbols Ded(a) ≡ 0 ∈ a ∧ ∀x(x ∈ a→ x+ ∈ a).

16

Lemma 5

∃y(y =
⋂
{a | Ded(a)}

can be derived from the ZF axioms.⋂{a | Ded(a)} will be called the set of natural numbers and denoted by N.
In set theory it is also customary to use the symbol ω instead of N.

Proof: The claim follows from Lemma 2(3) if we can show that there is
at least one set a with Ded(a). But this is guaranteed by Axiom A8, the
infinity axiom.

The Peano axiom system is usually taken as an axiomatic characterisation
of the natural numbers. In the context of set theory we should be able to
derive them from the set theoretical axioms.

Lemma 6 (Peano Arithmetic) The following theorems can be derived
from the ZF axioms

1. 0 ∈ N.

2. If n ∈ N then n+ ∈ N.

3. ∀n(n ∈ N→ n+ 6= 0).

4. ∀n,m(n ∈ N ∧m ∈ N ∧ n+ = m+ → n = m).

5. ∀x(0 ∈ x ∧ ∀y(y ∈ x→ y+ ∈ x)→ N ⊆ x).

Proof: 1 and 2 are obvious by definition of N.

To prove 3 we note that n ∈ n+ is true for any n, thus n+ cannot be the
empty set.

Assume for a proof of 4 that n+ = m+, i.e. n ∪ {n} = m ∪ {m}. Thus we
must have

1. m ∈ n ∪ {n}, i.e. n = m or m ∈ n.

17

2. n ∈ m ∪ {m}, i.e. n = m or n ∈ m.

The foundation axiom, A2,

∃y(y ∈ x)→ ∃y(y ∈ x ∧ ∀z¬(z ∈ x ∧ z ∈ y)),

instantiated for x = {n,m} yields after some simplifications n 6∈ m or m 6∈ n.
Thus the above case distinction forces n = m.

Part 5 is again simple. Any x satisfying the premise of the implication is a
Dedekind set. Since N is by definition the intersection of all Dedekind sets,
we obviously get N ⊆ x.

Before we move on to other topics let us pause to look at set theoretic proper-
ties of N, i.e. properties that are not part of our intuition of natural numbers
but arise from the particular set theoretic construction we have used to arrive
at N. We begin with a simple exercise on induction.

Lemma 7
For all n ∈ N with n 6= 0

0 ∈ n

Proof Set
x = {n ∈ N | 0 ∈ n} ∪ {0}

We need to show x = N. This is best done using the induction axiom. To
apply it we need to establish 0 ∈ x, which is simply true by definition of x
and n ∈ x→ n+ ∈ x. There are two cases to be distinguished

Case n 6= 0 in this case n ∈ x implies 0 ∈ n. Since n ⊆ n+ = n ∪ {n} we
also get 0 ∈ n+ and thus n+ ∈ x.

Case n = 0 Here n+ = {0} by definition. Thus obviously 0 ∈ n+ and also
n+ ∈ x.

The element relation ∈ is in general far from transitive, i.e. a ∈ b and b ∈ c
do not entail a ∈ c. There are however interesting special situations where
this is nevertheless true. This leads to the following definition

18

Definition 10 (Transitive Set)
A set a is called transitive if the ∈-relation restricted to a is a transitive

relation. In symbols

trans(a)↔ ∀x(x ∈ a→ x ⊆ a)

Do not confuse transitive sets with transitive relations.

Lemma 8

1. n is transitive for all n ∈ N .

2. N is transitive.

Proofs

Ad 1 We use induction. The empty set 0 is transitive by definition. Assume
n is transitive and consider x ∈ n+ = n ∪ {n} with the aim to show x ⊆ n+.
If x ∈ n then by hypothesis x ⊆ n ⊆ n+. If x = n, then by definition x ⊆ n+.

Ad 2 We prove ∀n(n ∈ N→ n ⊆ N) again by induction. For n = 0 this is
clear since the empty set is a subset of every set. If n ∈ N and by induction
hypothesis n ⊆ N then also n+ = n ∪ {n} ⊆ N.

The order relation < on the natural numbers can be described as the smallest
transitive relation satisfying n < n+ for all n ∈ N. From the previous lemma,
Lemma 8, we already know that ∈ is transitive on N.

Lemma 9
The relation ∈ is the smallest transitive relation r on N satsifying 〈n, n+〉 ∈ r

for all n.

19

Proof Assume that r is an arbitrary transitive relation on N satisfying the
required condition. We will prove

∀n,m(n ∈ m→ 〈n,m〉 ∈ r)
This is best proved by induction on m. For m = 0 the statement is vacuously
true. So assume ∀n(n ∈ m → 〈n,m〉 ∈ r) and try to proof ∀n(n ∈ m+ →
〈n,m+〉 ∈ r).

Case n ∈ m By hypothesis we have 〈n,m〉 ∈ r. By the stipulated proper-
ties of r 〈m,m+〉 and transitivity we get 〈n,m+〉 ∈ r, as desired.

Case n = m We immediately have 〈m,m+〉 ∈ r.

In the set theoretic representation of the natural numbers we chose, we thus
discover the curious phenomenon that the <-relation cooincides with the ∈-
relation. As a consequence we have that any natural number is the set of all
its predecessors, i.e. n = {m | m < n}.

2.3 Recursion

In the last section we have reconstructed in ZF the set N of natural num-
bers. But what about addition and multiplication? Of course, we can write
down the usual recursive definitions of these functions. The question to be
answered is: can we prove existence of these functions from the ZFC ax-
ioms? We will first prove a general recursion theorem and later apply it to
get addition and multiplication.

Theorem 10 (Recursion Theorem)
Let F be a function satisfying ran(F) ⊆ dom(F) and let u be an element in

dom(F). Then there exists exactly one function f satisfying

1. dom(f) = N,

2. f(0) = u,

3. f(n+) = F (f(n)) for all n ∈ N

20

Proof The assumptions ran(F) ⊆ dom(F) and u ∈ dom(F) are needed to
make sure that all function applications of F are defined.

Let us first prove the uniqueness part. Thus we start with two functions f
and g both satisfying 1-3 from the theorem. Set

x = {y ∈ N | f(y) = g(y)}
It can be easily seen that 0 ∈ x and for all n ∈ N n ∈ x implies n+ ∈ x. Thus
by the last Peano axiom, the induction axiom, we get x = N, i.e. f = g.

To prove existence of f we first notice that there is no ZFC axiom that
explicitely relates to recursion. The idea is to instrument the existence of
unions, see Lemma 2, for our purposes. Let

H = {h | func(h) ∧ h(0) = u ∧ ∃n(n 6= 0 ∧ dom(h) = n
∧ ∀m(m+ ∈ n→ h(m+) = F (h(m))))}

That is to say H consists of all functions defined on an initial segment of N
(remember that n is the set of all its predecessors) and satisfies the required
properties. Now we like to set

f =
⋃

H

There are some obstacles to be overcome to make this work. First, to appeal
to Lemma 2 for the existence of

⋃
H we need to know that H is a set, and not

only a class term. Obviously H is a set of ordered pairs with first component
from N and second component from ran(F), thus H ⊆ P(P(N ∪ ran(F))).
The power set axiom and Lemma 2 assure together with the assumptions
that P(P(N ∪ ran(F))) is a set. Now we can use the subset axiom A3 to
derive that H is indeed a set. So f exists as a set.

Is dom(f) = N?

The proof procedes by induction. Since for h0 = {〈0, u〉} we have h0 ∈ H,
we get immediately 0 ∈ dom(f). If n is in dom(f) then there is h ∈ H with
n ∈ dom(h). Either n+ is already in dom(h) or dom(h) = n+. In the latter
case we set h+ = h ∪ {〈n+, F (h(n))〉}. Obviously h+ ∈ H and therefore
n+ ∈ dom(f).

Is f a function?

We prove by induction on x the claim unique(x)

∀y1, y2((〈x, y1〉 ∈ f ∧ 〈x, y2〉 ∈ f)→ y1 = y2)

21

Since all h ∈ H are required to satisfy h(0) = u we have unique(0).
Now assume unique(n) and try to infer unique(n+). Consider y1, y2 with
〈n+, y1〉 ∈ f and 〈n+, y2〉 ∈ f . There are thus h1, h2 ∈ H with 〈n+, yi〉 ∈ hi.
By definition of H we have for both i ∈ {1, 2} yi = hi(n

+) = F (hi(n)). Since
by induction hypothesis h1(n) = h2(n), we also get y1 = y2.

Does f satisfy f(0) = u?

This is obvious.

Is f(n+) = F (f(n)) true for all n?

This is easy. There is h ∈ H with h(n+) = f(n+). By definition of H we have
h(n+) = F (h(n)) and since f is a function we must also have h(n) = f(n).

Lemma 11

1. for every m ∈ N there is a unique function addm such that

addm(0) = m
addm(n+) = (addm(n))+

2. for every m ∈ N there is a unique function multm such that

multm(0) = 0
multm(n+) = addm(multm(n))

Proof

Ad 1 Apply the recursion theorem with u = m and F (x) = x+

Ad 2 Apply the recursion theorem with u = 0 and Fm(x) = addm(x).

Definition 11

1. x+ y =def addx[y]

2. x ∗ y =def multx[y]

22

Now the usual arithmetical laws for addition and multiplication can be de-
fined. Their proofs do not make reference to set theory any more, all that is
needed are the Peano axioms.

2.4 Integers

For this and the following two sections we follow the book [Rubin, 1967].
The purpose of this section is to define the set of all integers Z using purely
set theoretical methods and making use of the already constructed natural
numbers N. The basic idea is to represent an integer z by an odered pair
〈n,m〉 of natural numbers n,m ∈ N such that z = m − n. The pairs 〈7, 5〉
and 〈10, 8〉 will then represent the same integer. This leads us to the plan
to represent an integer not by a single pair of natural numbers, but by an
equivalence class of pairs of natural numbers. Two pairs 〈m1, n1〉 and 〈m2, n2〉
are equivalent if m1 − n1 = m2 − n2. The problem is, that we do not
have at the start unrestricted subtraction at our disposal. Fortunately, we
can equivalently rephrase the above equation as m1 + n2 = m2 + n1 where
subtraction is not involved. This leads us to the following definition.

Definition 12 For m,n, p, q ∈ N we define

〈m,n〉 =i 〈p, q〉 ⇔def m+ q = p+ n

It can be easily verified that =i is an equivalence relation.

Definition 13

1. For m,n ∈ N we define the equivalence class [〈m,n〉]i of the pair 〈m,n〉
with respect to the relation =i, as usual, by:

[〈m,n〉]i = {〈p, q〉 | 〈m,n〉 =i 〈p, q〉}

2. Z = {u | ∃m∃n(m ∈ N ∧ n ∈ N ∧ u = [〈m,n〉]i)}

This definition introduces Z as a class term. But we have

Lemma 12 Z is a set.

23

Proof We already know that N is a set. Thus for m,n ∈ N we know that
〈m,n〉 ∈ P2(N), [〈m,n〉]i ∈ P3(N) and Z ⊆ P3(N). Thus the powerset axiom
together with the subset axiom ensures that Z is indeed a set.

We would like to say when an element z ∈ Z is positive or negative. Since
z is an equivalence class of pairs of natural numbers the following lemma is
needed as a preparation.

Lemma 13 Let m,n, p, q ∈ N and assume 〈m,n〉 =i 〈p, q〉.
Then the following is true

1. m < n↔ p < q

2. m = n↔ p = q

3. m > n↔ p > q

Proofs

zu 1:

zu 2: We need to show, by induction on m, that m + q = p + m implies
p = q. For m = 0 this follows from 0 + q = q and p + 0 = p. For m = 1
we get 1 + q = q+ = p + 1 = p+ which gives by Peano’s axioms p = q. Now
assume the for all p, and q we know m+ q = p+m implies q = p and we aim
to show (m+ 1) + q = p+ (m+ 1) implies q = p. Making use of associativity
and commutative of + we get m + (q + 1) = (p + 1) + m. This yields by
induction hypothesis q + 1 = p + 1 which in turn implies q = p as we have
shown before.

zu 3:

On the basis of Lemma 13 we can unambiguously define

Definition 14 Let [〈m,n〉]i ∈ Z.

24

1. [〈m,n〉]i is negative ⇔def m < n

2. [〈m,n〉]i is zero ⇔def m = n

3. [〈m,n〉]i is positive ⇔def m > n

The following lemma can easily be verified

Lemma 14 Let [〈m,n〉]i ∈ Z.

• [〈m,n〉]i is negative ⇔ there is a unique p ∈ N, p 6= 0 with 〈m,n〉 =i

〈0, p〉

• [〈m,n〉]i is zero ⇔ 〈m,n〉 =i 〈0, 0〉

• [〈m,n〉]i is positive ⇔ there is a unique p ∈ N, p 6= 0 with 〈m,n〉 =i

〈p, 0〉

The arithmetic operations can be defined on Z as follows

Definition 15 Let [〈m,n〉]i, [〈p, q〉]i ∈ Z, then

• [〈m,n〉]i + [〈p, q〉]i =def [〈m+ p, n+ q〉]i
• [〈m,n〉]i − [〈p, q〉]i =def [〈m+ q, n+ p〉]i
• [〈m,n〉]i ∗ [〈p, q〉]i =def [〈mp+ nq,mq + np〉]i

For these definitions to make sense we have to show that they are independent
of the choice of representatives of the involved equivalence classes, i.e. we
have to prove the following lemma

Lemma 15 Let m1,m2, n1, n2, p1, p2, q1, q2 ∈ N be given with 〈m1, n1〉 =i

〈m2, n2〉 and 〈p1, q1〉 =i 〈p2, q2〉. Then

1. 〈m1 + p1, n1 + q1〉 =i 〈m2 + p2, n2 + q2〉

2. 〈m1 + q1, n1 + p1〉 =i 〈m2 + q2, n2 + p2〉

3. 〈m1p1 + n1q1,m1q1 + n1p1〉 =i 〈m2p2 + n2q2,m2q2 + n2p2〉

25

Proof Easy computation.

As a last item we define the order relations on Z:

Definition 16 Let [〈m,n〉]i, [〈p, q〉]i ∈ Z, then

• [〈m,n〉]i < [〈p, q〉]i ⇔def [〈m,n〉]i − [〈p, q〉]i is negative

• [〈m,n〉]i ≤ [〈p, q〉]i ⇔def [〈m,n〉]i < [〈p, q〉]i or [〈m,n〉]i = [〈p, q〉]i

As an easy consequence of Definitions 14 and 15 we get

Lemma 16 For [〈m,n〉]i, [〈p, q〉]i ∈ Z

1. [〈m,n〉]i < [〈p, q〉]i ↔ m+ q < n+ p

2. [〈m,n〉]i ≤ [〈p, q〉]i ↔ m+ q ≤ n+ p

In the same way one can continue to define the rational and real numbers as
sets and derive their known properties from the ZF axioms. Details may be
found in [Rubin, 1967, Chapter 6].

2.5 Ordinals

The theory of transfinite ordinal numbers is one of the most fascinating areas
of set theory. The Compact Oxford English Dictionary explains the term

ordinal number or just ordinal as a noun designating a number
defining a thing’s position in a series, such as ’first’ or ’second’.

In the context of axiomatic set theory, which is devoted to the study of
infinite sets, it is tempting to try to also extend counting into the infinite.
The convey a first idea how this could be done considering first the natural
numbers in their natural ordering. The number 6 occurs, not surprisingly at
the sixth position. Let us look at another sequencing

n < m⇔ n = 2 ∗ n0 ∧m = 2 ∗m0 ∧ n0 < m0 or
n = 2 ∗ n0 ∧m = 2 ∗m0 + 1 or
n = 2 ∗ n0 + 1 ∧m = 2 ∗m0 + 1 ∧ n0 < m0

26

In this ordering first come the even numbers in their usual ordering and after
all of them come the uneven numbers again in their usual sequence:

0, 2, 4, 6, . . . 1, 3, 5, . . .

Now number 6 occurs at the forth position. To describe the positions of the
uneven numbers we need an extension of the finite ordinal numbers. These
will be called the transfinite ordinals. The number 1 will occur at the first
infinite positision, tradionally denoted by ω. Number 5 will occur at position
ω + 2. That this simple idea can be turned into a consistent mathematical
theory is the content of the remainder of this section.

As a first observation we note that not any arbitrary linear ordering is suitable
for counting, e.g., with the integers in their usual ordering there would be no
first number to start with. We need to require that after we have counted a
subset X of an ordered set (G,<) there is a next element after X, i.e., a least
element that is strictly greater than all g ∈ X. Here is a formal definition,

Definition 17 (Well-founded Ordering) A linearly ordered set (G,<)
is called well-founded if for any subset X ⊂ G such that there is g with
∀x(x ∈ X → x < g) there is a least such g0 ∈ G, i.e.

1. ∀x(x ∈ X → x < g0)

2. ∀h(∀x(x ∈ X → x < h)→ g0 ≤ h)

We call g the next element after X.
Quite frequently the term wellorder is used instead of well-founded ordering.

Most of the time the property of the following lemma is used as a definition
instead of Definition 17.

Lemma 17 A linear order (G,<) is well-founded if and only if every non-
empty subset Y ⊆ G has a least element.

Proof Assume first that (G,<) satisfies the property from Definition 17
and consider ∅ 6= Y ⊆ G. We need to find a least element of Y . Set
Z = {g ∈ G | ∀h(h ∈ Y → g < h)}. Since Y 6= ∅ there is at least one g1 ∈ G
striclty greater than all elements of Z. By assumption there is thus a next

27

element g after Z. It is easy to see that g is the least element of Y .
For the reverse implication we need to find a next element after some X ⊂ G
that does not dominate every element in G. Set W = {g ∈ G | ∀h(h ∈ X →
h < g)}. By choice of X we know W 6= ∅ and there is thus a least element
g0 of W . Again, it is easy to see that g0 is the next element after X.

Here is another characterisation of wellorders

Lemma 18 A linear order (G,<1) is well-founded if there is no function
f : N→ G such that for all n,m ∈ N n < m implies f(m) <1 f(n).
One usually summarizes this condition by saying that there is no infinite
descending chain f in (G,<1).

We needed two symbols < and <1 to distinguish the ordering of the natural
numbers from the ordering on G.

Proof Assume there is an infinite descending chain f in (G,<1) then Y =
range(f) contradicts Lemma 17.
If on the other hand Y ⊆ G is a non-empty subset Y ⊆ G without a least
element then define f : N→ G by
f(0) = an arbitrary element g0 in the non-empty set Y
f(n+ 1) = an element g ∈ Y with g <1 f(n)

Obviously f is an infinite descending chain.

Lemma 19 (Principle of Well-founded Induction)
Let (G,<) be well-founded relation, φ a first-order formula such that

∀x ∈ G((∀y(y ∈ G ∧ y < x→ φ(y))→ φ(x))

then
∀x ∈ G(φ(x))

Note, that the assumption of the lemma implies as a special case φ(g0) for
the least element of (G,<).

28

Proof Set H = {x ∈ G | φ(x)}. Assume G 6= H. Then G\H is non-empty
and thus there is a least element g1 ∈ G \H by Lemma 17. By minimality
of g1 we get φ(x) for every x < g1. Our assumption entails also φ(g1). This
contradicts g1 6∈ H. Thus we must have G = H.

Lemma 20 (Alternative Principle of Well-founded Induction)
Let (G,<) be well-founded relation, a a set such that

a 6= ∅ ∧ ∀x ∈ a (∀y(y ∈ G ∧ y < x→ y ∈ a)→ x ∈ a)

then
u = G

Proof Use the Lemma 19 with φ(x) = x ∈ a.

We will later need the following easy construction.

Definition 18 (Initial Segment)
Let (G,<) be an ordered set and a ∈ G such that a is not the least element

in (G,<).
The structuture (Ga, <a) is defined by

1. Ga = {g ∈ G | g < a}

2. g1 <a g2 ⇔ g1 < g2 for g1, g2 < a.

(G,<) is called a initial segment of (G,<)

We note the following easy facts.

Lemma 21 Let (G,<) be an ordered set and a ∈ G such that a is not the
least element in (G,<).

1. (Ga, <a) is again an ordered set.

2. If (G,<) is a well-ordered set then (Ga, <a) is also a well-ordered set.

29

Proof Easy.

The previous Lemma 19 can be generalized to the case (G,<) where G is
only described by a class term and need not be a set. If G is replaced by a
class term also < has to be replaced by a formula, called WO in the next
lemma. It suffices to consider WO, G could be recovered as the domain of
WO if needed.

Lemma 22 (Extended Principle of Well-founded Induction)
Let WO(x, y) be a formula with the two free variables x, y such that

1. ZF ` ∀u(u 6= ∅ → ∃v(v ∈ u ∧ ∀z(z ∈ u→ ¬WO(z, v))))
every non-empty set contains a WO-minimal element

2. ZF ` ∀x∃u(x ⊆ u ∧ ∀z, v(z ∈ u ∧WO(v, z)→ v ∈ u))
every set can be extended to a superset that is closed under predecessors
of WO.

For any formula φ with ZF ` ∀x(∀y(WO(y, x)→ φ(y))→ φ(x)) we obtain

ZF ` ∀xφ(x)

Proof This proof parallels the proof of Lemma 19. If ∀xφ(x) is not true
there is a set g with ¬φ(g). Let u be a superset of {g} closed under WO
predecessors which exists by assumption. Define u′ = {z ∈ u | ¬φ(z)}. Since
g ∈ u, we have u′ 6= ∅. By the properties of WO u′ contains a WO minimnal
element g1, i.e., g1 ∈ u′ and forall h with WO(h, g1) we get h 6∈ u′. By choice
of u we have h ∈ u. Thus we obtain φ(h) forall h with WO(h, g1). By the
assumed property of φ this implies φ(g1) a contradiction.

Example 1

1. The most simple example of a wellorder is (N, <).

30

2. The structure (N, <1) with

n <1 m⇔


n < m and both n and m are even
n < m and both n and m are uneven
n is even and m is uneven

can also easily be seen to be a wellorder.

3. We generalize the idea from example 2. For a number n let minp(n)
be the smallest prime divisor for n ∈ N and n 6∈ {0, 1}. We now define
(N, <2)

n <2 m⇔


n = 0 and m 6= 0
n = 1 and 1 < m
1 < n < m and minp(n) = minp(m)
1 < n,m and minp(n) < minp(m)

Using Lemma 18 we can see that (N, <2) is a wellorder as follow. As-
sume there is an infinite descending chain

n0 >2 n1 . . . >2 nk >2 . . .

Then we must have from some point r on that for all k > r minp(nk) =
minp(nr). By definition of >2 this would yield an infinite descending
chain nr > nr−1 . . . > nk > . . . in N, <). A contradiction!

Our goal can now be stated more precisely: to find numbers for counting all
well-founded orderings. We start with the following definition

Definition 19 (Ordinal Numbers) A set a is called an ordinal if it is
transitive and satisfies
∀x∀y(x ∈ a ∧ y ∈ a→ (x ∈ y ∨ y ∈ x ∨ x = y).

Lemma 23

1. 0 is an ordinal

2. If α is an ordinal then α+ is also an ordinal.
Thus every natural number is an ordinal.

31

3. The set of all natural numbers, traditionally denoted by the letter ω, is
an ordinal.

4. If α is an ordinal, then every element β ∈ α is an ordinal.

Proofs
ad 1 trivial
ad 2 See Exercise 2.11.2 .
ad 3 Follows from the fact that ∈ is the (linear) order relation on the natural
numbers and Lemma 8(2) .
ad 4 By transitivity we know β ⊆ α, thus the ∈-relation restricted to β is a
linear order, since it is already a linear order on the larger set α. It remains
to show transitivity. So assume w ∈ v and v ∈ β with the aim to show
w ∈ β. From v ∈ β ⊆ α we get v ∈ α, thus also w ∈ v ⊆ α and w ∈ α.
Since the ∈-relation is a linear order on α we must have β ∈ w or β = w or
w ∈ β. Since the first two alternatives contradict the foundation axiom we
get w ∈ β, as needed.

Lemma 24

1. Let α be an ordinal and x a transitive set, then

x ⊂ α↔ x ∈ α

2. If α and β are ordinals then α ∩ β is also an ordinal.

3. For ordinals α and β we have

α ∈ β ∨ α = β ∨ β ∈ α

4. If b is a set of ordinals then
⋃
b is also an ordinal.

Proofs
ad 1 The implication from right to left is rather simple. Since α is transitive,
we immediately get x ⊆ α. Since x itself cannot be an element of x we also
get strict inclusion x ⊂ α.
The reverse implication is a little bit more demanding. By simple Boolean

32

algebra we get from x ⊂ α that α \ x 6= ∅. By the foundation axioms (see
also Exercise 2.11.1) there is set y ∈ (α \ x) satisfying (α \ x) ∩ y = ∅. Since
α is in particular transitive we have y ⊆ α and further y ⊆ x. If we can show
also x ⊆ y, then we arrive at x ∈ α and are finished.
So let us consider z ∈ x. Since x ⊆ α we also get z ∈ α. By the defining
property of ordinal we get y ∈ z ∨ y = z ∨ z ∈ y. The first two alternatives
imply, using for the first time the transitivity assumption on x that y ∈ x,
which contradicts the choice of y. Thus we must have z ∈ y.
ad 2 Straightforward.
ad 3 We start with the obvious observations α ∩ β ⊆ α and α ∩ β ⊆ β. We
claim that at least one of these set inclusions has to be an equality. Otherwise
we would have α ∩ β ⊂ α and α ∩ β ⊂ β which would yield by part one of
the lemma (α ∩ β) ∈ α and (α ∩ β) ∈ β. But this leads to the contradiction
(α ∩ β) ∈ (α ∩ β). (α ∩ β) = α would imply by the first part of this lemma
α = β ∨ α ∈ β, while (α ∩ β) = β would imply α = β ∨ β ∈ α.
ad 4 Let c =

⋃
b. We first show that c is transitive. For x ∈ c there is by

definition of the sum operation an element y ∈ b with x ∈ y. Since y is by
assumption transitive we get x ⊆ y and since y ⊆ c we also have x ⊆ c.

If x, y ∈ c then in particular x, y are ordinals and we get x ∈ y∨x = y∨y ∈ x
from part 3 of this lemma.

Definition 20

1. An ordinal α such that α = β+ = β ∪ {β} for some β is called a
successor ordinal.

2. An ordinal α such that for all β with β ∈ α there is γ such that β ∈ γand
γ ∈ α is called a limit ordinal.

Lemma 25

1. For every ordinal α the structure (α, ε) is a wellorder.

2. (α, ε) ∼= (β, ε) implies α = β.

33

Proof
1 To show linearity consider β1, β2, β3 ∈ α with β1 ∈ β2 and β2 ∈ β3. By
Lemma 23(4) β3 is an ordinal. Thus β2 ∈ β3 implies β2 ⊆ β3. Now, β1 ∈ β2

implies β1 ∈ β3 as desired. Obviously, (α, ε) is anti-reflexiv. The linearity
axiom is Lemma 24(3).
2 Is left to the reader, see Exercise 2.11.15.

Theorem 26 For every well-ordered set (G,<) there is a unique ordinal α
such that

(G,<) ∼= (α, ε)

Proof We define

u = {a ∈ G | (Ga, <a) ∼= (β, ε) for some ordinal β}

If a0 is the least element of (G,<) then trivially (Ga, <a) ∼= (0, ε). Thus
a0 ∈ u and u is not the empty set.

Before going on we note that if (Ga, <a) ∼= (β, ε) is true there can be only
one isomorphism f : (Ga, <a) → (β, ε). If g : (Ga, <a) → (β, ε) is another
isomorphism we proof by well-founded induction that f(x) = g(x) for all
x ∈ Ga as follows. Consider b ∈ Ga, i.e., b ∈ G and b < a such that
for all c ∈ Ga with c < b we know f(c) = g(c). To apply Lemma 19 or
20 we need to show f(b) = g(b). Obviously, b is the least upper bound of
{c ∈ Ga | c < b}. Since (β, ε) is a well-ordering the least upper bound γ of
f(c) | c < b} = g(c) | c < b} exists and since f and g are order-isomorphisms
we must have f(b) = γ = g(b). The argument at the same time also shows
that (Ga, <a) ∼= (β, ε) and (Ga, <a) ∼= (γ, ε) for ordinals β, γ imply α = γ.

The next step in the proof of the lemma is to show u = G. For this we
employ again well-founded induction. For a ∈ G with b ∈ u for all b < a we
have to show a ∈ u. Thus there are for every b < a an ordinal βb and an
isomorphism fb : (Gb, <b) ∼= (βb, ε). For b1 < b2 < a we just observed that
βb1 ⊂ βb2 and fb2 an extension of fb1 . We denote by c+ the least element in
(G,<) that is strictly greater c. We may thus define unambiguously f on Ga

• f(b) = fb(c)
+ if b = c+ for some c ∈ G or

34

• f(b) = the least (strict) upper bound of {fc+(c) | c < b} if b is a limit
point in (G,<), i.e., for all c < b also c+ < b.

Obviously, f is an order isomorphism from (Ga, <a) onto (
⋃
b<a βb, ε). By

Lemma 24 (4)
⋃
b<a βb = α is an ordinal. This complete the proof of u = G.

Piecing together the isomorphisms (Ga, <a) ∼= (βa, ε) to one isomorphis (G,<
) ∼= (α, ε) works the same way we have put together the isomorphisms (Gb, <b

) ∼= (βb, ε) for b < a to an isomorphism (Ga, <a) ∼= (βa, ε).

Example 2 We reconsider the example of well-orders given in Example 1.

1. (N, <) ∼= (ω, ε)

2. (N, <1) ∼= (ω + ω, ε)

3. (N, <2) ∼= (ω ∗ ω, ε)

35

A1 Extensionality ∀z(z ∈ x↔ z ∈ y)→ x = y.

A2 Foundation ∃y(y ∈ x)→ ∃y(y ∈ x ∧ ∀z¬(z ∈ x ∧ z ∈ y)).

A3 Subset
∃y∀z(z ∈ y ↔ z ∈ x ∧ φ(z)).

for any formula φ not containing y.

A4 Empty set ∃y∀x(x 6∈ y).

A5 Pair set ∃y∀x(x ∈ y ↔ x = z1 ∨ x = z2).

A6 Power set ∃y∀z(z ∈ y ↔ ∀u(u ∈ z → u ∈ x)).

A7 Sum ∃y∀z(z ∈ y ↔ ∃u(z ∈ u ∧ u ∈ x))

A8 Infinity
∃w(∅ ∈ w∧ ∀x(x ∈ w →

∃z(z ∈ w∧
∀u(u ∈ z ↔ u ∈ x ∨ u = x))))

A9 Replacement

∀x, y, z(ψ(x, y) ∧ ψ(x, z)→ y = z)→
∃u∀w1(w1 ∈ u↔ ∃w2(w2 ∈ a ∧ ψ(w2, w1)))

A10 Axiom of Choice

∀x(x ∈ z → x 6= ∅∧
∀y(y ∈ z → x ∩ y = ∅ ∨ x = y))
→
∃u∀x∃v(x ∈ z → u ∩ x = {v})

Figure 2.1: Axioms of Zermelo-Fraenkel Set Theory

36

2.6 König’s Lemma (Optional)

Before we can state and prove König’s Lemma we need a couple of definitions
that are also interesting in their own right.

Following general practice we will write ω insted of N in the present context.

Definition 21 (Finite Sets)

1. A set s is called finite if there is a bijective (i.e., injective and surjective)
function f from a natural number n onto s.
Using the terminoly of Definition 6 we may thus write

fin(s) ↔ ∃n ∈ ω ∃f(funct(f, n, s)∧
∀x1∀x2∀y((〈x1, y〉 ∈ f ∧ 〈x2, y〉 ∈ f)→ x1

.
= x2)∧

∀y(y ∈ s→ ∃m ∈ n(〈m, y〉 ∈ f)))

Remember, that a natural number n equals the set its predecessors, see
remark after Lemma 9.

2. If s is a finite set with funct(f, n, s) for a bijection f then n is called
the cardinality of s, in symbols card(s) = n.

3. A set s is called infinite if it is not finite, i.e., if ¬fin(s).

Definition 22 (Sequences)

1. A finite sequence of elements from a set a is a function f from a natural
number n into a, i.e. func(f, n, a),

2. For a finite sequence f with func(f, n, a) we denote by len(f) = n the
length of f . The empty set ∅ thus is a sequence of length 0.

3. An infinite sequence of elements from a set a is a function f from ω
into a, i.e. func(f, ω, a),

4. If f is a sequence, finite or infinite, of elements from a, i.e.,
funct(f, α, a) for α = ω or α ∈ ω and m ∈ α then f � m is the
restriction of f to m,

f � m = {〈n, y〉 | 〈n, y〉 ∈ f ∧ n < m}

37

5. If f is a sequence of elements from a of finite length n, i.e.,
funct(f, n, a) and m ≤ n then tail(f,m) is the tail of f starting at
m,

tail(f,m) = {〈k, x〉 | 〈k +m,x〉 ∈ f}
Informally we may write tail(x0, . . . xm, . . . xn−1,m) = xm, . . . xn−1. In
particular, tail(f, len(f)) is the empty sequence.

6. If f is a finite sequence of elements from a of length k, func(f, k, a),
and x ∈ a then f∧x is the sequence

f∧x = f ∪ {〈k, x〉}

of length k + 1.

Definition 23 (Trees)

1. A tree T of elements from a set a is a set of finite sequences of elements
from a closed under restriction, i.e.,

(a) ∀t(t ∈ T → ∃n(n ∈ ω ∧ func(t, n, a) and

(b) ∀t∀n(t ∈ T ∧ n < len(t)→ (t � n) ∈ T)

Think of the nodes of a tree T as the end points of its finite sequences.
The empty sequence thus represents the root of the tree and every f∧x
is a successor of f .

2. For a tree T and a node t ∈ T with func(t, n, a) we denote by T � t the
subtree of T rooted in t, i.e.,

T � t = {tail(g, n) | g ∈ T ∧ (g � n) = t}

3. For a tree T and a node t ∈ T with func(t, n, a) we denote by succ(T, t)
the set of successors of t in T ,

succ(T, t) = {t∧x | x ∈ a ∧ (t∧x) ∈ T}

4. A tree T is called finitely branching if for all t ∈ T the sets succ(T, t)
are finite. Note, there need not be an upper bound on the cardinality of
the successor sets.

38

5. A branch p of a tree T of elements from a is an infinite sequence of
elements from a, i.e., func(p, ω, a) such that for all n ∈ ω (f � n) ∈ T .

We will need the following simple observation

Lemma 27
Let T be a tree of elements from a and t ∈ T .

Then T � t is the disjoint union of {∅} and the sets T � (t∧x) for x ∈ a and
t∧x ∈ T

Proof Easy.

Lemma 28 (König’s Lemma)
Let T be an infinite, finitely branching tree.

Then there is an infinite branch in T .

Proof This will be the first application of the axiom of choice A10:

∀x(x ∈ z → x 6= ∅∧
∀y(y ∈ z → x ∩ y = ∅ ∨ x = y))
→
∃u∀x∃v(x ∈ z → u ∩ x = {v})

in these lecture notes.

Consider the following two set

IS(T, t) = {t∧x ∈ T | T � (t∧x) is infinite} (2.1)

Z = {IS(T, t) | t ∈ T such that T � t is infinite} (2.2)

We claim that every set IS(T, t) ∈ Z is not empty. So consider t ∈ T with
T � t infinite. We argue that IS(T, t) 6= ∅. Since T is assumed to be finitely
branching we get from Lemma 27 that T � t is the finite union of {∅} and
T � (t∧xi) with i < k for some k. By exercise 2.11.17 at least one of the
T � (t∧xi) will be infinite. Thus t∧xi ∈ IS(T, t).

39

Furthermore, if IS(T, t1) ∈ Z and IS(T, t2) ∈ Z for t1 6= t2 then IS(T, t1) ∩
IS(T, t2) = ∅. If t1 and t2 are of different length then also all element in
t ∈ IS(T, t1) have a length different from all elements in IS(T, t2). In case
len(t1) = len(t2) = n the existence of t ∈ IS(T, t1) ∩ IS(T, t2) would yield
the contradiction t1 = t � n) = t2. The axiom of choice (instantiate the
parameter z with the set Z) yields the existence of a set U with U ∩ IS(T, t)
a singleton set for all IS(T, t) ∈ Z. Let ch be the function from Z to T with
U ∩ IS(T, t) = {ch(IS(T, t)}. An infinite branch p of T can now be defined
by recursion:

p(0) = ∅
p(n+ 1) = ch(IS(T, p(n)))

To show that this is a good definition we need to show that for all n the
argument IS(T, p(n)) is in the domain Z of the function ch. Be definition
IS(T, p(n)) ∈ Z if T � p(n) is infinite. We therefore show be induction on
n the T � p(n) is infinite. For n = 0 we get infinity of T � ∅ = T from the
assumption of the lemma. The inductive step follows from the definition of
IS(T, t).

40

2.7 Cardinals (Optional)

Cardinals or cardinal numbers are used to count the size of a set. It is one
of the great achievments of set theory to have extended counting to infinite
sets. Even more fundamental than the cardinal numbers themselves are the
definitions when two sets are said to contain the same number of elements,
or when one set contains strictly less elements than another one.

Definition 24 (Equivalence)

1. Two sets a, b are called equivalent, in symbols a ' b, if there is a
injective and surjective function f : a→ b.
In German equivalent sets are called gleichmächtig.

2. A set a is smaller than b, in symbols a - b if there is an injective
function f : a→ b.

Example 3

1. For n,m ∈ N n ' m⇔ n = m

2. N ' Z
Here is an isomorphism F : N→ Z
f(0) = 0
f(2n) = n forn 6= 0
f(2n+) = −n forn ≥ 0

3. N ' Q Q the set of rationals

Lemma 29 (Basic Properties)

1. ' is an equivalence relation.

2. - is a reflexive order relation.

3. a - b and b - a implies a ' b.

4. For any two sets a,b we have

a ≺ b or b ≺ a or a ' b.

41

Proof Items (1) and (2) are easy. Item (3) is quite intricate and goes by
the name of Schröder-Bernstein-Theorem. Item (4) finally uses the axiom
of choice (and is in fact equivalent to it). For all proofs see e.g. [Takeuti &
Zaring, 1971, Section 10].

Lemma 30 (Cardinality of the Powerset) For all sets a

a ≺ P(a)

Proof The function sg : a → P(a) that sends an element x ∈ a to its
singleton set {x} ∈ P(a) shows a - P(a). If f : a → P(a) is a bijection we
define the subset c ⊆ a by

x ∈ c⇔ x 6∈ f(x)

Since f is a bijection there will be some y ∈ a with c = f(y). But, this yields
the contradiction y 6∈ f(y)⇔ y ∈ c.

42

2.8 Ramsey Theory(Optional)

This section presents statements and proofs for a selction of results from what
is now called Ramsey Theory. This theory can be divided into a part dealing
with infinitary combinatorics and another addressing finite combinatorics.

2.8.1 Infinite Ramsey Theory

The material presented in this section is adapted from [Kunen, 1977].

We first establish the most important definition in this section.

Definition 25 Let I be an arbitrary set and n ∈ ω. By [I]n we denote the
set of n-element subsets of I

[I]n = {t | t ⊆ I ∧ card(t) = n}

In particular we get [N]2 = {{x, y} | x, y ∈ N ∧ x 6= y}

Definition 26 1. We call Q a partition of a set X, in symbols
Part(Q,X), if it is a set of mutually disjoint subsets of X whose union
gives all of X:

∀y(y ∈ Q→ y ⊆ X)
∀y1∀y2(y1 ∈ Q ∧ y2 ∈ Q→ y1 = y2 ∨ y1 ∩ y2 = ∅)⋃
Q = X

2. A finite partition Q = {Q0, . . . , Qk−1} of X, Part(Q,X), may be equiv-
alently represented as a function P from X to k via

P (x) = i⇔ x ∈ Qi

A partition G of [N]2 into two parts, i.e., G : [N]2 → 2, can be identified
with an undirected graph without self-loops on the node set N . Two different
nodes g, h ∈ N are connected if G({x, y}) = 1.

Definition 27 Let P : [I]n → k be a partition of a set [I]n into k pieces.
A subset H ⊆ I is called homogeneous for P if there is n < k such that
P (t) = k for all t ∈ [H]n, i.e., [H]n is contained in one part of the partition
P .

43

Theorem 31 (Ramsey’s Theorem)
For every n, k ∈ ω every partition P : [ω]n → k has an infinite homogeneous

set.

The statement of this theorem is usually abbreviated as ω → (ω)nk .
The special case ω → (ω)2

2 says that every infinite undirected graph contains
an infinite subgraph that is either empty (no two nodes are connected) or
complete (any two different nodes are connected).

The rest of this section will be devoted to a proof of Theorem 31. The proof
proceeds by induction on n. For n = 1 the claim of Theorem 31 is reduced
to

If an infinite set is partioned into finitely many disjoint subsets,
at least one of the subsets has to be infinite.

This is intuitively obvious. See Exercise 2.11.17 and its solution for a proof
from the ZF axioms.

Definition 28 Let P : [ω]n+1 → k be a partition. A subset H ⊆ ω is called
pre-homogeneous for P if P on [H]n+1 does not depend on the last element
of an (n+ 1)-tuple, precisely:

For all x0, . . . , xn−1, y, z ∈ H with x0 < . . . xn−1 < y and x0 < . . . xn−1 < z
P ({x0, . . . , xn−1, y}) = P ({x0, . . . , xn−1, z})

For x̄ = {x0, . . . , xn−1} ∈ [ω]n and y ∈ ω we will write x̄ < y to abbreviate∧i=n−1
i=0 xi < y. The pre-homogeneity property of H for P can thus be for-

mulated as:
For all x̄ ∈ [H]n and y, z ∈ H with x̄ < y and x̄ < z we have

P (x̄ ∪ {y}) = P (x̄ ∪ {z}).

Lemma 32 For every partition P : [ω]n+1 → k with k ∈ ω there is an
infinite pre-homogenous subset H for P .

44

Proof of Theorem 31 using Lemma 32 To prove the inductive step
we start with a partition P : [ω]n+1 → k. By Lemma 32 there is an infinite
pre-homogeous set H ⊆ ω for P . We define a partition Q on [H]n by

Q(h̄) = k ⇔ ∃h ∈ H(h̄ < h ∧ P (h̄ ∪ {h}) = k)

Since H is pre-homogeneous for P there cannot be h1, h2 with h̄ < h1, h̄ < h2

and P (h̄ ∪ {h1}) 6= P (h̄ ∪ {h2}). Thus, the definition for Q is sound.

By induction hypothesis there is an infinite homogeneous subset K ⊆ H for
Q, with, say, Q(k̄) = j for some 0 ≤ j < k and all k̄ ∈ [K]n. Since H was
pre-homogeneous we have:

Q(k̄) = j ⇔ ∀u ∈ K(k̄ < u→ P (k̄ ∪ {u}) = j)

Since any k̄ ∈ [K]n+1 may be written as k̄0 ∪ {u} with k̄0 ∈ [K]n and k̄0 < u
we get for all k̄ ∈ [K]n+1

P (k̄) = j

Thus K is also homogenous for P .

Proof of Lemma 32 We start with a proof for the special case n = 1.
We thus need to find an infinite pre-homogeneous subset for a partition
P : [ω]2 → k. Consider the complete tree T of fixed branching degree k.
In our representation of trees T is the set of all finite sequence of numbers
from 0 to k− 1. For every s ∈ T we inductively define subsets A(s) ⊆ ω and
numbers h(s) ∈ ω.

1. A(〈〉) = ω

2. h(s) =

{
least element of A(s) if A(s) 6= ∅
0 otherwise

3. A(s∧j) = A(s) ∩ {m > h(s) | P ({h(s),m}) = j} for 0 ≤ j < k.

Let T0 be the subtree of T with non-empty A(s): T0 = {s ∈ T | A(s) 6= ∅}. T0

is an infinite tree. We even argue that there are nodes s of arbitrary length
such that A(s) is infinite. This is certainly true fir the empty sequence

45

〈〉 (the root node). If A(s) is infinite we notice that
⋃

0≤j<k{m > h(s) |
P ({h(s),m}) = j} = {m > h(s) | m ∈ ω}. Thus

[
⋃

0≤j<k{m > h(s) | P ({h(s),m}) = j}] ∩ A(s)

=⋃
0≤j<k[{m > h(s) | P ({h(s),m}) = j} ∩ A(s)]

=⋃
0≤j<k A(s∧j)

is infinite and one of the sets in this finite union has to be infinite. By
König’s Lemmas there has to be an infinite path s in T0. It is easily seen
that {h(s � n) | n ∈ ω} is a pre-homogeneous set.

Let us now take up the general case and fix n ≥ 1 and k ∈ ω. Notice,
that this is not an inductive proof. We consider a more complicated tree
that we will again denote by T . In describing T we will deviate from the
representation as a collection of finite sequences, as set out in Definition 23.
We revert to the more traditional method of giving the node set and the
descendant relation of T . The node set of T , named NT , is the set of all
functions s : [m]n → k for m ∈ ω with m ≥ (n−1). t will be a descendant of
s, in symbols s <T t, if s : [m]n → k , t : [m+ 1]n → k and t is an extension
of s, i.e. s ⊆ t.

Let us explore a bit what T looks like. The root of T is the empty function
s0 : [n − 1]n → k. Note, that [n − 1]n = ∅. Next observe that [n]n is the
singleton set {{0, . . . n− 1}}. There a k possible descendants P j

1 of s0 given
by sj1({0, . . . n − 1}) = j. The set [n + 1]n contains, besides {0, . . . n − 1},
n more subsets of n + 1 of cardinality n. There are therefore n ∗ k possible
descendants for each sj1. We see that the branching degree of T gets bigger
very fast as we climb the tree, but it will always be finite.

By structural induction we define for all nodes s in NT the functions A(s) ⊆ ω
and h(s) ∈ ω:

• A(s0) = ω

• h(s) =

{
least element of A(s) if A(s) 6= ∅
0 otherwise

• For s : [m]n → k, t : [m+ 1]n → k with s ⊆ t

46

A(t) = A(s) ∩ {r > h(s) | ∀F ∈ [m+ 1]n(P (h(F) ∪ {r}) = t(F))}
with h(F) = {h(s � [u1]n), . . . , h(s � [un]n)}
if F = {u1, . . . , un}

We observe⋃
t∈E(s){r > h(s) | ∀F ∈ [m+ 1]n(P (h(F) ∪ {r}) = t(F))}

=
{r > h(s) | r ∈ ω}
where E(s) = {t : [m+ 1]n → k | s ⊆ t}

To see this look at x > h(s). Define t : [m+1]n → k by t(F) = P (h(F)∪{x})
for all F ∈ [m+1]n. Oviously, x ∈ {r > h(s) | ∀F ∈ [m+1]n(P (h(F)∪{r}) =
t(F))}. If A(s) is infinite there the is a descendant t of s such that A(t)
is infinite. This shows that the subtree T0 = {s ∈ T | A(s) 6= ∅} of T
is infinite. By König’s Lemma there is an infinite path s in T0. The set
{h(s � [m]n) | m ∈ ω} is a pre-homogeneous set for P .

2.8.2 Finite Ramsey Theory

Definition 29 A subset H of natural numbers is called relatively large if

card(H) ≥ min(H)

Thus every infinite subset is relatively large. The set {100, 101} is not rela-
tively large, while {100, 101, 1} is. The set {n | 100 ≤ n < 200} is another
example of a relatively large set.

Lemma 33 For every natural numbers e, r, k there is a natural number m
such that for any partition P : [m]e → r there is a relatively large homogenous
subset HG ⊆ m of cardinality at least k.

It has become customary to formulate the statement of this Lemma as

For every natural numbers e, r, k there is a natural number m
such that m→

*
(k)er.

47

Proof We define the set of possible counterexamples

kT er = {p | there is m′ ∈ N such that p : [m′]e → r and
there is no relatively large homogeneous subset
H for p with card(HZ) ≥ k}

We define the immediate successor relation ≤T on kT er by

p1 ≤T p2 iff p1 : [m1]e → r, p2 : [m1 + 1]e → r and
p1 = p2 � [m1]e

Obviously, (kT er ,≤T) is a finitely branching tree.

Assume, for the sake of a contradiction, that the lemma is not true. Thus,
for every m ∈ N there is some p : [m]e → r in kT er . Therefore, (kT er ,≤T)
is an infinite, finitely branching tree. By König’s Lemma, Lemma 27, there
exists an infinite branch {pi | i ∈ ω} in this tree. For p =

⋃
i∈ω pi we see

p : [ω]e → r. By the infinite Ramsey Theorem, Theorem 31, there is an
infinite homogeneous subset H ⊆ ω. Since H is infinite also {h ∈ H | h ≥ k}
is infinite. Let H1 ⊆ {h ∈ H | h ≥ k} be a finite subset with card(H1) ≥
k and m = max(H1). Then H1 is a relatively large homogeneous set for
p � [m]e → r with card(H1) ≥ k. This contradicts the assumption that the
lemma is false.

Notice, the unusual pattern of the proof of Lemma 33. Using the assump-
tion that the lemma is false we are able to construct a solution of it. This
contradiction establishes the proof.

48

2.9 Peano Arithmetic with Finite Sets

(Optional)

In this section we present and study the typed theory PAFin. This theory
uses three types (or sorts) N , S, U where both N and S are subtypes of
U , N ⊆ U and S ⊆ U . The idea is that N is the type of natural numbers,
S is the type of finite sets of natural numbers and U is the least common
supertype of both. The signature Σ of PAFin is the union of the signatures
ΣPA and ΣS, that is Σ = ΣPA ∪ ΣS.

ΣPA : ΣS :
0 : N ε : U × S
1 : N ∅ : S
+ : N ×N → N { , } : U × U → S
∗ : N ×N → N Pot : S → S⋃

: S → S
card : S → N

The theory PAFin will be given by axioms in contrast to a definition by its
intended models. The axioms come in two parts, those of Peano Arithmetic
and those of Set Theory.

1. ∀m(m+ 1 6 .= 0)

2. ∀m∀n(m+ 1
.
= n+ 1→ m

.
= n)

3. ∀m(m+ 0
.
= m)

4. ∀m∀n(m+ (n+ 1)
.
= (m+ n) + 1)

5. ∀m(m ∗ 0
.
= 0)

6. ∀m∀n(m ∗ (n+ 1)
.
= (m ∗ n) +m)

7. for every ΣPA-formula (φ(0) ∧ ∀n(φ(n)→ φ(n+ 1)))→ ∀m(φ)

8. for every Σ-formula (φ(0) ∧ ∀n(φ(n)→ φ(n+ 1)))→ ∀m(φ)

Figure 2.2: Peano Axioms for PAFin

49

The axioms for PAFin are given in Figures 2.2 and 2.3. Instead of explicit
variable declarations of the form e.g., x : N or x : S or x : U . We will
simplify notation by stipulating

m,n, k are always of type N
x, y, z are always of type S
X, Y, Z are always of type U

A couple of comments are in order. Axioms 1 to 7 are exact copies of the
Peano axioms found in many textbooks. The axiom schema 8 makes in-
duction available also for formulas that talk about sets. This is clearly an
extension of the usual Peano axiom system since it allows to reason with
formulas the are not even present in the syntax of it. By PA we denote the
axioms 1 through 7, while PAS denotes the theory given by all 8 axioms,
respectively axioms schemes.

LetN be the ΣPA- structure (N, 0N , 1N ,+N , ∗N) with universe the set of nat-
ural numbers N and the usual interpretations of the constants and function
symbols. Obviously,N |= PA, i.e.,N |= φ for all axioms φ of PA. N is called
the standard model of PA. But there are also modelsM withM |= PA that
are different from N . The theory PA ∪ {1 + . . .+ 1︸ ︷︷ ︸

n times

≤ c | n ∈ N} with the

new constant symbol c is consistent, since all its finite subsets are consistent.
Thus there is a model M |= T . Obviously, M is different from N . Models
of PA different from N are callled non-standard models.

Next we will compare the axioms in Figure 2.3 with the axioms of ZF set
theory reproduced in Figure 2.1 on page 36. In any case it is essential to pay
attention to the type information. In the extensionality axiom a necessary
condition of equality is given only for sets since we agreed that variables x,y
are always typed S : x and S : y. In the foundation axioms the lefthand side
of the implication requires that x contains a set y as an element. For sets
that exclusively contain natural numbers as elements this axioms does not say
anything. Applying the axioms with {z} substituted for x we get the usual
consequence ∀z(z 6∈ z). There is no surprise in the subset axiom. We only
have to use the variable X of type U , since elements of a set may be natural
numbers or again sets. For the following four axioms the PAFin formulation
differs on the surface syntax considerably from the ZF axioms. But, on the
semantics level they are equivalent. The leading existential quantifiers in all
four axioms are eliminated by introducing the corresponding Skolem constant
and functions. It is a noteworthy consequence of the given definition of the

50

A1 Extensionality ∀X(X ∈ x↔ X ∈ y)→ x
.
= y.

A2 Foundation ∃y(y ∈ x)→ ∃y(y ∈ x ∧ ∀z¬(z ∈ x ∧ z ∈ y)).

A3 Subset
∃y∀X(X ∈ y ↔ X ∈ x ∧ φ(X)).

for any Σ-formula φ not containing y.

A4 Empty set ∀X(X 6∈ ∅).

A5 Pair set ∀X∀Y ∀Z(Z ∈ {X, Y } ↔ Z
.
= X ∨ Z .

= Y).

A6 Power set ∀y∀Z(Z ∈ Pot(y)↔ ∀U(U ∈ Z → U ∈ y)).

A7 Sum ∀y∀Z(Z ∈ ⋃ y ↔ ∃x(Z ∈ x ∧ x ∈ y))

A8 Finiteness A8a card(∅) .
= 0

A8b card({X,X}) .
= 1

A8c ¬∃U(U ∈ x ∧ U ∈ y)→
card(

⋃
({x, y}) .

= card(x) + card(y)

Figure 2.3: Axioms of finite set theory for PAFin

sum operator
⋃

that the sum of a set that contains only natural numbers is ∅,
e.g.,

⋃{0, 1, 2, 3, 4} .= ∅. The infinite axioms is dropped. We want the theory
of the whole tower of finite set of natual numbers and finiter sets of natural
numbers etc. It is not enough to drop the infinity axioms we have to insert
axioms that entail that all sets are finite. This is achieved by adding the
cardinality function to the signature ΣS. Since in predicate logic functions
are always total this guarantees that all sets have finite cardinality. This
argument of courses hinges on the assumption that the three given axioms
are enough to force in any interpretation the function symbol card to be
interpreted unambiguously as the cardinality function. We will come back
to this issue later. For the moment we will investigate simple consequences
of Peano Arithmetik.

Lemma 34 The following formulas are derivable from PA.

1. ∀n∀m∀k((n+m) + k
.
= n+ (m+ k))

51

2. ∀n∀m(n+m
.
= m+ n)

3. ∀x∀y∀z(m ∗ (n+ k)
.
= m ∗ n+m ∗ k)

4. ∀n∀m∀k((n ∗m) ∗ k .
= n ∗ (m ∗ k))

5. ∀n∀m(n ∗m .
= m ∗ n)

6. ∀n∃m(2 ∗m .
= n ∗ (n+ 1))

7. (1 + 2 + . . . n)
.
= 1

2
∗ n ∗ (n+ 1)

Proof These are easy and well known exercises in inductive proofs.
Let us prove item (6) by induction on n. For n

.
= 0 we can choose m

.
= 0.

Now assume that we know already n ∗ (n+ 1)
.
= 2 ∗m.

(n+ 1) ∗ (n+ 2)
.
= n ∗ (n+ 2) + n+ 2
.
= n ∗ (n+ 1) + n+ n+ 2
.
= 2 ∗m+ 2 ∗ n+ 2
.
= 2 ∗ (m+ n+ 1)

Item (7) is a favorite exercise for inductive proofs. To stay within the avail-
able vocabulary we should have written 2 ∗ (1 + 2 + . . . n)

.
= n ∗ (n+ 1). We

prefer the more familiar use of the fraction 1
2

which in the following argu-
ments could be easily avoided. The initial case n

.
= 0 in the proof of (7) is

obvious. Assume for the induction step that Σi≤ni
.
= 1

2
∗ n ∗ (n+ 1).

Σi≤n+1i
.
= Σi≤ni+ (n+ 1)
.
= 1

2
∗ n ∗ (n+ 1) + (n+ 1)

.
= 1

2
∗ (n ∗ (n+ 1) + 2 ∗ (n+ 1))

.
= 1

2
∗ ((n+ 2) ∗ (n+ 1))

.
= 1

2
∗ ((n+ 1) ∗ (n+ 2))

Here are some more easy, but less frequently explicitely mentioned conse-
quences

Lemma 35 The following formulas are derivable from PA:

1. ∀n(n 6= 0→ ∃m(n
.
= m+ 1))

52

2. ∀n∀k∀k′(n+ k
.
= n+ k′ → k

.
= k′)

3. ∀n∀k∀k′(n ∗ k .
= n ∗ k′ ∧ n 6= 0→ k

.
= k′)

Proof
(1) We use the induction axiom for the formula φ(n) = n 6= 0 → ∃m(n

.
=

m + 1). Obviously PA ` φ(0) since the lefthand side of the implication
is never true. So assume n 6= 0 → ∃m(n

.
= m + 1) and set out to prove

(n + 1) 6= 0 → ∃m(n + 1
.
= m + 1). By PA-axiom 1 this is equivalent to

∃m(n+ 1
.
= m+ 1). We distinguish two cases.

case 1: n
.
= 0 The claim to be proved reads in this case ∃m(1

.
= m + 1).

Obviously, m
.
= 0 solves this.

case 1: n 6= 0 By inductive assumption we have ∃m(n
.
= m + 1), e.g.

n = m0 + 1. By the logical equalitiy axioms we obtain n+ 1 = (m0 + 1) + 1,
as desired.
(2) This is proved by induction on n.
For n

.
= 0 we have to prove ∀k∀k′(0 + k

.
= 0 + k′ → k

.
= k′) which is obvious

by PA axiom 3 and commutativity of +.
In the inductive step we assume ∀k∀k′(n + k

.
= n + k′ → k

.
= k′) and need

to prove ∀k∀k′((n+ 1) + k
.
= (n+ 1) + k′ → k

.
= k′). By the associative law

the claim is equivalent to ∀k∀k′((n+ (k+ 1)
.
= n+ (k′+ 1)→ k

.
= k′). From

the induction hypothesis we obtain k + 1
.
= k′ + 1. Now, PA axiom 2 yields

k
.
= k′, as desired.

(3) left to the reader.

The main result of this section will be that the theory PAFin is not stronger
than PA. But, it is a long way to get there. We begin by giving a precise
meaning when a theory is no stronger than another.

Definition 30 (Conservative Extension) Let Σ1, Σ2 be two signatures
with Σ2 extending Σ1, i.e. Σ1 ⊆ Σ2.
Let Ti be a theory given by axioms in Σi.
T2 is called a conservative extension of T1 iff for any Σ1-formula φ

T2 ` φ⇔ T1 ` φ

In all the cases where we will use the concept of a conservative extension in
the following the axioms of T2 are a superset of the axioms for T1. But we

53

could not resists the mathematical habit to give the most general definition
without this restriction.

We start with a useful criterion for conservative extensions. The criterion
will consider models M for a signature Σ2 and use the notation M � Σ1

for Σ1 ⊆ Σ2 to denote the structure obtained from M by omitting the
interpretation of all symbols not in Σ1 . If φ is a Σ1 formula then, obviously,
M |= φ iff M � Σ1 |= φ.

Lemma 36 Let Ti be a theory in signature Σi, with Σ1 ⊆ Σ2.
Assume that the following two conditions are satisfied:

1. For all models M of T2 the restriction M � Σ1 is a model of T1.

2. For any model M1 of T1 there is a model of M2 of T2 such that M2 �
Σ1 =M1.f

Then T2 is a conservative extension of T1.

Proof Let φ be a Σ1.
We will first show T1 ` φ ⇒ T2 ` φ. So, assume T1 ` φ. To show T2 ` φ
we consider an arbitrary model M of T2. Since by assumption (1) of the
lemma we know that M � Σ1 |= T1 we get from T1 ` φ the consequence
M � Σ1 |= φ. Thus also M |= φ.
Now assume conversely that T2 ` φ with the aim to show T1 ` φ. For any
model M1 of T1 we thus need to show M1 |= φ By assumption (2) of the
lemma there is a Σ2 structureM2 withM2 |= T2 andM2 � Σ1 =M1. From
the case assumption T2 ` φ we thus get M2 |= φ. Since φ is a Σ1 formula
this entails M � Σ1 |= φ. From the second property of M2 we get M1 |= φ.

A class of particularly obvious conservative exentions are definitional exten-
tions.

Definition 31 Let T1 be a theory in signature Σ1. A theory T2 in signature
Σ2 is called a definitional extention of T1 if one of the following is true:

1. There is a new n-place function symbol f such that

54

(a) Σ2 = Σ1 ∪ {f},
(b) there is a Σ1-term t with variables x1, . . . , xn such that

T2 = T1 ∪ {f(x1, . . . , xn)
.
= t}

2. There is a new n-place predicate symbol p such that

(a) Σ2 = Σ1 ∪ {p},
(b) there is a Σ1-formula φ with free variables x1, . . . , xn such that

T2 = T1 ∪ {p(x1, . . . , xn)↔ φ}

3. There is a new n-place function symbol f such that

(a) Σ2 = Σ1 ∪ {f},
(b) there is a Σ1-formula ψ with variables x1, . . . , xn, xn+1 such that

T2 = T1 ∪ {f(x1, . . . , xn)
.
= xn+1 ↔ ψ} and

(c) T1 ` ∀x1, . . .∀xn∃xn+1ψ and

Lemma 37 If T2 is a definitional extension of T1 then T2 is a conservative
extension of T1.

Proof We will use criterion 36. Since in all three cases T1 ⊂ T2 requirement
(1) of Lemma 36 is satisfied. Also requirement (2) of Lemma 36 can easily
been seen to be true since for any Σ1 model M it is obvious how to define
the interpretation fM2 respectively pM2 in a way such that M2 |= T2.

Example 4 Let PAFin2 be the theory obtained from PAFin by adding the
binary function symbol 〈 , 〉 : U × U → S and the defining axiom

〈X, Y 〉 .= {{X,X}, {X, Y }}

then PAFin2 is a definitional extension by part (1) of Definition 31, and
hence a conservative, extension of PAFin.
〈X, Y 〉 denotes the ordered pair of X, and Y , see Lemma 3.

55

Example 5 Let PA2 be the theory obtained from PA by adding the binary
predicate symbol ≤ and the defining axiom

x ≤ y ↔ ∃z(y
.
= x+ z)

then PA2 is a definitional extension by part (2a) of Definition 31, , and hence
a conservative, extension of PA.

Example 6 Let T1 be an arbitrary theory in signature Σ1. Further let ∃xφ
be a Σ1-formula without free variables and c a new constant symbol.
Let T2 be the theory in signature Σ2 = Σ1 ∪{c} obtain from T1 by adding the
axiom ∃xφ(x)→ φ(c).
Then T2 is a definitional extension by part (3) of Definition 31, and hence
conservative extension of T1

This is an example of the well-known Skolem extensions. It shows that the
item to be defined, here the new constant symbol c, need not be uniquely
defined. The existence requirement in this case is ∃z(∃xφ(x)→ φ(z)) which
clearly is a tautology.

Example 7 Let T1 in signature Σ1 = {≤} be the theory of an order relation
and Σ2 = Σ1 ∪ {a}, T2 = T1 ∪ {∀x(x ≤ a)}. Then T2 is not a conservative
extension of T1 since T2 ` ∃y∀x(x ≤ y) but T1 6` ∃y∀x(x ≤ y).

Before we go on we note the following easy fact:

Lemma 38 If T2 is a conservative extension of T1 and T3 is a conservative
extension of T2 then T3 is a conservative extension of T1.

Proof Obvious.

Lemma 39 If the Σ2-theory T2 is a conservative extension of the Σ2-theory
T1 then there is for every Σ2-formula φ2 a Σ1-formula φ1 such that

T2 ` φ2 ↔ φ1

56

Proof For definitional extensions of type (1) (2a) of Definition 2a the new
function and predicate symbols are simply replaced by their Σ1 definitions.
For definitional extensions of type (3) we use the tautology

∀x(x
.
= t→ φ(x/t))↔ φ

where φ(x/t is obtained from φ by replacing an occurence of t by the new
variable x. If t = f(t1, t2) the lefthand side of this formula is logically equiv-
alent to

∀x∀x1∀x2((x
.
= f(x1, x2) ∧ x1

.
= t1 ∧ x2

.
= t2)→ φ(x/t))

For the new function symbols we can now replace the equation x
.
= f(x1, x2)

by its Σ1 definition.
We trust that these hints convince the reader that this works in general.

Lemma 40 Let T ⊇ PA be a definitional extension in signature Σ of Peano
arithmetic PA in Σ ⊇ ΣPA. Then for any Σ-formula

T ` (φ(0) ∧ ∀n(φ(n)→ φ(n+ 1)))→ ∀m(φ)

Proof The induction axioms for formulas φ in ΣPA are part of PA and
thus of T . All the other new axioms in T are definitions of the new symbols.
The claim follows from Lemma 39.

We want to dwell a moment on the conservative extension presented in Ex-
ample 5.

Lemma 41 We use n < m as abbreviation for n ≤ m ∧ n 6= m

1. ∀n(0 ≥ n→ n
.
= 0)

2. ∀n∀m∀k(n ≤ m ∧m ≤ k → m ≤ k)

3. ∀n∀m∀k(n < m→ (n+ k) < (m+ k))

4. ∀n∀m(n < m ∨ n = m ∨m < n)

5. ∀n∀m(n ≤ m ∧m ≤ n→ n
.
= m)

6. ∀n∀m∀k(n ≤ m→ (n ∗ k) ≤ (m ∗ k))

57

Proofs
(1) 0 ≥ n yields by definition 0

.
= n + m for some m. If m 6= 0 we get from

Lemma 35(1) m
.
= m0 + 1 and thus the contradiction 0

.
= (n + m0) + 1 to

PA Axiom 1. Thus m
.
= 0 and we get 0

.
= n+ 0

.
= n as desired.

(2) Easy, left to the reader.
(3) From n < m we get by definition n + n0

.
= m and n 6= m. Thus

(n + k)n0
.
= (m + k) and (n + k) 6= (m + k). For the last inequality we use

Lemma 35 (3). (4) The proof proceeds by induction on n. For m
.
= 0 we

need to show ∀m(0 < n∨ 0 6= n∨m < 0). By definition of the order relation
≤ and 0+n

.
= n we get 0 ≤ n, which is equivalent to (0 ≤ n∧0 6= n)∨0

.
= n,

i.e., 0 < n ∨ 0
.
= n.

For the induction step we assume ∀m(n < m ∨ n = m ∨m < n) and set out
to prove ∀m((n + 1) < m ∨ (n + 1) = m ∨ m < (n + 1)). For m

.
= 0 this

follows from the initial case of this inductive proof by symmetry. For m 6= ß
there is m0 with m

.
= m0 + 1 by Lemma 35 (1). By induction hypothesis we

have n < m0 ∨ n = m0 ∨m0 < n by additing 1 to every inequation we get
using part (3) (n+ 1) < (m0 + 1)∨ (n+ 1) = (m0 + 1)∨ (m0 + 1) < (n+ 1),
i.e. (n+ 1) < m ∨ (n+ 1) = m ∨m < (n+ 1), as desired.
(5) By definition we get from n ≤ m∧m ≤ n numbers n0, m0 with n+n0

.
= m

and m + m0
.
= n. Thus n

.
= n + n0 + m0. From Lemma 35 (2) we get

0
.
= n0 + m0 Part (1) of Lemma 35 can than be used to derive 0

.
= n0 and

0
.
= m0.

(6) From m
.
= n + n0 we get (m ∗ k)

.
= (n + n0) ∗ k .

= n ∗ k + n0 ∗ k, i.e.,
n ∗ k ≤ (m ∗ k).

The examples for conservative extentsions we have seen so far were only a
warm-up for the following stunning result:

Theorem 42 PAFin is a conservative extension of PA.

The proof will keep us busy for the rest of this section. We start slow with
simple facts and move on to more and more complex formulas that are deriv-
able in PA.

As a preparation for the proof of the next lemma we recall the notorious
enumeration of pairs of natural numbers:

58

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2)

(2,0) (2,1)

(3,0)

We want to find a formula that computes the position of (m,n) in this enu-
meration starting with position 0. We observe that the diagonals contain
all pairs with the same sum of its components and each diagonal is by one
greater than the previous one. The diagonal starting in (0, k) contains k+ 1
pairs. The position of (0,m) thus equals 1+2+ . . .m which by Lemma 34 (7)
equals 1

2
∗m∗(m+1). To compute the position of (m,n) we first compute the

position of (0,m+n) and then add m. We obtain 1
2
∗(m+n)∗(m+n+1)+m.

These considerations show

N |= ∀k∃m∃n(k
.
= 1

2
∗ (m+ n) ∗ (m+ n+ 1) +m)

N |= ∀m∀n∀m′∀n′(
1
2
∗ (m+ n) ∗ (m+ n+ 1) +m

.
= 1

2
∗ (m′ + n′) ∗ (m′ + n′ + 1) +m′

→ m
.
= m′ ∧ n .

= n′)

But, are these two formulas derivable from PA? We have to work a bit
harder to see this.

Lemma 43 The following formulas are derivable in PA.

1. ∀k∃m∃n(k
.
= 1

2
∗ (m+ n) ∗ (m+ n+ 1) +m)

2. ∀m∀n∀m′∀n′(
1
2
∗ (m+ n) ∗ (m+ n+ 1) +m

.
= 1

2
∗ (m′ + n′) ∗ (m′ + n′ + 1) +m′

→ m
.
= m′ ∧ n .

= n′)

Proof
(1) We use, of course, induction on k. For k

.
= 0 obviously m

.
= n

.
= 0 does

the job. So assume k
.
= 1

2
∗ (m+ n) ∗ (m+ n+ 1) +m. We want to find m′,

n′ such that k + 1
.
= 1

2
∗ (m′ + n′) ∗ (m′ + n′ + 1) +m′.

59

Case n > 0: Set m′
.
= m+ 1 and n′

.
= n− 1 and compute

1
2
∗ (m′ + n′) ∗ (m′ + n′ + 1) +m′

.
= 1

2
∗ (m+ n) ∗ (m+ n+ 1) +m+ 1

.
= k + 1

Case n
.
= 0: Thus k

.
= 1

2
∗m ∗ (m+ 1) +m.

Set m′
.
= 0 and n′

.
= m+ 1 and compute

1
2
∗ (m′ + n′) ∗ (m′ + n′ + 1) +m′

.
= 1

2
∗ (m+ 1) ∗ (m+ 2)

.
= 1

2
∗ (m ∗ (m+ 1) + 2 ∗ (m+ 1))

.
= 1

2
∗m ∗ (m+ 1) +m+ 1)

.
= k + 1

(2) The trick is to prove

∀k∀m∀n∀m′∀n′(
k
.
= 1

2
∗ (m+ n) ∗ (m+ n+ 1) +m

.
= 1

2
∗ (m′ + n′) ∗ (m′ + n′ + 1) +m′

→ m
.
= m′ ∧ n .

= n′)

by induction on k. The case k
.
= 0 is easy. For the inductive step a replace-

ment of (m,n) by (m′, n′) as in part (1) of the proof will succeed. The details
are left to the reader.

Lemma 44 Let Σ1
PA bew the extension of ΣPA by the following function

symbols:

[,] : N ×N → N
π1 : N → N
π2 : N → N

Let PA1 the the extension of PA by the axioms

1 ∀k∀m(π1(k)
.
= m↔ ∃n(2 ∗ k .

= (m+ n) ∗ (m+ n+ 1) + 2 ∗m)
2 ∀k∀n(π2(k)

.
= n↔ ∃m(2 ∗ k .

= (n+m) ∗ (n+m+ 1) + 2 ∗m)
3 ∀m∀n∀k([n,m]

.
= k ↔ (2 ∗ k .

= (m+ n) ∗ (m+ n+ 1) + 2 ∗m))

We think of [n,m] as a code for the order pair of n and m and of π1, π2 as
the first respectively second projection.
Furthermore

PA1 ` ∀m∀n(π1([m,n])
.
= n ∧ π2([m,n])

.
= n)

60

Proof We claim that the addition of the function symbols π1, π2 and [,]
yields definitional extensions of type (3) from Definition 31. We only need
to show that part (c) of this definition is satisfied. The formula to be proved
for π1, π2 is in both cases

∀k∃m∃n(k
.
=

1

2
∗ (m+ n) ∗ (m+ n+ 1) +m)

which is Lemma 43 (1).
For [,] we need to show that ∀m∀n∃k((2∗k .

= (m+n)∗(m+n+1)+2∗m))
which is clear by Lemma 34 (6).

Derivability of the formula ∀m∀n(π1([m,n])
.
= n ∧ π2([m,n])

.
= n) follows

from Lemma 43 (2).

We have seen the power of the induction axioms of PA. Sometimes however,
another proof principle, called the least number principle, is more convenient.

Lemma 45 For any Σ-formula φ the following is derivable in PA:

∃nφ→ ∃n(φ ∧ ∀m(m < n→ ¬φ))

Proof Given φ(n) define φ′(n) = ∃k(k ≤ n ∧ φ(k)).
It can be easily seen that ∀n(φ′(n) → ∀m(n ≤ m → φ′(m))) is derivable
from PA. The induction axiom for ¬φ′(n) reads

(¬φ′(0) ∧ ∀n(¬φ′(n)→ ¬φ′(n+ 1))→ ∀n(¬φ′(n))

Contraposition yields

∃n(φ′(n))→ (φ′(0) ∨ ∃n(¬φ′(n) ∧ φ′(n+ 1))

By definition of φ′ the following formulas are derivable from PA.

1 φ′(0)→ φ(0)
2 ∀n((¬φ′(n) ∧ φ′(n+ 1))→ φ(n+ 1) ∧ ∀m(m < n→ ¬φ(m)))

From these the claim of the lemma follows directly.

For the next developments we need the notion of divisibility.

61

Definition 32 We say that n is a divisor of m (or n divides m) if there is
k with n ∗ k .

= m.
This gives rise to a definitional extension that adds the new symbol n | m
defined by ∃k(n ∗ k .

= m).

Lemma 46 Adding the symbol − and the axioms for truncated difference

∀n∀m(m > n→ (m− n) + n
.
= m)

∀n∀m(m ≤ n→ m− n .
= 0)

(2.3)

is a definitional extenstion of PA.
Teh following are derivable

1. ∀n∀m∀k(k ∗ (m− n)
.
= k ∗m− k ∗ n)

Proof
The formula that needs to be derivable according to Definition 31 (2a) is an
ewasy consequence of the definition of m ≥ n.
(1) The cases m ≤ n and k

.
= 0 are simple. If m ≥ n and k 6= 0 then

k ∗ m ≥ k ∗ n. We obtain by distributivity and the truncated difference
axiom for m and n:
k ∗ (m− n) + k ∗ n .

= k ∗ ((m− n) + n)
.
= k ∗m

From the truncated difference axioms for k ∗m and k ∗ n we also get: (k ∗
m− k ∗ n) + k ∗ n .

= k ∗m
Thus Lemma 35 (2) gives (k ∗m− k ∗ n)

.
= k ∗ (m− n) + k ∗ n.

Lemma 47 The following formulas are derivable in the definitional exten-
sion of PA.

1. ∀n∀m1∀m2(n | m1 ∧ n | m2 → n | m1 +m2)

2. ∀n∀m1∀m2(n | m1 ∧ n | m2 ∧m2 ≥ m1 → n | (m2 −m1))

62

Proof
(1) This is fairly obvious: From n ∗ k1

.
= m1 and n ∗ k2

.
= m2 we obtain

n ∗ (k1 + k2)
.
= m1 +m2 by the distributive law.

(2) By definition of divisibility we get numbers n1 and n2 such that m1
.
= n∗

n1 and m2
.
= n∗n2. From Lemma 41 (4) we know n1 < n2∨n1

.
= n2∨n2 < n1.

From n2 < n1 we obtain from Lemma 41 (6) m1
.
= n∗n2 < n∗n1

.
= m2 which

contradictsm2 ≥ m1 by Lemma 41 (5). Thus we must have n1 < n2∨n1
.
= n2.

If n1
.
= n2 then also m1

.
= m2. From m2

.
= m1 + 0 and Lemma 35 (2) we

obtain (m2 −m1)
.
= 0 and thus n | (m2 −m1) trivially.

The last case to be considered is n1 < n2. By definition there is n′ with
n1 + n′

.
= n2.

m2
.
= m1 + (m2 −m1) assumption in formula (2)

n ∗ n2
.
= n ∗ n1 + (m2 −m1) assumptions in formula (2)

n ∗ (n1 + n′)
.
= n ∗ n1 + (m2 −m1) case assumption n1 < n2

n ∗ n1 + n ∗ n′ .= n ∗ n1 + (m2 −m1) distributive law
n ∗ n′ .= (m2 −m1) injectivity of +, Lemma 35 (2)
n | (m2 −m1) definition of divisibility

Lemma 48 Assume that the only common divisor of n and m is 1.
Then there exists n1, n2, m1,m2 such that n ∗n1 = m ∗m1 + 1 and m ∗m2 =
n ∗ n2 + 1.

Proof
The claim follows from the well-known algorithm of Euclid to compute the
greatest common devisor of two integers. To keep these notes self-contained
we include the proof, as far as we need it, here. The algorithm is usually
presented for integers. We adapt it to natural numbers, i.e., positive integers.

We define pairs of natural numbers ai,bi for 0 ≤ i < r by the following rules

1. a0
.
= max(n,m), b0

.
= min(n,m)

2. ai > bi for all i with 0 ≤ i < n

3. {ai+1, bi+1} .= {bi, ai − bi}

4. ar
.
= br

63

First we note that from ai > bi and ai > ai − bi we get max(ai, bi) >
max(ai+1, bi+1). For some j we must there get max(aj, bj)

.
= 0. This entails

aj−1 − bj−1
.
= 0, i.e., aj−1

.
= bj−1. We may thus stop the construction with

r
.
= j − 1.

For n
.
= 14, m

.
= 9 we obtain

a0
.
= 14 b0

.
= 9 a0

.
= n b0

.
= m

a1
.
= 9 b1

.
= 5 a1

.
= b0 b1

.
= a0 − b0

a2
.
= 5 b2

.
= 4 a2

.
= b1 b2

.
= a1 − b1

a3
.
= 4 b3

.
= 1 a3

.
= b2 b3

.
= a2 − b2

a4
.
= 3 b4

.
= 1 a4

.
= a3 − b3 b4

.
= b3

a5
.
= 2 b5

.
= 1 a5

.
= a4 − b4 b5

.
= b4

a6
.
= 1 b6

.
= 1 a6

.
= a5 − b5 b6

.
= b5

If k is a common divisor of a and b we obtain by repeated application of
Lemma 47 (2) starting with i

.
= 0 that k is a common divisor of ai and bi

for all 0 ≤ i ≤ r. Using Lemma 47 (1) starting with i
.
= r we see that ar is

a common divisor of ai and bi for all 0 ≤ i ≤ r. Since by assumption of the
lemma the only common divisor of n and m is 1 we must have ar

.
= br

.
= 1.

Substituting the defining equations for the sequence ai, bi from bottom to
top starting with ar

.
= 1 and br

.
= 1 we obtain for every i, r > i ≥ 0

ni1 ∗ ai
.
= mi

1 ∗ bi + 1 and mi
2 ∗ bi

.
= ni2 ∗ ai + 1

or
mi

1 ∗ bi
.
= ni1 ∗ ai + 1 and ni2 ∗ ai

.
= mi

2 ∗ bi + 1
(2.4)

Before we prove this lets us look at the above example computation:

defining equations version 1 version 2
a0

.
= n b0

.
= m 11 ∗m− 7 ∗ n .

= 1 2 ∗ n− 3 ∗m .
= 1

a1
.
= b0 b1

.
= a0 − b0 4 ∗ a1 − 7 ∗ b1

.
= 1 2 ∗ b1 − a1

.
= 1

a2
.
= b1 b2

.
= a1 − b1 4 ∗ b2 − 3 ∗ a2

.
= 1 a2 − b2

.
= 1

a3
.
= b2 b3

.
= a2 − b2 a3 − 3 ∗ b3

.
= 1 b3

.
= 1

a4
.
= a3 − b3 b4

.
= b3 a4 − 2 ∗ b4

.
= 1 b4

.
= 1

a5
.
= a4 − b4 b5

.
= b4 a5 − b5

.
= 1 b5

.
= 1

a6
.
= a5 − b5 1

.
= b5 a6

.
= 1 b6

.
= 1

Claim 2.4 is proved by reverse induction from i
.
= r to i

.
= 0. (If you dont’t

like this to forward induction on j
.
= r − i from j

.
= 0 to j

.
= r.)

For i
.
= r we set nr1

.
= 1, mr

1
.
= 0, nr2

.
= 0 and mr

2
.
= 1.

64

Now assume

ni+1
1 ∗ ai+1

.
= mi+1

1 ∗ bi+1 + 1 and mi+1
2 ∗ bi+1

.
= ni+1

2 ∗ ai+1 + 1
or
mi+1

1 ∗ bi+1
.
= ni+1

1 ∗ ai+1 + 1 and ni+1
2 ∗ ai+1

.
= mi+1

2 ∗ bi+1 + 1

Case 1 bi+1
.
= bi and ai+1

.
= ai − bi leads to the following computation

ni+1
1 ∗ ai+1

.
= mi+1

1 ∗ bi+1 + 1 and mi+1
2 ∗ bi+1

.
= ni+1

2 ∗ ai+1 + 1
ni+1

1 ∗ (ai − bi) .
= mi+1

1 ∗ bi + 1 and mi+1
2 ∗ bi .= ni+1

2 ∗ (ai − bi) + 1
ni+1

1 ∗ ai − ni+1
1 ∗ bi .= mi+1

1 ∗ bi + 1 and mi+1
2 ∗ bi .= (ni+1

2 ∗ ai − ni+1
2 ∗ bi) + 1

ni+1
1 ∗ ai .= (mi+1

1 + ni+1
1) ∗ bi + 1 and (mi+1

2 + ni+1
2) ∗ bi .= ni+1

2 ∗ ai + 1
ni1 ∗ ai

.
= mi

1 ∗ bi + 1 and mi
2 ∗ bi

.
= ni2 ∗ ai + 1

or
mi+1

1 ∗ bi+1
.
= ni+1

1 ∗ ai+1 + 1 and ni+1
2 ∗ ai+1

.
= mi+1

2 ∗ bi+1 + 1
mi+1

1 ∗ bi .= ni+1
1 ∗ (ai − bi) + 1 and ni+1

2 ∗ (ai − bi) .
= mi+1

2 ∗ bi + 1
mi+1

1 ∗ bi .= (ni+1
1 ∗ ai − ni+1

1 ∗ bi) + 1 and ni+1
2 ∗ ai − ni+1

2 ∗ bi .= mi+1
2 ∗ bi + 1

(mi+1
1 + ni+1

1) ∗ bi .= ni+1
1 ∗ ai + 1 and ni+1

2 ∗ ai .= (mi+1
2 + ni+1

2) ∗ bi + 1
mi

1 ∗ bi
.
= ni1 ∗ ai + 1 and ni2 ∗ ai

.
= mi

2 ∗ bi + 1

Case 2 ai+1
.
= bi and bi+1

.
= ai − bi leads to the following computation

ni+1
1 ∗ ai+1

.
= mi+1

1 ∗ bi+1 + 1 and mi+1
2 ∗ bi+1

.
= ni+1

2 ∗ ai+1 + 1
ni+1

1 ∗ bi .= mi+1
1 ∗ (ai − bi) + 1 and mi+1

2 ∗ (ai − bi) .
= ni+1

2 ∗ bi + 1
ni+1

1 ∗ bi .= (mi+1
1 ∗ ai −mi+1

1 ∗ bi) + 1 and mi+1
2 ∗ ai −mi+1

2 ∗ bi .= ni+1
2 ∗ bi + 1

(ni+1
1 +mi+1

1) ∗ bi .= mi+1
1 ∗ ai + 1 and mi+1

2 ∗ ai .= (ni+1
2 +mi+1

2) ∗ bi + 1
mi

1 ∗ bi
.
= ni1 ∗ ai + 1 and ni2 ∗ ai

.
= mi

2 ∗ bi + 1
or
mi+1

1 ∗ bi+1
.
= ni+1

1 ∗ ai+1 + 1 and ni+1
2 ∗ ai+1

.
= mi+1

2 ∗ bi+1 + 1
mi+1

1 ∗ (ai − bi) .
= ni+1

1 ∗ bi + 1 and ni+1
2 ∗ bi .= mi+1

2 ∗ (ai − bi) + 1
mi+1

1 ∗ ai −mi+1
1 ∗ bi .= ni+1

1 ∗ bi + 1 and ni+1
2 ∗ bi .= (mi+1

2 ∗ ai −mi+1
2 ∗ bi) + 1

mi+1
1 ∗ ai .= (ni+1

1 +mi+1
1) ∗ bi + 1 and (ni+1

2 +mi+1
2) ∗ bi .= mi+1

2 ∗ ai + 1
ni1 ∗ ai

.
= mi

1 ∗ bi + 1 and mi
2 ∗ bi

.
= ni2 ∗ ai + 1

We do not need much of the theory of prime numbers, but we cannot do
completely without them.

Definition 33 A natural number n > 1 is called a prime number if its only
divisors are 1 and n.
Thus 2 is the smallest prime number.

65

Lemma 49 Let p be a prime number.
If p | a ∗ b then p | a or p | b.

Proof By assumption we know a ∗ b .
= k ∗ p for some k. Assume that p

does not divide a. Then the only common divisor of p and a is 1. By Lemma
48 we get m and n with n ∗ p .

= m ∗ a + 1. Multiplying both sides of this
equation with b we get n ∗ p ∗ b .= m ∗ a ∗ b+ b. Substituting the equation for
a ∗ b we obtain n ∗ p ∗ b .= m ∗ k ∗ p+ b. Now, Lemma 47 (2) gives us p | b.

Lemma 50 The new binary function symbol seq(,) is added in a defini-
tional extension of PA by the definition:

seq(m, k)
.
= n ↔ ∃m′(π1(m)

.
= m′ ∗ (1 + π2(m) ∗ (k + 1)) + n)

∧0 ≤ n ∧ n < (1 + π2(m) ∗ (k + 1))

Using a more familiar notation, that we have not introduced here, we could
write seq(m, k)

.
= π1(m)mod(1 + π2(m) ∗ (k + 1)).

Proof To show that adding seq(,) with tha given definition is a defini-
tional extension according to Lemma 31 (3) it siffices to show that

∀m∀n∃k∃m′(n 6= 0→ m
.
= m′ ∗ n+ k ∧ 0 ≤ k ∧ k < n)

is derivable from PA. For m
.
= 0 the statement is true if we choose m′

.
=

k
.
= 0 for any n. The inductive proof turns out to be easy. Assume that the

claim is true for m and all n 6= 0 and we want to show it for m + 1 and all
n 6= 0. By induction hypothesis we have m′ and k satisfying

m
.
= m′ ∗ n+ k ∧ 0 ≤ k ∧ k < n).

Then

m+ 1
.
=

{
m′ ∗ n+ k + 1 if k + 1 < n
(m′ + 1) ∗ n+ 0 if k + 1

.
= n

We leave the easy computations to the reader.

Lemma 51 For following formulas are derivable for every k

Seqk = ∀n0 . . . ∀nk−1∃m(
∧

0≤i<k

seq(m, i)
.
= ni)

66

Proof As a preparatory step we consider the numbers 1 + n!(i + 1) for
0 ≤ i ≤ n, with n! = 1 ∗ 2 ∗ . . . ∗ n as usual.

For 0 ≤ i < j ≤ n the greatest common divisor of
1 + n!(i+ 1) and 1 + n!(j + 1) is 1.

(2.5)

Proof of (2.5): If k is a prime divisor of 1 +n!(i+ 1) and 1 +n!(j+ 1) then
by Lemma 47 (2) k is also a divisor of the difference n!(j− i). By Lemma 49
k is a divisor of n! or (j − i). Since 1 ≤ (j − i) ≤ n the difference (j − i) is a
factor of n!. Thus we see that k is a divisor of n! in any case and therefore
a divisor of n!(i + 1). Again appealing to Lemma 47 (2) we see that k is a
divisor of the difference (1 + n!(i+ 1))− n!(i+ 1)

.
= 1. This yields k

.
= 1.

to be completed

67

2.10 Comments

1. ZF is by far the most common axiom system for set theory. Others
are the Neumann-Bernays-Gödel system (this is e.g. used in [Rubin,
1967]) and the Taski-Grothendiek system.

2. Notice, that ZF set theory is a theory of first-order logic, despite the
fact that sets are involved, which are usually thought of as second-order
objects. The point here is, that the classification into second-order,
third-order and so on is relative to a fixed level of first-order elements.
In set theory sets are first-order elements.

3. There are versions of set theory that start out with an initial set of
elements of arbitrary kind, usually called urelements. On top of these
set theory is built, i.e. there will be set of urelements, sets of sets of
urelements and so on. In our exposition we are interested in reduction
to first principles, so it makes sense to go all the way and consider
nothing but sets.

4. We have chosen the textbook [Takeuti & Zaring, 1971]as a reference
mainly for the reason that it is explicitely mention in the ANSI standard
draft for Z. A very gentle, but rigorous introduction may be found in
[Halmos, 1994, Halmos, 1974].

2.11 Exercises

Exercise 2.11.1 Is the formula ∀x(x 6= ∅ → ∃y(y ∈ x∧x∩y = ∅) derivable
from the ZF axioms?

Exercise 2.11.2

1. Show by induction on m
∀m∀n(n ∈ m→ n+ ∈ m ∨ n+ = m)

2. Show by induction on n
∀n∀m(n ∈ m ∨ n = m ∨m ∈ n)

68

Exercise 2.11.3 Consider a finite set a and prove:
If
⋃
a = a then a = ∅.

Exercise 2.11.4

1. Give an example of a transitive set, that is not an ordinal.

2. Prove: if a is an ordinal then a+ is also.

Exercise 2.11.5 Show that the following class terms are not sets.

1. {x | x 6∈ x}

2. {x | x = x}

3. {x | rel(x)}

Exercise 2.11.6 Show on the basis of the axioms of ZF set theory that for
any two sets a, b the cartesian product a× b = {〈z1, z2〉 | z1 ∈ a ∧ z2 ∈ b} is
also a set.

Exercise 2.11.7 Show that the class Ord of all ordinals is not a set.

Exercise 2.11.8 Let x be a subset of the class of all ordinals. By Lemma
24(4) α =

⋃
x is again an ordinal. It can easily be seen that α ≤ β ⇔def

α ⊆ β defines a linear order on Ord.
Show that α is the least upper bound of x, i.e.

1 β ≤ α for all β ∈ x
2 if β ≤ γ for all β ∈ x, then α ≤ γ

Exercise 2.11.9 Can there be a set a such that a× a = P(a)?

For the definition of the cartesion product see Exercise 2.11.6.

69

Exercise 2.11.10 This exercise I owe to a participant of my course.
Can there be four relations s, p, q, r such that

〈q, s〉 ∈ r and 〈p, r〉 ∈ s ?

Background: The problem originates from a foundational context where every
existing object is a relation. Here is an attempt to a positive answer. Let the
relation r be defined by r(x, y) ⇔ x is a subrelation of y. Furthermore let s
be the universal relation, i.e., s(x, y) for x, y. Then the requirements seem
to be satisfied?

Exercise 2.11.11 Show, that there can be no set a with the property a =
{a, ∅}.
In other words, the formula ¬∃x(∀z(z ∈ x ↔ z = x ∨ z = ∅)) is derivable
from the axioms.

Exercise 2.11.12 Show that for no natural number n can there be sets
a1, . . . an with

a1 ∈ a2 ∈ . . . ∈ an−1 ∈ an ∈ a1

Exercise 2.11.13 Let X be a subclass of the class of all ordinals Ord such
that

1. 0 ∈ X
2. if α ∈ X then α+ ∈ X
3. if ∀β(β ∈ α→ β ∈ X) then α ∈ X.

Then X = Ord.
This fact is called the principle of ordinal induction.

Exercise 2.11.14 Let G be the set of all finite sequences of elements from
{0, 1}. In our setting G is the set of functions s with range(s) ⊆ {0, 1} and
dom(s) ∈ N. We define the usual lexicigraphic ordering <lex on G:

s <lex t⇔


s is an initial sequence of t or
∃i(0 ≤ i < length(s) ∧ i < length(t)∧
∀j(0 ≤ j < i→ sj = tj) ∧ si < ti)

Is (G,<lex) wellordered? (see Definition 17)

70

Exercise 2.11.15 Let α, β be ordinals. Then

(α, ε) ∼= (β, ε)⇒ α = β

Exercise 2.11.16 Show that the class term {x | ord(x)} is not a set.

Exercise 2.11.17

1. Let s be the disjoint union of two finite sets s1, s2, i.e., s = s1∪ s2 and
¬∃x(x ∈ s1 ∧ x ∈ s2).
Then s is again finite.

2. Let s be again the disjoint union of two sets s1, s2, we write s = s1]s2.
If s is infinite then s1 or s2 is infinite. This includes, of course the case
where both s1 and s2 are infinite.

3. Generalize part (1) of this exercise to finitely many finie sets. More
precisely: given a finite set a

(a) such that every element of a is a finite set,
∀s(s ∈ a→ fin(s))

(b) the elements of a are mutually disjoint,
∀s1∀s1(s1 ∈ a ∧ s2 ∈ a→ s1 ∩ s2 = ∅)

then
⋃
a is finite.

Less formaly we could claim: if s0, . . . , sk−1 are mutually disjount finite
sets than also s0 ∪ . . .∪ sk−1 is finite. This correlates with the previous
formulation via s = {s0, . . . , sk−1} and k = card(a).

4. If the union of finitely many mutually disjoint sets s1, . . . , sk is infinite,
then at least one si is infinite.

71

Chapter 3

Modal Logic

72

Modal logic is not only concerned with the study of truth or falsity of propo-
sitions but also takes into account in which way, in which modality, a propo-
sition is considered to be true or false. In philosophical logic the distinction
between statements that are neccessarily true and those that are possibly
true was important. Other modalities could be time where one would dis-
tinguish between facts that are true today and those that are true tomorrow
or were true yesterday. Another variation in modal logic is to reason about
statements a person believes to be true, or knows to be true.

Contributions to philosophical modal logic date back to the Middle Ages
and even into Antiquity, with the unavoidable reference to Aristotle. There is
great agreement in the scientific community to regard the publication [Lewis,
1918] by C. I. Lewis as the beginning of the new era of formal study of
modal logic. More recently modal logic was discovered as a useful theory for
computer science, in particular in the areas of artificial intelligence, temporal
reasoning and program semantics.

Hughes und Cresswell could still claim that their book [Hughes & Cresswell,
1972] published in 1968 covers the collected knowledge on modal logics of
their time. Today it is simply impossible to present and overview of the field
with any contention to completeness. Here is a list of selected monographs
and survey articles not devoted to a specific topic within modal logic and
accessible without prior knowledge.

• Melvin Fitting’s chapter in the Handbook of Logic in Artificial Intelli-
gence and Logic Programming, Volume 1, [Fitting, 1993],

• Part One in the CSLI Lecture Notes by Robert Goldblatt, [Goldblatt,
1987],

• Colin Stirling’s chapter in the second volume of the Handbook of Logic
in Computer Science, [Sterling, 1992],

• the chapter on propositional modal logic by Robert Bull und Krister
Segerberg and the chapter on modal quantifier logic by James Garson in
Volume II of the Handbook of Philosophical Logic, [Bull & Segerberg,
1984], [Garson, 1984],

• the successor of their 68-er book by Hughes and Cresswell, [Hughes &
Cresswell, 1984],

73

• the chapter by Peter Steinacker in Einführung in die Nichtklassische
Logik, Akademie-Verlags, Berlin, [Steinacker, 1990]

3.1 Syntax and Semantics

The study of modal logic centers on propositional modal logics. First-order
modal logics play a much lesser role. In this section we will present the basic
definitions of propositional modal logic: syntax, semantics, tautologies and
logical inference.

Definition 34 (Syntax of Modal Logic) Given a set of propositional
variables PVar we define the set PModFml of propositional modal formulas
inductively by

1. PVar ⊂ PModFml, i.e. every propositional variable is a model for-
mula,

2. if F1, F2 ∈ PModFml then also
F1 ∧ F2, F1 ∨ F2, F1 → F2 and ¬F1 in PModFml,

3. if F ∈ PModFml then also 2F ∈ PModFml and 3F ∈ PModFml.

A useful metric for modal formulas is the maximal nesting of modal operators.

Definition 35 (Modal Depth) The model depth md(F) of a formula
F ∈ PModFml is inductively defined:

1. md(p) = 0 for p ∈ PVar,

2. md(¬F) = md(F),

3. md(F1 ∧ F2) = md(F1 ∨ F2) = max{md(F1),md(F2)},

4. md(2F) = md(3F) = md(F) + 1.

74

The semantic domain used to interpret modal logic formulas are Kripke struc-
tures. For later purposes it is advantagous to split the definition in two parts.

Definition 36 (Kripke Frame)
A Kripke frame (G,R) consists of an arbitrary non-empty set G and an

arbitrary binary relation R on G.
Traditionally the elements of G are called possible worlds and the relation
R is called the accessability relation .

Definition 37 (Propositional modal Kripke structure)
A propositional Kripke structure K = (G,R, v) consists of a Kripke

frame (G,R) together with a mapping v : G×PVar→ {0, 1}, which associates
with every propositional variable p ∈ PVar depending on a possibly word
g ∈ G a truth value v(g, p).
If v(g, p) = true we say that p is true in the world g.

1 2

3 4

p,q p,¬q

¬p,q ¬p,¬q

Figure 3.1: Example of a Kripke structure

If a Kripke structure contains not too many possible worlds – which will
be the case for most examples we will encounter in this text – it is
possible to represent it graphically. Figure 3.1 shows a Kripke struc-
ture with four worlds G = {1, 2, 3, 4} and the accessability relation R =

75

{(1, 3), (2, 1), (2, 2), (3, 3), (3, 4), (4, 2)}. The function v can be read of to be
v(1, p) = v(2, p) = true, v(3, p) = v(4, p) = false, v(1, q) = v(3, q) = true
and v(2, q) = v(4, q) = false.

Definition 38 Let K = (G,R, v) be a Kripke structure, g a world in G and
F ∈ PModFml.
The relation (K, g) |= F , which we read as

”
F is true (or valid) in world g

of the Kripke structure K“, is inductively defined as follows.
For simplicity of notation we write g |= F instead of (K, g) |= F

1 g |= p iff v(g, p) = true for p ∈ PVar
2 g |= F ∧H iff g |= F and g |= H
3 g |= F ∨H iff g |= F or g |= H
4 g |= F → H iff (not g |= F) or g |= H
5 g |= ¬F iff not g |= F
6 g |= 2F iff for all h such that R(g, h) it is true that h |= F
7 g |= 3F iff there exists a world h with R(g, h) such that h |= F

Definition 39 A formula F ∈ PModFml is called a modal tautology if for
all Kripke structures K = (G,R, v) and all g ∈ G

g |= F

is true.

Lemma 52 The following formulas are modal tautologies.

1. 2F ↔ ¬3¬F

2. 2(P → Q)→ (2P → 2Q)

3. 2(P ∧Q)↔ (2P ∧2Q)

4. 3(P ∨Q)↔ (3P ∨3Q)

5. (2P ∨2Q)→ 2(P ∨Q)

6. 3(P ∧Q)→ (3P ∧3Q)

76

Proofs

1. The definition of g |= 2F reads

for all h ∈ G with R(g, h) it holds h |= F

A simple reformulation of this is

there is no h ∈ G with R(g, h) and h |= ¬F

But, this is by definition g |= ¬3¬F .

2. Let K = (G,R, v) be an arbitrary Kripke structure and g ∈ G an
arbitrary world. Assume g |= 2(P → Q) with the aim of showing
g |= 2P → 2Q. We procced by assuming in addition g |= 2P and
need to prove g |= 2Q. To do so we consider an arbitrary world h ∈ G
satisfying R(g, h). We have finished if we can show h |= Q. Using our
second assumption, g |= 2P , we know in any case h |= P . The first
assumption, g |= 2(P → Q), now yields h |= P → Q and thus h |= Q.

3. g |= 2(P ∧Q) iff for all h with R(g, h) h |= (P ∧Q)
iff for all h with R(g, h) h |= P and h |= Q
iff for all h with R(g, h) h |= P

and
for all h with R(g, h) h |= Q)

iff g |= (2P ∧2Q)

4. Easily follows from 3 and 1.

5. g |= (2P ∨2Q) iff for all h with R(g, h) h |= P
or
for all h with R(g, h) h |= Q

implies for all h with R(g, h) h |= (P ∨Q)
iff 2(P ∨Q)

6. Easily follows from 5 and 1.

The power and beauty of modal logic has its roots in the sheer unbounded
variations of definition 37 by requiring specific properties of the accessability
relation R. Possible restrictions are to consider only Kripke structures with

77

reflexive accessability relation, or transitive R, or Kripke structures where R
is a partial order relation. A rather queer terminology of classes of Kripke
structures has evolved over time and resisted any attempts of a uniform
standardisation. Here are some of the most popular classes.

Definition 40 (Classes of Kripke structure)
K = the class of all Kripke structure
T = the class of all Kripke structure with R reflexive
S4 = the class of all Kripke structure with R reflexive and transitive
S5 = the class of all Kripke structure with R an equivalence relation
K4 = the class of all Kripke structure with R transitive
B = the class of all Kripke structure with R transitive and symmetric
D = the class of all Kripke structure with R serial

i.e. for all g ∈ G there is h ∈ G with R(g, h)

Note, that what is really going on here is that classes of Kripke frames C0 are
defined, e.g., CT = {(G,R) | R is transitive }. Then the classes C of Kripke
structures whose frame belongs to C0 are obtained.

The notion of tautology can now be relativized to restricted classes of Kripke
structures.

Definition 41 Let C be a class of Kripke frames. A formula F ∈
PModFml is called a modal C-tautology if for all Kripke structures K =
(G,R, v) with (G,R) in C and all g ∈ G

g |= F

is true.

The modal tautologies defined in Definition 39 thus conicide with the K-
tautologies from Definition 41 .

Lemma 53 The following formulas are T-tautologies, i.e., valid in all re-
flexive Kripke structures.

1. 2p→ p

78

2. p→ 3p

3. 22p→ 2p

4. 23p→ 3p

5. 2p→ 32p

6. 3p→ 33p

Proofs

1. Let g be an arbitrary world in a Kripke structure K = (G,R, v) with
transitive R. Assume g |= 2p. We want to show g |= p. From g |= 2p
we obtain h |= p for all h ∈ G with R(g, h). Since R is reflexive we
certainly have R(g, g) and the proof is finished.

2. Since 2p → p is a T-tautology by the previous item 2¬p → ¬p is
also a T-tautology. Using tautology 1 from Lemma 52 we get that also
¬3p → ¬p is a T-tautology. By propositional reasoning this formula
is logically equivalent to p→ 3p.

3. If a formula F is a C-tautology then any formula F ′ arising from F
by uniformly substituting the propositional atom p by an arbitrary
formula is also a C-tautology. If we replace p by 2p in 2p→ p, which
is a T-tautology by item 1 we get that also 22p→ 2p is a T-tautology.

4. Same argument as in the previous item with p being replaced by 3p.

5. Follows from 4 by replacing p by ¬p and the same equivalence trans-
formations as used in item 2.

6. Follows from 3 by replacing p by ¬p and the same equivalence trans-
formations as used in item 2.

It remains to introduce the last principal notion of modal logic, that of modal
logical inference. In contrast to classical logic the more complicated semantics
of modal logic offers more than one intuitive notion of logical inference, a
local and a global version. Furthermore, as we have done with the notion

79

of tautologies, also logical inference can be relativized to specific classes of
Kripke structures.

Definition 42 Let M ⊆ PModFml und F ∈ PModFml, C a class of
Kripke structures.

1. M |=L F (F is a (local) logical consequence of M)
iff for every Kripke structure K = (G,R, v) and every g ∈ G
g |= M implies g |= F

2. M |=G F (F is a global logical consequence of M)
iff for every Kripke structure K = (G,R, v)
if g |= M for all g ∈ G then g |= F for all g ∈ G

3. M |=C
L F (F is a (local) logical consequence of M)

iff for every Kripke structure K = (G,R, v) in C and every g ∈ G
g |= M implies g |= F

4. M |=C
G F (F is a global logical consequence of M)

iff for every Kripke structure K = (G,R, v) in C
if g |= M for all g ∈ G then g |= F for all g ∈ G

If we use the term logical inference without qualification we mean local logical
consequence. This will be our main concept, while global logical inference is
treated as a variation.

The difference between local and global logical inference is clearly illustrated
by the deduction theorem.

Theorem 54 (Deduction Theorem) Let F1, F2 ∈ PModFml.

F1 |=L F2 iff |=L F1 → F2

The proof is obvious.
On the other hand p |=G 2p is certainly true while 6|=G p → 2p, i.e. The
deduction theorem does not hold for the global consequence relation. See
exercise 3.9.14 on page 154 for more on this topic.

The observant reader might at this point expect a discussion of decidability
issues for modal logic. Since Kripke structures can be infinite it is not clear

80

whether satisifiability is decidable, despite the restriction to propositional
formulas. We will show that satisfiability of PDL is decidable, Theorem
103 on page 194. Then Exercise 4.7.9 on page 207 states that this entails
decidability of modal satisfiability as a special case.

81

3.2 Correspondence Theory

Correspondence Theory has been and still is an important part of the theory
of modal logic. To introduce its subject we start with a simple example.
Consider a reflexive frame (G,R), i.e., a frame satisfying (G,R) |= ∀xR(x, x)
or in other words a frame whose accessability relation R is reflexive. No mat-
ter what interpretation v we use to obtain a Kripke structure K = (G,R, v)
all worlds g ∈ G will satisfy (K, g) |= 2p → p. Here and in the following
p, q will be used to denote propositional variables. Is the converse also true?
By the converse we mean, that given an arbitrary frame (G,R) such that
for all v and all g ∈ G (K, g) |= 2p → p is true for K = (G,R, v), then
R is reflexive. Assume that this is not true. Then there is a frame (G,R)
satisfying the stated property, but R is not reflexive. Thus there is g0 ∈ G
with ¬R(g0, g0). We define an interpretation function v0 by

v0(g, p) =

{
1 if R(g0, g)
0 otherwise

For K0 = (G,R, v0) obviously (K0, g0) |= 2p is true. But, by choice of g0 we
also note that (K0, g0) |= ¬p. Thus the converse of the above observation is
in fact true.

Definition 43 Let G be a class of frames and F ∈ PModFml.
We say that F characterizes class G, if for any frame (G,R) the following
it true:

(G,R) ∈ G
iff
(G,R, v) |= F for every v

The fact we proved above can now be phrased as

Lemma 55
The class of reflexive frames is characterized by the formula 2p→ p.

The goal of correspondence theory can now be described as the search for fur-
ther characterizations results like Lemma 55, more general characterization
theorems and the investigations into the underlying principles and limitations
of these theorems.

82

We proceed by taking a look at some more characterization results. Figure
3.2 lists some frequently encountered properties of frames.

1 reflexive ∀xR(x, x)
2 symmetric ∀x∀y(R(x, y)→ R(y, x))
3 serial ∀x∃yR(x, y)
4 transitive ∀x∀y∀z(R(x, y) ∧R(y, z)→ R(x, z))
5 Euklidian ∀x∀y∀z(R(x, y) ∧R(x, z)→ R(y, z))
6 weakly functional ∀x∀y∀z(R(x, y) ∧R(x, z)→ y = z)
7 functional weakly functional + serial
8 dense ∀x∀y(R(x, y)→ ∃z(R(x, z) ∧R(z, y)))
9 weakly connective ∀x∀y∀z(R(x, y) ∧ R(x, z)→ (R(y, z) ∨

y = z ∨R(z, y))
10 weakly oriented ∀x∀y∀z((R(x, y) ∧R(x, z)) → ∃w

(R(y, w) ∧ R(z, w))
11 confluent ∀x∀y(R(x, y)→ ∃z(R(x, z) ∧R(y, z)))

Figure 3.2: Some properties of frames

Lemma 56

The following is a list of defining properties of classes of frames and their
characterizing formulas.

1 reflexive 2p→ p
2 symmetric p→ 23p
3 serial 2p→ 3p
4 transitive 2p→ 22p
5 Euklidian 3p→ 23p
6 weakly functional 3p→ 2p
7 functional 3p↔ 2p
8 dense 22p→ 2p
9 weakly connective 2((p ∧2p)→ q) ∨2((q ∧2q)→ p)

10 weakly oriented 32p→ 23p
11 confluent 32p→ 3p

Proofs Part 1 has already been dealt with in the text preceeding Lemma
55. We will give a proof for part 4. The proofs of the remaining cases will

83

be Exercise 3.9.4.
Part 4 Let (G,R) be a transitive frame, v an arbitrary interpretation and
g ∈ G. Let K denote the Kripke structure (G,R, v). We assume (K, g) |= 2p
and aim to show (K, g) |= 22p. For all worlds g1, g2 satisfying R(g, g1) and
R(g1, g2) we need to show (K, g2) |= p. By transitivity of R also R(g, g2) is
true. Thus the assumption (K, g) |= 2p immediately yields (K, g2) |= p.
For the proof of the second part of characterizability we assume that (G,R)
is not transitive. Thus there are g0, g1, g2 ∈ G with R(g0, g1), R(g1, g2) and
¬R(g0, g2). We define the interpretation function v0 by

v0(g, p) =

{
1 if R(g0, g)
0 otherwise

For K0 = (G,R, v0) we immediately get (K0, g0) |= 2p. Since on the other
hand (K0, g2) |= ¬p is true, we obtain (K0, g0) 6|= 22p. Altogether we have
shown that the formula 2p→ 22p is not valid in K0.

Let us consider a slightly more general characterization result. We will con-
sider properties that are more complicated than those from Figure 3.2.

Definition 44
We will use the following abbreviation:

Rn(x, y) = ∃u1 . . . ∃un−1(R(x, u1) ∧ . . . ∧R(ui, ui+1) ∧ . . . ∧R(un−1, y)).

For n = 1 we stipulate R1(x, y) = R(x, y) and for n = 0 we set R0(x, y) =
x
.
= y.

C(m,n, j, k) = ∀w1∀w2∀w3((Rm(w1, w2) ∧Rj(w1, w3))
→ ∃w4(Rn(w2, w4) ∧Rk(w3, w4)))

If (G,R) |= C(m,n, j, k) we say that frame (G,R) has the C property with
parameters m,n, j, k. Figure 3.3 offers a visual explanation of the C prop-
erties. For some choices of the parameters the C property is equivalent to
some of the familiar properties considered above, see Exercise 3.9.5.

Theorem 57
For every quintuple m, n, j, k of natural numbers 3m2np → 2j3kp is a

characterizing formula for the class of all frames satisfying C(m,n, j, k).

84

g1

g2

j steps

g3

m steps

g4

k steps

n steps

Figure 3.3: Visualization of the C property

Here we use 2np as an abbreviation for 2 . . .2︸ ︷︷ ︸
n−times

p with 20p = p and likewise

for 3np.

Proof: We will throughout tacitly use Exercise 3.9.6.
For the first part we consider a frame (G,R) such that (G,R) |= C(m,n, j, k).
For every Kripke structure K = (G,R, v) and every g ∈ G such that (K, g) |=
3m2np is true we need to show (K, g) |= 2j3kp. From (K, g) |= 3m2np we
infer the existence of a world g1 ∈ G with (G,R) |= Rm(g, g1) and (K, g1) |=
2np. To show (K, g) |= 2j3kp we have to convince ourselves that for an
arbitrary world g2 satisfying (G,R) |= Rj(g, g2) also (K, g2) |= 3kp is true.
From the assumption (G,R) |= C(m,n, j, k) we immediately obtain a world
h ∈ G with (G,R) |= Rn(g1, h) and (G,R) |= Rk(g2, h). In addition (K, g1) |=
2np yields v(h, p) = 1. By definition of Rk(g2, h) this implies (K, g2) |= 3kp.
For the second part of the proof we consider a frame (G,R), such that for all
v we know (G,R, v) |= 3m2np → 2j3kp. To prove (G,R) |= C(m,n, j, k)
we pick three arbitrary worlds g, g1, g2 ∈ G with the properties (G,R) |=
Rm(g, g1) and (G,R) |= Rj(g, g2). The task is to find a confluent h ∈ G. To
this end we define v by:

v(g, p) =

{
1 if Rn(g1, g)
0 otherwise

For K = (G,R, v) this definition yields (K, g1) |= 2np as well as (K, g) |=
3m2np. By assumption we know (K, g) |= 2j3kp and thus also (K, g2) |=
3kp. There is thus h ∈ G with Rk(g2, h) and v(g2, p) = 1. By definition of v
we must have Rn(g1, h).

85

Similar proofs may be found in [Sterling, 1992] and [Hughes & Cresswell,
1984]. A characterisation result for a much wider class of modal formulas is
presented in [Sahlqvist, 1975]. A short presentation of Sahlqvist’s theory is
also contained in [Marx & Venema, 1997, Appendix B].

Before we go on and try to place the characterization problem into a wider
context let us ask an obvious question. Do characterizing formulas always
exist? This question is far to vague to be interesting. It is hopeless to search
for characterizing formulas for every class G of frames. There are countably
many formulas in PModFml but uncountably many classes of frames. The
frame classes we have seen so far were all of the form G = {(G,R) | (G,R) |=
φ} for a first-order formula φ. This suggest to replace the vague question
above by the precise questions:

1. Given an arbitrary formula φ of first-order predicate logic is there a
characterizing formula F ∈ PModFml for the class G = {(G,R) |
(G,R) |= φ} of frames defined by φ?

2. Given an arbitrary formula F ∈ PModFml let G be the class of frames
(G,R) such that for all v the Kripke structure (G,R, v) satisfies F .
Can G be defined by a first-order formula φ?

To cut a long story short, the answer to both questions is no. As a neg-
ative answer to the first question we will eventually show that there is no
characterizing formula for the class of irreflexive frames.

It is a well known phenomenon that as a rule results claiming that an object
with certain properties does not exists are far more involved than positive
existence results. The case at hand is no exception. So we need some warmup
before we set out to prove Lemma 59 below. The crucial construction in this
proof is presented in the next definition.

Definition 45 Let K = (G,R, v) be an arbitrary Kripke structure. For every
g ∈ G let g1, g2 be two new worlds different from each other and all worlds
in G. A new Kripke structure K∗ = (G∗, R∗, v∗) is defined by

G∗ = {gi | g ∈ G, i ∈ {1, 2}}
R∗(gi, hj) iff R(g, h) & i, j ∈ {1, 2} if g 6= h
R∗(gi, gj) iff R(g, g) & i 6= j
v∗(gi, p) = v(g, p)

86

The important feature in this definition is that R∗(g1, g1) is never true, nei-
ther is R∗(g2, g2). In case the orginal relation R satisfies ¬R(g, g) then none
of the theoretically four possible relations involving R∗ is true. In case R(g, g)
is true in the old Kripke structure then exactly R∗(g1, g2) and R∗(g2, g1) are
true in the new Kripke structure.

Lemma 58
For every Kripke structure K and every world g of K the following is true

for every formula F ∈ PModFml:

1 (K, g) |= F iff (K∗, g1) |= F
2 (K, g) |= F iff (K∗, g2) |= F
3 K |= F iff K∗ |= F

Proof
We will prove 1 and 2 by simultaneous induction on the complexity of F .
Claim 3 is an immediate consequence of 1 and 2.
For the base case of the induction, F = p, (p a propositional atom) both
claims are an immediate consequence of the definition of v∗.

The cases of the induction step where F = F1∧F2, F = ¬F1, or F = F1∨F2

are simple. We will present the details in the case F = 2F1. The only
missing case, F = 3F1, can be handled completely analogously.

We assume (K, g) |= 2F1 and want to arrive at (K∗, gi) |= 2F1. This as-
sumption implies

(K, h) |= F1 for all h ∈ G mit R(g, h)

To show (K∗, gi) |= 2F1 we need to consider all u ∈ G∗ with R∗(gi, u). It is
a good strategy to split the proof in two cases.
First Case: u = hj for some h ∈ G, j ∈ {1, 2} with g 6= h and R(g, h).
By assumption (K, h) |= F1 is true and using the induction hypothesis we
get from this (K∗, hj) |= F1, as desired
Second Case: u = gj and R(g, g).
By assumption we know (K, g) |= F1 and the induction hypothesis yields
again (K∗, gj) |= F1. Note, that we must have i 6= j in the second case
and that at this point of the argument it is crucial that we prove 1 and 2
simultaneously.
It still remains to prove the reverse implication of the lemma. So we assume,

87

∀x¬R(x, x) Irreflexivity
∀x∀yR(x, y) Universality see [Fitting, 1993]
∃x∃yR(x, y) Nontriviality see [Fitting, 1993]
∀x∃y(R(x, y) ∧R(y, y)) see [van Benthem, 1984]

Figure 3.4: Examples of non-characterizable frame classes

e.g., (K∗, g1) |= 2F1 and set out to show (K, g) |= 2F1. (The second case
(K∗, g2) |= 2F1 can of course be treated completely analogously.) We need to
show (K, h) |= F1 for every h ∈ G with R(g, h). By definition of R∗ we obtain
from R(g, h) the relation R∗(g1, h2) regardless of g = h or g 6= h. Making use
of the case assumption we arrive at (K∗, h2) |= F1. The induction hypothesis
allows us to conclude (K, h) |= F1.

Lemma 59 Let G be the class of all irreflexive frames, i.e., those frames
satisfying ∀x¬R(x, x).
There is no characterizing formula in PModFml for G.

Proof
By way of contradiction we assume the existence of a characterizing formula
F ∈ PModFml of class G. We consider the very special frame (G1, R1)
with G1 = {g0} and R1(g0, g0). The Kripke structure (G∗, R∗) constructed
in Definition 45 is certainly irreflexive. For an arbitrary v by choice of F we
must have (G∗, R∗, v∗) |= F and (G,R, v) 6|= F . This contradicts Lemma 58.
Thus, a characterizing formula F cannot exists.

Futher examples of non-characterizable classes of frames are listed in Figure
3.4. Still more results can be found in [van Benthem, 1984].
We return to the second question above Can every class of frames charac-

terized by a modal formula be defined by a first-order formula? As already
remarked the answer is negative. Here is the example that proves it.

Lemma 60
The formula

(2p→ 22p) ∧ (2(2p→ p)→ 2p)

88

characterizes all transitive frames (G,R), such that the inverse relation R−1

is wellfounded, i.e., there is no infinite chain of elements g0, g1, . . . , gn . . . in
G such that R(gi, gi+1) for all 0 ≤ i.

Proof: can be found e.g., in [van Benthem, 1984, pp 195ff]. For the con-
venience of the reader and since it is not too complicated we present our
version here.

We already know that (2p → 22p) characterizes the class of transitive
frames, so we will only be concered with the second conjunct.

claim of part 1 If (G,R) is transitive but there is a interpretation v such
that (G,R, v) 6|= (2(2p→ p)→ 2p) then R−1 is not wellfounded.
We abbreviate (G,R, v) by K. There is thus a world g1 ∈ G with

(K, g1) |= 2(2p→ p) (3.1)

but
(K, g1) |= ¬2p (3.2)

Statement 3.2 implies the existence of g2 ∈ G with R(g1, g2) and

(K, g2) |= ¬p (3.3)

From 3.1 we also obtain
(K, g2) |= 2p→ p (3.4)

Together 3.4 and 3.3 yield

(K, g2) |= ¬2p (3.5)

This in turn implies the existence of a world g3 ∈ G satisfying R(g2, g3) and

(K, g3) |= ¬p (3.6)

Since R was assumed to be transitive we also have R(g1, g3). Thus 3.1 yields
again

(K, g3) |= 2p→ p (3.7)

Now it is easy to see that we obtain in this way an infinite sequence
g0, . . . , gi, . . . with R(gi, gi+1) for all i.

claim of part 2 If (G,R) is a transitive frame such that for (G,R, v) |=

89

(2(2p→ p)→ 2p) is true for all v then R−1 is wellfounded.
In this case we assume that R−1 is not wellfounded and will arrive at a con-
tradiction. There is thus a sequence gi ∈ G with R(gi, gi+1) for all i ≥ 1. We
define v by:

v(h, p) =

{
0 iff R(h, gi) for some i
1 otherwise

As usual we abbreviate (G,R, v) by K. From R(gi, gi+1) we get by this defi-
nition (K, gi) |= ¬p and R(gi+1, gi+2) further yields (K, gi) |= ¬2p for all i.
In the end we want to show that K |= (2(2p → p) → 2p) is not true.
We thus need an h∗ ∈ G with (K, h∗) |= 2(2p → p, but (K, h∗) |= ¬2p.
We will in fact show that (K, h) |= 2p → p is true for arbitrary h. Thus
(K, g) |= 2(2p→ p) is true for any g. Thus h∗ = gi for any i will do.
So we consider an arbitrary h ∈ G. We distinguish two cases. In case 1 we
assume that is no i with R(h, gi). By definition of v this gives v(h, p) = 1
i.e., (K, h) |= p and thus also (K, h) |= 2p → p. In the second case R(h, gi)
for some i. Because of (K, gi) |= ¬p we also get (K, h) |= ¬2p which trivially
yields (K, h) |= 2p→ p as desired.

Corollary 61 Let G be the class of frames characterized by the formula from
Lemma 60. There is no first-order formula φ such that

G = {(G,R) | (G,R) |= φ}

Proof: Follows from the fact that the wellfoundedness property cannot be
axiomatized in any logic satisfying the compactness property. For the con-
venience of the reader we repeat this easy argument here. Assume, for the
sake of a contradiction, that there is a first-order formula φ with the property
stated in the corrolary. Consider the following infinite set of formulas

Γ = {φ} ∪ {R(ci, ci+1) | i ≥ 0}

Here the ci are new constant symbols. Obviously Γ is not satisfiable, but
every finite subset of Γ is. In first-order logic this is not possible.

We will give another interesting example using multimodal logic. In the
particular multimodal logic there will not only be one box-operator 2, but

90

two of them 2a and 2b. In the frames for multimodal logic there will be
instead of one accessability relation R two accessability relations Ra and Rb.

The example to follow will make use of the concept of transitive closure.

Definition 46
The transitive closure of a binary relation R is the smallest relation Rt

with the properties

1. Rt is transitive and reflexive

2. R ⊆ Rt

Theorem 62
The conjunction of the following multimodal formulas

2ap→ (p ∧2a2bp)
2a(p→ 2bp)→ (p→ 2ap)

characterizes the class of all multimodal frames (G,Ra, Rb), such that Ra is
the transitive closure of Rb.

Proof: For the easy part assume (G,Ra, Rb) is a multimodal frame with
Ra the transitive closure of Rb. We need to convince ourselves that for any
interpretation v and any g ∈ G for both formulas F (K, g) |= F is true,
with K = (G,Ra, Rb, v). To show (K, g) |= 2ap → (p ∧ 2a2bp), we assume
(K, g) |= 2ap and aim to show (K, g) |= p ∧ 2a2bp. Since Ra is reflexive we
get immediately (K, g) |= p. For the proof of the second conjunct we aim to
show for arbitrary h1, h with Ra(g, h1) and Rb(h1, h) that (K, h) |= p. Since
Ra is the transitive closure of Rb this implies Ra(g, h) and the assumption
(K, g) |= 2ap indeed yields (K, h) |= p. To show that the second formula
is satisfied we assume (K, g) |= 2a(p → 2bp) and (K, g) |= p and aim to
prove (K, g) |= 2ap. That is to say, for every h with Ra(g, h) we have to
show (K, h) |= p. Since Ra is the transitive closure of Rb there are h0, . . . , hn
with h0 = g, hn = h and Rb(hi, hi+1) for all 0 ≤ i < n. The proof now
proceeds by induction on n. For n = 0 we have g = h and we are done.
For the induction step we have as a hypothesis (K, hn−1) |= p. Since by
definition of the transitive closure we also have Ra(g, hn−1) the assumption
(K, g) |= 2a(p → 2bp) tells us that (K, hn−1) |= p → 2bp is true. The

91

induction hypothesis can now be used to arrive at (K, hn−1) |= 2bp and
Rb(hn−1, hn) finally yields (K, h) |= p as desired.

For the difficult part we fix a multimodal frame (G,Ra, Rb) such that for
any interpretation v both formulas are satisfied in the Kripke structure K =
(G,Ra, Rb, v). The proof that Ra is the transitive closure of Rb is split into
two parts:
part 1: Ra ⊆ Tclosure(Rb)
Let g, h be worlds in G with Ra(g, h). We define a interpretation v as follows:

v(w, p) =

{
1 if (g, w) in Tclosure(Rb)
0 otherwise

For any g ∈ G we know (K, g) |= 2a(p → 2bp) → (p → 2ap), where K
abbreviates (G,Ra, Rb, v). To be able to make use of this fact, we will first
aim to show (K, g) |= 2a(p→ 2bp).

To this end we consider a world w ∈ G with Ra(g, w) and (K, w) |= p with the
obligation to show (K, w) |= 2bp. By definition (K, w) |= p is only possible
if (g, w) is in the transitive closure of Rb. For any other world w′ with
Rb(w,w

′) also (g, w′) is in the transitive closure of Rb and by definition of v
we get (K, w′) |= p. This shows (K, g) |= 2a(p→ 2bp) and the characterizing
properties of the second formula implies (K, g) |= (p→ 2ap). Since (g, g) is
in the transitive closure of any relation we get by definition of v in particular
(K, g) |= p and thus (K, g) |= 2ap. At this point we remember the pair (g, h)
satisfying Ra(g, h) that we started out with. From (K, g) |= 2ap we obtain
(K, h) |= p. Again using the definition of v we see that (g, h) is indeed in the
transitive closure of Rb.

part 2: Tclosure(Rb) ⊆ Ra

We start with a pair of worlds (g, h) in the transitive closure of Rb and aim
to arrive at Ra(g, h). The following interpretation will be useful:

v(w, p) =

{
1 iff Ra(g, w)
0 otherwise

Again we abbreviate (G,Ra, Rb, v) simply by K. By assumption we know
(K, g) |= 2ap→ (p ∧ 2a2bp). We have taken care in the definition of v that
(K, g) |= 2ap is true. Thus we also have

(K, g) |= (p ∧2a2bp) (3.8)

Since (g, h) is in the transitive closure of Rb there are worlds g0, g1, , gk

92

with g0 = g, gk = h and Rb(gi, gi+1) for all 0 ≤ i < k. We will show
(K, gi) |= p for all 0 ≤ i ≤ k by induction on i. For i = 0 we get g0 = g
and the claim is part of 3.8. In the induction step we start with (K, gi) |= p.
From this we obtain by the definition of v that Ra(g, gi), which by 3.8 yields
(K, gi) |= 2bp and thus, as desired, (K, gi+1) |= p since Rb(gi, gi+1). In the
end we have shown (K, gk) |= p, which is by gk = h also (K, h) |= p. The
definition of v now yields Ra(g, h) and we are done.

Is there a more systematic approach to find out which classes G of frames
characterized by a modal formula F are first-order definable? An approach
that might even assist in computing the first-order definition from F in case
it exists? We will indeed present such an approach. The masterplan is to
define the class G by a second-order formula φ, that is quite straight forward,
and then investigate if φ may be equivalent to a first-order formula. That is
the tricky part. Thus the problem in modal logic we wanted to solve in the
first place is reduced to a much more general problem that is of interest in
many other totally different contexts.

3.3 The Tree-Property

We start by stipulating some basic notation.

Definition 47 (Trees)

1. A path in the Kripke frame (G,R) is a finite sequence 〈g0, . . . , gn−1〉 of
elements gi ∈ G such that R(gi, gi+1) for all 0 ≤ i < n− 1.

2. If σ = 〈g0, . . . , gn−1〉 is a path we say more precisely that σ is a path
from g0 to gn−1.

3. If σ = 〈g0, . . . , gn〉 is a path in (G,R) we denote by `(σ) the last element
of σ, thus `(σ) = gn.

4. By σ0 + g we denote the path obtained from σ0 by adding g at the end,
i.e., if σ0 = 〈g0, . . . , gn〉 the σ0 + g is 〈g0, . . . , gn, g〉.

5. (G,R) is called a tree if for any two g1, g2 there is exactly one path
either from g1 to g2 or from g2 to g1.

93

6. (G,R) is called a rooted tree if (G,R) is a tree and there is r ∈ G such
that for all g ∈ G there is a path from g. The element r is then called
the root.

If (G,R) is a tree then for no g ∈ G will R(g, g) be true. Otherwise, 〈g〉,
〈g, g〉 and 〈g, g, g〉 would be different paths all leading from g to g.
Furthermore, Gnr = Z with Rnr(z1, z2) iff z2 = z1 + 1 is an example of a tree
that is not rooted.

Definition 48 (Bounded Morphism)
Let K1 = (G1, R1, v1), K2 = (G2, R2, v2) be Kripke structures.

A function ρ : G1 → G2 is called a bounded morphism if

1. for all g ∈ G1 and propositional atoms p v1(g, p) = v2(ρ(g), p)

2. for all g, h ∈ G1 R1(g, h) implies R2(ρ(g), ρ(h))

3. for all g ∈ G1, if there exists h′ ∈ G2 with R2(ρ(g), h′) then there is
h ∈ G1 such that R1(g, h) and h′ = ρ(h).

Lemma 63 Let ρ be a bounded morphism from K1 = (G1, R1, v1) to K2 =
(G2, R2, v2), and g ∈ G1. Then for arbitrary modal formulas F

(K1, g) |= F ⇔ (K2, ρ(g)) |= F

Proof The proof proceeds by structural induction on the complexity of the
modal formula F . If F is a propositional atom the claim follows directly from
item 1 in Definition 48. The propositional induction steps are obvious. So
we assume that the claim is true for F0 and proceed to prove it for F = 2F0.
⇒ Starting from the assumption (K1, g) |= F we try to prove (K2, ρ(g)) |=
F . To this end consider h′ ∈ G2 with R2(ρ(g), h′) with the aim to show
(K2, h

′) |= F0. By item 3 in Definition 48 we obtain an h ∈ G1 satisfying
ρ(h) = h′ and R1(g, h). By case assumption we get (K1, h) |= F0. The in-
duction hypothesis yields (K2, ρ(h)) |= F0, as desired.
⇐ Starting from the assumption (K2, ρ(g)) |= F we try to prove (K1, g) |=
F . To this end consider h ∈ G1 with R1(g, h) with the aim to show
(K2, ρ(h)) |= F0. By item 2 in Definition 48 we obtain R2(ρ(g), ρ(h)). By

94

case assumption we get (K2, ρ(h)) |= F0. Again, induction hypothesis yields
the desired result.

Example 8 Let K∗ = (G∗, R∗, v∗) be the Kripke structure constructed from
K = (G,R, v) in Definition 45 then ρ given by

ρ(gi) = g for i ∈ {1, 2}

is a bounded morphism from K∗ to K. Lemma 58 is thus a special instance
of Lemma 63.

Example 9 Let (G2, R2) be a closed subframe of (G1, R1), see Definition 90
and K2 = (G2, R2, v2) the restriction of K1 = (G1, R1, v1). Then the identity
map ρid : G2 → G2 is a bounded morphism from K2 in K1. The solution to
Exercise 3.9.1 may then be seen as a special case of Lemma 63.

Definition 49 (Unfolding) Let K = (G,R, v) be a Kripke structure.

For an element g ∈ G the unfolding ~Kg = (~Gg, ~R,~v) of K at g is given by

~Gg = {σ | σ is non-empty path in (G,R) starting with g}
~R(σ1, σ2) ⇔ σ2 = σ1 + `(σ2)

i.e., σ2 is an extension of σ1 by exactly one entry
~v(σ, p) = v(`(σ), p)

If the frame (G,R) contains a loop then ~G will be infinite.

Lemma 64 Let K = (G,R, v) be a Kripke structure, ~Kg = (~Gg, ~R,~v) its
unfolding at g. Then

(K, g) |= F ⇔ (~Kg, 〈g〉) |= F

for every modal formula F .

95

Proof Because of Lemma 63 it suffices to show that ρ given by ρ(σ) = `(σ)

is a bounded morphism from ~K onto K. Properties 1 and 2 of Definition
48 follow directly from the definition of ~v and ~R. To check property 3 of
Definition 48 we consider σ ∈ ~Gg, σ = 〈g0, . . . gn〉, and h ∈ G with R(ρ(σ), h).

For σ1 = 〈g0, . . . gn, h〉 = σ + h we obtain ρ(σ1) = `(σ1) = h and ~R(σ, σ1).

Corollary 65 If a modal formula F is satisfiable, then there is a Kripke
structure K = (G,R, v) with (G,R) a tree with root r such that

(K, r) |= F

Proof In view of Lemma 64 it suffices to convince ourselves that the un-
folding at g ~Kg = (~Gg, ~R,~v) of any Kripke structure K is a tree with root

〈g〉. Since we have for any path σ0, . . . , σn−1 in (~Gg, ~R) that σ0 must be an
inital segment of σn−1 this is obvious.

96

3.4 Second Order Logic

Definition 50
The signature Σ of a logic consists of the two sets FSym of function symbols

and PSym of predicate symbols.
There is furthermore a function α : FSym ∪ PSym → N such that α(f)
fixes the number of arguments of the function symbol f , respectively α(r) the
number of arguments of the relation symbol r.

A function symbol f with α(f) = 0 is called a constant symbol, a relation
symbol r with α(r) = 0 is a propositional variable. There is no difference
between a signature for a first-order language and a signature for a second-
order language. This statement is at least true for the second order language
we consider here. For typed second-order languages one would e.g., have to
adapt α.

The other syntactial elements that are used to built formulas, such as the
propositional operators ¬,∧,∨,→,↔ and the quantifiers ∀,∃ and auxiliary
symbols like (,) are called logical symbols and not listed in Σ. We will also
consider the equality symbol

.
= as a logical symbol. The last missing building

blocks for formulas are variable symbols and this is where the differences
between first and second order logic lie.

We still have symbols for first-order variables which we will usually denote
by lower case letters from the end of the alphabet, v0, v1, . . . or x, y, z,

A new feature are second order variables for unary, binary, n-ary relation
symbols. These we will denote by upper case letters from the end of the
alphabet with superscripts indicating the arity V 1

0 , V
1

1 , . . . or X2, Y k, Z3,
Thus X1 will be interpreted as a variable ranging over sets, X2 as a variable
ranging over binary relations etc. We will not quantify over 0-ary relations,
which is no loss. Also in our version of second-order logic there will be no
variables and thus no quantifiers ranging over functions. This is again no
real loss since n-ary functions can be coded as n+ 1-ary relations.

Definition 51
Let Σ be a signature. The set of terms Term is defined as usual:

1. every first-order variable x is a term.

97

2. if t1, . . . , tn are terms and f is an n-ary functions symbols in FSym
then f(t1, . . . , tn) is also a term.

There is no difference between first-order or second-order terms.
The set of second-order formulas FmlSO are inductively defined by:

1. t1
.
= t2 is an (atomic) formula in FmlSO for any two terms t1, t2,

2. p(t1, . . . , tn) is an (atomic) formula in FmlSO for terms t1, . . . , tn and
any n-ary symbol p ∈ PSym,

3. Xn(t1, . . . , tn) is an (atomic) formula in FmlSO for terms t1, . . . , tn
and any n-ary second-order variable symbol Xn,

4. if F1, F2 are formulas in FmlSO so are ¬F1, F1∧F2 F1∨F2 F1 → F2,

5. if F is a formula in FmlSO so are ∀xF , ∃xF , ∀XnF ∃XnF for vari-
ables x, Xn.

If need arises we will write TermΣ and FmlSOΣ instead of Term and FmlSO.
We will frequently write X instead of X1.

Formulas that do not contain second-order variables X i with i > 1 are called
formulas of monadic second order.

The notion of free and bound occurences of first and second-order variable
follows the same pattern and we assume that no further details need be
provided.

Definition 52
A structure M = (D, I) for signature Σ = FSym ∪ PSym consists of a

non-empty universe D and an interpretation function I such that

1. for every symbol f ∈ FSym the value I(f) is a function from Dα(f)

into D

2. for every symbol r ∈ PSym the value I(r) is a subset of Dα(r), i.e., an
n-ary relation on D for n = α(r).

There is no difference between a first-order or second-order structure for Σ.

98

The crucial definition is the evaluation of a formula F ∈ FmlSO for a given
structure.

Definition 53
Let Σ be a signature, M = (D, I) a Σ-structure, β an assignment for

first-order variables and γ an assignment for second-order variables, i.e.,

β(x) ∈ D
γ(Xn) ⊆ Dn

We will employ the following usual notation

βdx(y) =

{
β(y) if x 6= y
d if x = y

γMXn(Y) =

{
γ(Y) if Xn 6= Y
M if Xn = Y

here d ∈ D and M ⊆ Dn.

The evaluation valM,β,γ(t) for arbitrary terms t ∈ Term is the same as in
first-order logic and we skip it here. In this case γ has of course no influence
on the result.
The evaluation valM,β,γ(F) for arbitrary formulas F ∈ FmlSO is inductively
defined by:

valM,β,γ(t1
.
= t2) = 1 iff valM,β,γ(t1) = valM,β,γ(t2)

valM,β,γ(p(t1, . . . , tn)) = 1 iff (valM,β,γ(t1), . . . , valM,β,γ(tn)) ∈ I(p)
valM,β,γ(X

n(t1, . . . , tn)) = 1 iff (valM,β,γ(t1), . . . , valM,β,γ(tn)) ∈ γ(Xn)
valM,β,γ(∃xF) = 1 iff there is d ∈ D with valM,βd

x ,γ
(F) = 1

valM,β,γ(∀xF) = 1 iff for all d ∈ D valM,βd
x ,γ

(F) = 1
valM,β,γ(∃XnF) = 1 iff there is M ⊆ Dn with valM,β,γM

Xn
(F) = 1

valM,β,γ(∀XnF) = 1 iff for all M ⊆ Dn valM,β,γM
Xn

(F) = 1

all remaining cases are as in first-order logic

If F contains no free variables we write valM(F) instead of valM,β,γ(F) and
also use M |= F in place of valM(F) = 1.

Example 10 Here is a simple example with empty Σ. For the formula
E(x, y) ≡ ∀X(X(x) ↔ X(y)) we get valM,β,γ(E) = 1 iff β(x) = β(y).
In other words E(x, y) defines equality.

Example 11 Let Σ = FSym ∪ PSym with FSym = ∅ and PSym = {R}
with R a binary relation symbol, that is, Σ is the signature for Kripke

99

frames. Let Grefl be the class of frames characterized by 2p → p and Frefl
the formula ∀X(∀x(∀y(R(x, y)→ X(y))→ X(x)).

(G,R) ∈ Grefl iff for all v we have (G,R, v) |= 2p→ p
iff for all v and all g ∈ G we have ((G,R, v), g) |= 2p→ p
iff for all v and all g ∈ G we have

if ((G,R, v), g) |= 2p
then ((G,R, v), g) |= p

iff for all v and all g ∈ G we have
if ((G,R, v), h) |= p for all h with R(g, h)
then ((G,R, v), g) |= p

iff for all v and all g ∈ G we have
if v(p, h) = 1 for all h with R(g, h)
then v(p, g) = 1

iff (G,R) |= Frefl

The last equivalence depends on the fact that the interpretation v and the
assigment γ(X) carry the same information. Given v we can define γ(X) =
{g ∈ G | v(p, g) = 1} and if γ(X) = M is given we set v(p, g) = 1⇔ g ∈M .

Example 11 showed an example of a second-order formula that axiomatized
exactly those frames that are characterized by the modal formula 2p → p.
This is just one example of the general phenomenon stated in the next lemma.

Lemma 66 For every modal formula F ∈ PModFml there is a formula
F ∗ ∈ FmlSO such that for all frames (G,R)

(G,R) |= F ∗ ⇔ (G,R, v) |= F for all v

Proof As it stands the claim cannot be proved via induction on the com-
plexity of F . We need to allow formulas F ∗ with free first and second order
variables. For every propositional variable p occuring in F let Xp be a second-
order variable. F 2 will contain exactly one free first-order variable, which we
will always denote by x.

The claim now reads:
For every modal formula F there exist a second-order formula F 2 with x as

100

its only free first-order variable and at most the free second-order variable
Xp for the propositional atoms p in F such that:

val(G,R),β,γ(F
2) = 1⇔ ((G,R, v), g) |= F (3.9)

with β(x) = g and γ(Xp) = {h ∈ G | v(p, h) = 1}.
Next we show how F 2 can be explicitely constructed from F . We will denote
by G(u/w) the formula that arises from G by replacing all free occurences
of the variable w by u.

F F 2

p Xp(x)
F1 ∧ F2 F 2

1 ∧ F 2
2

F1 ∨ F2 F 2
1 ∨ F 2

2

¬F0 ¬F 2
0

2F0 ∀y(R(x, y)→ F 2
0 (y/x))

3F0 ∃y(R(x, y) ∧ F 2
0 (y/x))

F ∗ is the formula ∀x∀Xp1 . . . ∀XpkF
2 where p1, . . . , pk are all propositional

variables in the modal formula F .

It is now a matter of routine to verify inductively that this construction yields
formulas F 2 that satisfy 3.9. We present the details for the base case F = p
and the induction step F = 2F1.
F = p In this case F 2 = Xp(x).
val(G,R),β,γ(Xp(x)) = 1 ⇔ β(x) ∈ γ(Xp)

⇔ g ∈ {h ∈ G | v(p, h) = 1}
⇔ v(p, g) = 1
⇔ ((G,R, v), g) |= p

F = 2F0 In this case F 2 = ∀y(R(x, y)→ F 2
0 (y/x)).

val(G,R),β,γ(F
2) ⇔ val(G,R),β’,γ(F

2
0) for all h ∈ G with R(g, h)

and β′ = βhx .
⇔ ((G,R, v), h) |= F0 for all h ∈ G with R(g, h)

(ind.hyp.)
⇔ ((G,R, v), g) |= 2F0

Let us now return to Example 11. It can been seen without too much diffi-
culty, using basically the same type of arguments as in the proof of Lemma

101

55, that ∀X(∀x(∀y(R(x, y) → X(y)) → X(x)) is logically equivalent to
∀xR(x, x). An equivalence of this type is called an elimination of second-
order quantifiers. Is there a more systematic way to eliminate second-order
quantifiers? Or put in different words, is there a more systematic way to
find for a second-order formula an equivalent first-order formula? Let us
hasten to say that most second-order formulas do not have an equivalent
first-order formula and the question of deciding if a second-order formulas
has an equivalent first-order formula is undecidable, see e.g., [M.Gabbay et
al., 2008, Subsection 3.4.6]. But, there are interesting subclasses of formulas
that allow second-order quantifier elimination. The basis result, presented in
the next lemma, has first been proved by Ackermann in [Ackermann, 1935].
We need one auxiliary definition.

Definition 54 Let F be a second-order formula, F0 a subformula of F .

1. an occurence of F0 as a subformula of F is called positive (negative)
if it occurs in the scope of an even (odd) number of negation symbols.
Counting scopes of negation symbols is done after transformation into
a normal form where ¬,∧ and ∨ are the only propositional connectives,
or occurences within the left-hand side of an implication are counted as
well.

2. Let R be a k-ary relation symbol. F is called positive (negative) for R
if all occurences of formulas R(t̄) in F are positive (negative).

3. Let Xk be a k-ary second-order variable. F is called positive (negative)
for Xk if all occurences of formulas Xk(t̄) in F are positive (negative).

Lemma 67 Let F be a second-order formula, with Xk as its only free second-
order variable. Assume that valM,β,γ(F) = 1.

1. if Xk is positive in F then also valM,,β,γ’(F) = 1
for all γ′ with γ(X) ⊆ γ′(X).

2. if Xk is negative in F then also valM,,β,γ’(F) = 1
for all γ′ with γ′(X) ⊆ γ(X).

102

Proof Easy induction and also pretty obvious.

Lemma 68 (Ackermann’s Lemma) Let Xk be a second-order variable,
and x̄ a k-tuple of first-order variables. Let G be a first-order formula and H
a formula without second-order quantifiers and at most Xk as a free second-
order variable.

1. If H is positive for Xk then

∃Xk(∀x̄(Xk(x̄)→ G) ∧H)↔ H∗

2. If H is negative for Xk then

∃Xk(∀x̄(G→ Xk(x̄)) ∧H)↔ H∗

In both cases H∗ is obtained from H by replacing any atomic second-order
subformula Xk(t̄) by G. More precisely, we write Xk(t̄) as Xk(x̄)[t̄/x̄], which
is always possible, and substitute it by G[t̄/x̄].
Here the notation G[t1, . . . , tk/x1, . . . , xk] stands for the formula that arises
from G by the simultaneous substitution of ti for xi for all 1 ≤ i ≤ k.

Proof We will only show the details of part 1 of the lemma. This should
give the reader the right ideas how to proof part 2.

→ By assumption we know for an arbitrary structure M = (D, I) and
arbitrary valuations β,γ valM,β,γ(∃Xk(∀x̄(Xk(x̄) → G) ∧ H) = 1. There
exists a subset V ⊆ Dk such that valM,β,γ0(∀x̄(Xk(x̄) → G)) = 1 and
valM,β,γ0(H) = 1 with γ0 = γVX . Let W be the set {d̄ ∈ Dk | valM,βd̄

x̄
(G) = 1}.

From valM,β,γ0(∀x̄(X(x̄) → G)) = 1 we get V ⊆ W and from the positivity
of H we get valM,β,γ1(H) = 1 with γ1 = γWX . To obtain H∗ a subformula
Xk(x̄)[t̄/x̄] of H is replaced by G[t̄/x̄]. Now, valM,β,γ1(Xk(x̄)[t̄/x̄]) = 1 iff
valM,β(t̄) ∈ W iff valM,β(G[t̄/x̄]) = 1. This leads us to valM,β,γ1(H∗) = 1.

Finally, since H∗ is a purely first-order formula this is the same as
valM,β,γ(H

∗) = 1 or valM,β(H∗) = 1.

← We start with valM,β,γ(H
∗) = 1. Let, as above, W be the set

{d̄ ∈ Dk | valM,βd̄
x̄
(G) = 1}. By the same argument as in the first part

103

of the proof we obtain valM,β,γW
X

(H) = 1. By choice of W we also have

valM,β,γW
X

(∀x̄(Xk(x̄) → G)) = 1. This shows valM,β,γ(∃Xk(∀x̄(Xk(x̄) →
G) ∧H)) = 1 as desired.

Example 12 Let us try to apply Lemma 68 to the formula Frefl. We write
Frefl ≡ ∀xF0 with F0 : (rename variables y to x and x to z to avoid notational
conflicts with the lemma.)

∀X(∀x(R(z, x)→ X(x))→ X(z))

from Example 11. Since the lemma only talks about existential second-order
quantifiers we consider the negated formula ¬F0:

∃X(∀x(R(z, x)→ X(x)) ∧ ¬X(z))

This formula satisfies the assumptions of the lemma with G ≡ R(z, x) and
H ≡ ¬X(z). Since H is obviously negative for X we are in case 2 of the
lemma. H∗ is computed as ¬R(z, z). Thus ¬F0 ↔ ¬R(z, z), i.e., F0 ↔
R(z, z) and thus also Frefl ↔ ∀zF0 (≡ ∀zR(z, z)).

Let us look at another example that shows that the application of Lemma
68 is not always so straight forward.

Example 13 We start with the modal formula p → 23p which we know
characterizes the class of symmetric frames. Translation into second-order
logic following the construction from Lemma 66 and subsequent negation
yields.

1 Fsym ∀X(X(z)→ ∀u(R(z, u)→ ∃x(R(u, x) ∧X(x))))
2 ¬Fsym ∃X(X(z) ∧ ∃u(R(z, u) ∧ ∀x(R(u, x)→ ¬X(x))))

To make this formula fit the pattern of Ackermann’s lemma we move the
quantifier ∃u in front of the formula, which can easily seen to be possible.
From now on u will be a free variable just as z. This leads to

3 ¬F ′sym ∃u∃X(X(z) ∧R(z, u) ∧ ∀x(R(u, x)→ ¬X(x)))
or equivalently
4 ¬F ′′sym ∃X(∀x(X(x)→ ¬R(u, x)) ∧X(z) ∧R(z, u))

Now we can apply Ackermann’s lemma with G ≡ ¬R(u, x) and

104

H ≡ X(z) ∧R(z, u).

5 ¬F ′′sym ↔ ¬R(u, z) ∧R(z, u)
more precisely
5a ∀u(¬F ′′sym ↔ ¬R(u, z) ∧R(z, u))
which leads to
6 ¬F ′sym ↔ ∃u(¬R(u, z) ∧R(z, u))
reversing the prenexing step for ∃u
6a ¬Fsym ↔ ∃u(¬R(u, z) ∧R(z, u))
and finally to
7 Fsym ↔ ∀u(R(z, u)→ R(u, z))

See Exercises 3.9.10 and 3.9.11 for more examples.

Algorithms have been proposed that automate the elimination of second-
order quantifiers, e.g., the DLS algorithm [Doherty et al., 1997] that has
e.g., been implemented in [Gustafsson, 1996], Additional information can be
found in [M.Gabbay et al., 2008].

In [Conradie et al., 2009, Conradie et al., 2006b, Conradie et al., 2006a] an al-
gorithm for computing first-order equivalents in modal logic was introduced,
called SQEMA, which is based on a modal version of the Ackermann Lemma.
The algorithm can be accessed online at http://www.fmi.uni-sofia.bg/

fmi/logic/sqema/sqema.jsp

105

http://www.fmi.uni-sofia.bg/fmi/logic/sqema/sqema.jsp
http://www.fmi.uni-sofia.bg/fmi/logic/sqema/sqema.jsp

3.5 A Tableau Calculus

We assume that the reader is familiar with the basic concepts of the tableau
calculus for first-order logic, as it is e.g., contained in [Fitting, 1990].

In this section we present a tableau calculus for propositional modal logic
following [Fitting, 1983]. Since the aspects of first-order logic and modal
operators do not interfere it is not difficult to extend this calculus to first-
order modal logic.

Definition 55 (Prefix)

1. A prefix σ is a finite sequence of natural numbers.

2. A prefix formula is a syntactical element of the form σA where σ is a
prefix and A a modal formula in PModFml

3. A signed prefix formula is a syntactical element of the form σZA, with
σA a prefix formula and Z ∈ {T, F}.

Thus 〈11〉((p∧ q)→ (2p∨3q)) is a prefix formula. Note, that 〈11〉(p∧ q)→
〈1〉(2p∨3q) is not a prefix formula. A prefix can only occur at the top level.
In examples we will write prefixes as 〈n1n2 . . . nk〉 instead of 〈n1, n2, . . . , nk〉.
This is possible since we will only need to consider prefixes with single digit
ni. Thus 〈111〉 will stand for 〈1, 1, 1〉 and not for 〈1, 11〉, 〈11, 1〉 or 〈111〉. By
σn we will denote the string that arises from σ by adding the single digit n.

It remains to explain when a signed formula is true at a state g in a Kripke
structure (G,R, v). But, this is obvious:

g |= TA ⇔ g |= A
g |= FA ⇔ g |= ¬A

The calculus we are going to present will be generic for most of the classes
of Kripke frames from Definition 40. The notion of accessibility between
prefixes will play a crucial role. In fact, the rules will be the same in all
cases, but will refer to different definitions of the accessibility relation.

Definition 56 (Prefix Accessability) Let σ, σ′ be prefixes.

106

σ′ is K-accessible from σ iff σ′ = σn for some n ∈ N
σ′ is T-accessible from σ iff σ′ = σ or σ′ = σn for some n ∈ N
σ′ is S4–accessible from σ iff σ is an initial segment of σ′

σ′ is K4–accessible from σ iff σ is a strict initial segment of σ′

i.e.,σ 6= σ′

To reduce the number of case distinction in definitions and proofs we use
the usual classification of signed formulas. In the case classical propositional
logic there are α, β formulas, which we intuitively think of as conjunctive and
disjunctive formulas. Both types are made up of two constituent formulas
α0, α1 and β0, β1. For modal logic we need the additional categories of ν and
π formulas which we may intuitively think of as Box formulas and Diamond
formulas. Both of these types of one constituent formula ν0 respectively π0.

Definition 57 (Classification of Signed Modal Formulas)

α-formulas: α0 α1

TA ∧B TA TB
FA ∨B FA FB
FA→ B TA FB
F¬A TA TA

β-formulas: β0 β1

TA ∨B TA TB
FA ∧B FA FB
TA→ B FA TB
T¬A FA FA

ν-formulas: ν0

T2A TA
F3A FA

π-formulas: π0

T3A TA
F2A FA

This classification is exhaustive in the sense that every signed modal formula
is either an α-, β-, ν-, or π- formula or it is a signed atom.

107

Let σ be an arbitrary prefix, α a signed α-formula, β a signed β-formula, ν
a signed ν-formula, π a signed π-formula.

σα
σα0

σα1

σβ
σβ0 or σβ1

σν
σ′ν0

σ′ accessible from σ and
σ′ occurs already on the branch

σπ
σ′π0

σ′ accessible from σ and
σ′ is not an initial segment of a

prefix occuring on the branch

Figure 3.5: Modal Tableau Rules

Definition 58 (Modal Tableau) A modal tableau is a tree, whose nodes
are labeled by signed prefix formulas. Not every tree of this kind is a tableau.

1. A single node with arbitrary label is tableau, called an initial tableau.

2. If T is a tableau, B a branch in T , A a signed prefix formula, that
is not a signed atomic formula, occuring somewhere on the branch B.
Then the tableau(x) T1 (T2) obtained from T by extending B according
to the rules in Figure 3.5 are also tableau(x).
Note, that if A is a β-formula there will be two continuations T1 and
T2. In all other cases there is one continuation T1.

A branch is called closed if it contains two formulas of the form σFG and
σTG

A tableau is called closed if all its branches are closed.

A tableau is called a X-tableau if the accessibility relation in the ν- and π
rules is X-accessibility for one of the accessibility modi from Definition 56.
If no X is specified, we assume K-accessibilty.

Let us look at a few examples to gain some familiarity with constructing
tableaux.

108

Example 14

〈1〉 F (2A ∧2B)→ 2(A ∧B) (1)
〈1〉 T2A ∧2B (2) from 1
〈1〉 F2(A ∧B) (3) from 1
〈1〉 T2A (4) from 2
〈1〉 T2B (5) from 2
〈11〉 FA ∧B (6) from 3
〈11〉 TA (7) from 4
〈11〉 TB (8) from 5

〈11〉 FA (9) from (6) 〈11〉FB (10) from (6)
closed (9, 7) closed (10, 8)

Example 15

〈1〉 F2(A ∧B)→ (2A ∧2B) (1)
〈1〉 T2(A ∧B) (2) from 1
〈1〉 F2A ∧2B (3) from 1

〈1〉 F2A (4) from 3 〈1〉 F2B (5) from 3
〈11〉 FA (6) from 4 〈11〉 FB (10) from 5
〈11〉 TA ∧B (7) from 2 〈11〉 TA ∧B (11) from 2
〈11〉 TA (8) from 7 〈11〉 TA (12) from 11
〈11〉 TB (9) from 7 〈11〉 TB (13) from 11

closed (8, 6) closed (13, 10)

Note: formula (2) is used twice.

Example 16

〈1〉 F2(A ∨B)→ (2A ∨2B) (1)
〈1〉 T2(A ∨B) (2) from 1
〈1〉 F2A ∨2B (3) from 1
〈1〉 F2A (4) from 3
〈1〉 F2B (5) from 3
〈11〉 FA (6) from 4
〈12〉 FB (7) from 5
〈11〉 TA ∨B (8) from 2
〈12〉 TA ∨B (9) from 2

109

〈11〉TA (10)[8] 〈11〉TB (11)[8]
〈12〉TA (12)[9] 〈12〉TB (13)[9]

closed (10, 6)
... closed (13, 7)
open

Example 17 (S4-tableau)

〈1〉 F2A→ 2(2A ∨B) (1)
〈1〉 T2A (2) from 1
〈1〉 F2(2A ∨B) (3) from 1
〈11〉 F2A ∨B (4) from 3
〈11〉 F2A (5) from 4
〈11〉 FB (6) from 4
〈111〉 FA (7) from 5
〈111〉 TA (8) from 2

In the K-calculus we could in line 8 only obtain 〈11〉 TA which does not lead
to a closed tableau.

You might have guessed it by now or you may have known it already from
previous encounters with the tableau calculus: a formula A is a tautology
if there is a closed tableau with root label 〈1〉FA. Here the signed formula
part FA is important. It does not make any difference with what prefix we
start. We will now step by step confirm your guess.

Definition 59 A tableau T is satisfiable, if there is a branch B in T , a
Kripke structure (G,R, v) and a mapping I from the set of all prefixes occur-
ing in B into the set G of possible worlds such that

R(I(σ), I(σ′)) if σ′ is accessible from σ
and

I(σ) |= A for every formula σA in B.

Theorem 69 (Correctness Theorem for Modal Logic K)
Assume that there exists a closed tableau with root label 1 FB, then B is a

tautology.

110

Proof Let T be the closed tableau with root label 〈1〉FB. Assume for
the sake of a contradiction that there is a Kripke structure (G,R, v) and
g ∈ G with g |= ¬B. The tableau T0 consisting only of the root node of T
would thus be satisfiable according to Definition 59 with I(1) = g. By the
Correctness Lemma 70 also T had to be satisfiable. But, this contradicts the
assumption that T is closed.

Lemma 70 (Correctness Lemma) If T0 is a satisfiable tableau and T is
obtained from T0 by a rule application from Figure 3.5 then also T is satis-
fiable.

Proof The proof proceeds by case distinction according to which rule is
used to obtain T from T0. Since the correctness of the α and β rules has
already been dealt with in classical propositional logic we will only present
tha cases for the ν- and π rules.

ν-case
There is thus a branch P in T0 and a formula σν on P such that T is obtained
by extending P by a new node labeled with σ′ν0 such that σ′ is accessible
from σ and σ′ already occurs on P . If the satisfiable branch of T0 is different
from P , then T is trivially also satisfiable. So let us assume the P is satisfiable
in the sense of Definition 59. There is thus a Kripke structure (G,R, v) and
a mapping I satisfying

R(I(σ), I(σ′))
as well as

I(σ) |= ν.

This implies I(σ′) |= ν0. (Think of the typical case ν = T2A.)

π-case
By the case assumption there is a formula σπ on the branch P and T is
obtained by extending P by a new node labeled with σ′π0. Again we may
assume that P is a satisfiable branch and thus know that there is a Kripke
structure (G,R, V) and a mapping I such that I(σ) |= π. Thus implies
(think again of the typical case π = T3π0) the existence of a world g ∈ G
with R(I(σ), g) and g |= π0. Since σ′ is new on P it is not in the domain
of I. We may thus extend I to I ′ by defining I(σ′) = g. We want to argue

111

that this definition of I ′ shows that branch P in T is satisfiable. Checking
Definition 59 we notice that it remains to prove:

1. for any ρ occuring on P :
if σ′ is accessible from ρ then R(I ′(ρ), I ′(σ′))

2. for any ρ occuring on P :
if ρ is accessible from σ′ then R(I ′(σ′), I ′(ρ))

We observe that case 1 is only possible for ρ = σ and we know R(I(σ), I(σ′)).
In case 2 σ′ would be an initial segment of ρ which is forbidden by the side
condition of π-rule application.

Example 18 (K-tableau)

〈1〉 F2A→ 3A (1)
〈1〉 T2A (2) from 1
〈1〉 F3A (3) from 1

Formulas (2) and (3) are both ν-formulas. No further rule is applicable.

Let us drop for a moment the restriction on the ν-rule that only prefixes
σ′ already present on the branch are allowed. Then we could continue the
tableau constructions

〈1〉 F2A→ 3A (1)
〈1〉 T2A (2) from 1
〈1〉 F3A (3) from 1
〈11〉 TA (4) from 2
〈11〉 FA (5) from 3

and arrive at a closed tableau. The formula 2A→ 3A is not a K-tautology.
We have thus seen that the restriction on the ν-rule is neccessary to obtain
a correct calculus.

Theorem 71 (Completeness Theorem for Modal Logic K)
If A is a tautology then there is a closed tableau with root label 〈α〉FA for

an arbitrary prefix α.

112

Proof We assume that the reader has already seen a completeness proof
for a tableau calculus. So we will be a bit sketchy about the general structure
of the proof and concentrate on the specifics of this calculus.

The general pattern is as follows. Assume there is no closed tableau for
the initial tableau with label 〈α〉FA. We will construct a Kripke structure
(G,R, v) and a world g ∈ G such that g |= ¬A. This contradict the assump-
tion that A is a tautology.

Now, for the construction itself. Assume we have exhausted all possibilities
of finding a closed tableau with root label 〈α〉FA. Since we need to take
into account that the ν-rule may be applied an unknown number of times we
arrive at an infinite tableau T∞ with at least one open branch P . Let G be
the set of prefixes occuring on P and the accessibility relation R defined for
σ, σ′ ∈ G by

R(σ, σ′)⇔ σ′ is accessible from σ as a prefix

For σ ∈ G and p a propositional atom we define

v(σ, p) = 1⇔ if σTp occurs in P

This completes the definition of the Kripke structure (G,R, v). We will next
show that for all σ ∈ G

if σXB is in P then ((G,R, v), σ) |= XB for X ∈ {T, F} (3.10)

Since the root is in this case in P this will in particular entail ((G,R, v), α) |=
FA, i.e., ((G,R, v), α) |= ¬A and we will be finished.

The proof of 3.10 proceeds by structural induction on B.

The initial cases are σTp and σFp. If σTp occurs in P we have by definition
((G,R, v), σ) |= p. If σFp occurs in P we know that σTp does not occur
in P , since P was assumed to be an open branch. This yields again by the
same definiton ((G,R, v), σ) |= ¬p.
We skip the cases where the leading connective of B is a propositional con-
nective.

B = 2B0 Assume σ2B0 occurs in P . For any σ′ ∈ G that is accessible
from σ the ν rule for σ2B0 becomes at some point applicable and puts σ′B0

into P . By induction hypothesis this gives us ((G,R, v), σ′) |= B0 and since

113

this works for any σ′ of the given kind we also obtain ((G,R, v), σ) |= 2B0.
As desired.

B = 3B0 If σ3B0 occurs in P an application of the π-rule guarantees a σ′

that is accessible from σ such that σ′B0 occurs in P . By induction hypothesis
((G,R, v), σ′) |= B0 and this also ((G,R, v), σ) |= 3B0

So far the tableau calculus can only be used to prove tautologies. We are
going to present extensions for dealing with local and global logical inference,
see Definition 42.

Definition 60 Let M ⊆ PModFml be a set of modal formulas.

1. A local tableau for M is a tableau T built up from an initial tableau
σ0XA by using in addition to the rules from Figure 3.5 also the follow-
ing rule:

σ0TA
for every A ∈M

2. A global tableau for M is a tableau T built up from an initial tableau by
using in addition to the rules from Figure 3.5 also the following rule:

σTA
for every A ∈M and any prefix σ occuring on the path

Corollary 72 Let M ⊆ PModFml be a set of modal formulas.

1. M `L A iff there is a closed local tableau for M with root label σ0FA.

2. M `G A iff there is a closed global tableau for M with root label σ0FA.

Proof to be done

We still need to address an important phenomenon that does not arise for
tableau calculi for classical propositional logic, but does here. To pinpoint

114

the problem look at the following tableau construction in the S4-calculus.

〈1〉 F23p→ 32p (1)
〈1〉 T23p (2)[1]
〈1〉 F32p (3)[1]
〈1〉 T3p (4)[2]
〈1〉 F2p (5)[3]
〈11〉 Tp (6)[4]
〈12〉 Fp (7)[5]
〈11〉 T3p (8)[2]
〈11〉 F2p (9)[3]
〈12〉 T3p (10)[2]
〈12〉 F2p (11)[3]
〈111〉 Tp (12)[8]
〈112〉 Fp (13)[9]
〈121〉 Tp (14)[10]
〈122〉 Fp (15)[11]

It is evident that this tableau construction does not terminate. And since
23p → 32p is not a S4-tautology the correctness theorem says that there
cannot be a closed tableau. But, in contrast to tableau calculi for classical
propostional logic the search for a closed tableau does not terminate.

Lemma 73 Let T be a tableau with root label σ0XA.
Then for every signed prefix formula σY B occuring as a label in T we know
B is a subformula of A.

Proof This can be easily verified by inspecting the rules in Figure 3.5.

115

3.6 Description Logic

The origins of description logics can be traced back to the systems for knowl-
edge representation within artificial intelligence in the 1970s. From the first
rather ad-hoc and not very formal beginnings knowledge representation es-
tablished its own community but more and more using concepts from tradi-
tional logic. A comprehensive survey of the state of the art can be found in
[Baader et al., 2003].

There is a great number of variants of description logic, see e.g., [Baader
et al., 2003, Chapters 3 and 5]. We will first present a simple, prototypi-
cal example called ALC and later a more expressive variant called SHIQ.
There is a kind of systematic naming scheme for description logics. AL
stands for attributive language and appending C signifies that negation (com-
plement) is allowed. Other possible extensions could be ALCN which would
allow number restrictions or ALCE which would allow unrestricted extisten-
tial quantification.

Basic Description Logic

Description logic is based in the two fundamental notions of concept and role.
The are many variations on what kind of roles may be used and on the ways
expressions can be composed. We will first present the simplest description
logic ALC. The syntactical material from which ALC is built is determined
by a set C of concept symbols and a set R of symbols for roles. The union
V = C∪R makes up the vocabulary for a specific instance of ALC. Of course
expressions will also contain built-in or logical symbols as explained in the
following definition.

Definition 61 (ALC-Expressions)
The set of ALC expressions for a given vocabulary V = C∪R is inductively

defined by:

1. every concept symbol C from C is an ALC expression,

2. if C1, . . . , Ck are ALC expressions so are C1 u . . . u Ck, C1 t . . . t Ck
and ¬C1,

116

3. if C is a ALC expression, R a role symbol from R, then ∃R.C and
∀R.C are also ALC expressions.

Sometimes the expressions definied in Definition 61 are called concept ex-
pressions. Since in the simple description logic ALC there are no other
expressions there is no need to be specific.

For later reference we define some syntactic properties and operations on
concept expressions.

Definition 62
Let C be a concept expression. The role depth rd(C) of C is the maximal

number of nestings of role operators in C. Formally:

rd(C) = 0 if C ∈ C
rd(¬C) = rd(C)
rd(C1 t C2) = max(rd(C1), rd(C2))
rd(C1 u C2) = max(rd(C1), rd(C2))
rd(∀R.C) = rd(C) + 1
rd(∃R.C) = rd(C) + 1

Definition 63
The set of all subexpressions SubEx(C) of an expression C is inductively

defined by

SubEx(C) = {C} if C ∈ C
SubEx(¬C) = SubEx(C) ∪ {¬C}
SubEx(C1 t C2) = SubEx(C1) ∪ SubEx(C2) ∪ {C1 t C2}
SubEx(C1 u C2) = SubEx(C1) ∪ SubEx(C2) ∪ {C1 u C2}
SubEx(∀R.C) = SubEx(C) ∪ {∀R.C}
SubEx(∃R.C) = SubEx(C) ∪ {∃R.C}

We call a concept expression of the form ∃R.C an existential expression.

What do concept expressions stand for? In particular it is not clear what the
expressions involving quantifiers stand for. Before we answer this question
we need to fix the semantic domain, i.e., we fix the domain that we will use
to define the meaning of concept expressions. Roughly speaking, concept
symbols will denote sets of objects and roles will denote binary relations on
objects. More formally

117

Definition 64 (Interpretation)
We first fix a domain of objects, usually denoted by ∆. That is the universe

of discourse and corresponds to the universe of structures for first-order logic.
An interpretation for ALC for the vocabulary V is a mapping I such that

1. for every concept symbol C ∈ C the interpretation CI is a subset of ∆

2. for every role symbol R ∈ R the interpretation RI is a binary relatin
of ∆, i.e. RI ⊆ ∆×∆.

Now we are well equipped to define the semantics of ALC expressions.

Definition 65 (Semantics of ALC)
Let I be an interpretation.

1. (C1 u . . . u Ck)I = CI1 ∩ . . . ∩ CIk
2. (C1 t . . . t Ck)I = CI1 ∪ . . . ∪ CIk
3. (¬C)I = ∆ \ CI

4. (∃R.C)I = {d ∈ ∆ | there exists (d, e) ∈ RI with e ∈ CI},

5. (∀R.C)I = {d ∈ ∆ | for all (d, e) ∈ RI it is true that e ∈ CI}

Example 19
Let M , W , P be symbols for concepts in C that we intuitively think of as

the class of all men, all women and all persons. Furthermore, there is a role
symbol R in R. We think of R(a, b) as a is a direct ancestor of b. Then the
following are correct expressions in the vocabulary V = C ∪R defining the
derived concepts of father Fa, mother Mo and parent Pa.

Fa = M u ∃R.P Mo = W u ∃R.P Pa = Fa tMo

Let us compare the concept definitions from Example 19 with the corre-
sponding definitions in first-order predicate logic:

Fa(x) = M(x) ∧ ∃y(R(x, y) ∧ P (y))
Mo(x) = W (x) ∧ ∃y(R(x, y) ∧ P (y))
Pa(x) = Fa(x) ∨Mo(x)

118

The most striking difference is that in first-order logic the free and quantified
variables, x and y in this case, occur explicitely, in description logic they are
present only implicitely.

So far we have introduced ALC expressions that denote sets of objects. We
will now introduce a way to state claims involving these concept expressions.

Definition 66 (Concept Formulas)
For any two ALC expressions C1, C2 the following will be ALC formulas:

C1 = C2 equality problem
C1 v C2 subsumption problem
C1 = ∅ emptyness problem

As the last item on the checklist for introducing a new logic we define validity.
There is no surprise here.

Definition 67 Let Γ be a set of concept formulas, F a single concept formula
and I an interpretation.

1. We say I satisfies F , written as I |= F , if

I |= C1 = C2 iff CI1 = CI2
I |= C1 v C2 iff CI1 ⊆ CI2
I |= C1 = ∅ iff CI1 = ∅

2. Γ is valid, if for all interpretations I we have I |= F for all G ∈ Γ.

3. C1 and C2 are called equivalent if C1 = C2 is valid.

4. Γ is satisfiable, if there is an interpretation I such that I |= F for all
G ∈ Γ.

It can be easily seen that for any interpretation I we have:

I |= C1 = C2 iff I |= C1 v C2 ∧ C2 v C1

and
I |= C1 v C2 iff I |= C1 u ¬C2 = ∅

119

Thus it suffices to solve the emptyness problem. The other two problem
types can be reduced to it.

It is a suprising fact that description logic can be reduced to multi-modal
logic. This was first observed in [Schild, 1991, Schild, 1993]. We present how
this reduction works.

Definition 68 (Translation into Modal Logic)
Every ALC expression F in the vocabulary V = C∪R will be translated into

a multi-modal formula F ∗ with C as propositional atoms and modal operators
2R,3R for every R ∈ R as follows:

F ∗ = F if F is a concept symbol in C
(F1 u F2)∗ = (F ∗1 ∧ F ∗2)
(¬F)∗ = ¬F ∗
(∀R.F)∗ = 2RF

∗

(∃R.F)∗ = 3RF
∗

We do have the feeling that F ∗ conveys in a different way the same informa-
tion as F . We will take the time to make this precise.

The first step is to relate the semantics of description logic with the semantics
of multi-modal logic, i.e., to find a correspondence between interpretations I
and Kripke structures K.

Definition 69 (Relating Intepretations and Kripke structure)

1. For any interpretation I with domain of objects ∆ we associate the
Kripke structure KI = (GI , {RI | R ∈ R}, vI):

GI = ∆
RI = RI

vI(d, C) = 1 ⇔ d ∈ CI

2. For every multi-modal Kripke structure K = (G, {R | R ∈ R}, v) we
associate an interpretation IK:

∆ = G
RIK = R
CIK = {d ∈ G | v(d, C) = 1}

120

Now, the next lemma precisely states the relation between F and F ∗.

Lemma 74 (Translation Lemma)

1. For every ALC expression F and every interpretation I

F I = {d ∈ ∆ | (KI , d) |= F ∗}

2. There is an interpretation I and an object d ∈ ∆ satisfying d ∈ F I iff
F ∗ is satisfiable.

3. F1 v F2 is valid if and only if (F1 u ¬F2)∗ is not satisfiable.

Proof
ad 1: As was to be expected the proof proceeds by structural induction on
F . If F is a concpet name we get by definition of KI

{d ∈ ∆ | (KI , d) |= F ∗} = {d ∈ ∆ | v(d, F) = 1}
= F I

The induction steps for the operators u,t und ¬ are simple and will be
omitted here. We take on F = ∀R.F1, the case F = ∃R.F1 is completely
analogous.

{d ∈ ∆ | (KI , d) |= (∀R.F1)∗} = {d ∈ ∆ | (KI , d) |= 2RF
∗
1 }

= {d ∈ ∆ | for all e with R(d, e)
(KI , e) |= F ∗1 is true }

= {d ∈ ∆ | for all e with R(d, e)
e ∈ F I1 is true }

= (∀R.F1)I

ad 2: Is an immediate consequence of part 1 and Definition 69.

ad 3: F1 v F2 is valid if and only if, for all I and all d ∈ ∆ we get
d 6∈ (F1 u ¬F2)I . Using part 1 of this lemma this is equivalent to (KI , d) 6|=
F ∗1 ∧ ¬F ∗2 for all I and all d ∈ ∆. But, this is to say that (F1 u ¬F2)∗ is not
satisfiable.

121

We have so far gained a deeper understanding of the notions of concept and
role that are so essential to knowledge representation systems in general and
description logics in particular. It is now time to address another funda-
mental way, that originated within the artificial intelligence movement, to
structure the representation of knowledge. It distinguishes between termino-
logical knowledge, that is collected in what is called the T-box and assertional
knowledge that is collected in the A-box.

Definition 70 (T-Box)
The set C of concept symbols is divided into C = Cb ∪Cn with Cb the set

of base concept symbols and Cn the set of name symbols.
A T-Box T is a set of equations C1 = C2 where C1 ∈ Cn and C2 a concept
expression using only concept from C. For every C1 ∈ Cn there is at most
one equation in T with lefthand side C1.
A concept C1 ∈ Cn directly uses B ∈ C in T if C1 = C2 is in T and B
occurs in C2.
A concept C1 ∈ Cn uses B if (C1, B) is in the transitive closure of the direct
use relation.
A T-Box T is called cyclic if there is C ∈ Cn that uses itself and acyclic if
no such C exists.

Sometimes base concepts are also called primitive concepts and name con-
cepts are refered to as defined concepts.

One would expect that an interpretation I satisfies a T-Box T if CI = CI1
for every equation C = C1 in T . This is at least one option. Within the
knowledge representation community it is customary to view a T-Box as a
set of definitions and these definitions should be unique that is to say, once
the interpretation of the base concepts and roles are fixed there is only one
way to satisfy the definitions in the T-Box.

Definition 71 (Definitorial T-Box)
A T-Box T is called definitorial if for any two interpretations I and J over
the same domain ∆ satisfying T and with CI = CJ for all base concepts
C ∈ Cb and RI = RJ for all roles R ∈ R we already have I = J , that is
CI = CJ for all name concepts C ∈ Cn.

It is easy to see that any acyclic T-Box is definitorial, see Exercise 3.9.19.
The problem arises with recursive definitions C = C1 of a name concept C

122

where the defined concept also occurs in C1. The standard view is that such
an equation defines C as the least fixpoint. It can be shown that in the
present context such fixpoints always exist. For the details that are a little
bit more involved since in general we have to consider a system of mutual
recursive equations see [Baader et al., 2003, pp 59ff]. We will restrict our
attention to acyclic terminologies.

Definition 72 (A-Box)
Let K be a set of constant symbols.

An A-Box A is a set of formulas of the form

C(c), R(c, d)

with C a concept expression, R ∈ R and c, d constants in K.

This definition introduces the new concept of a constant symbol. This re-
quires an appropriate extension of the definition of an interpretation I (Def-
inition 64). It is intuitively clear that we want I(c) ∈ ∆ for any c ∈ K.
In the context of knowledge representation systems it is common practice to
assume the unique naming assumption. This requires that I(c) 6= I(d) if c
and d are different symbols in K.

Notice, that while the arguments of concept symbols and roles are sup-
pressed in the T-box they are explicitly present in the A-box.

A Tableau Calculus for ALC
We assume that the reader has already acquired some familiarity with tableau
calculi.

Before we go into the details of constructing tableau proofs let us first take
stock of what questions we want to be answered.

Definition 73
Let T be an acyclic T-box, A an A-box, and C ′ an ALC-expression.

1. C ′ is satisfiable with respect to T ,
i.e., if there is an interpretation I such that CI = CI1 for every equation
C = C1 in T and (C ′)I 6= ∅.

123

2. A is consistent with respect to T ,
i.e., there is an interpretation I such that

(a) CI = CI1 for every C = C1 in T ,

(b) dI ∈ DI for every expression D(d) ∈ A and

(c) (dI1 , d
I
2) ∈ RI for every expression R(d1, d2) in A

We will present a tableau calculus that solves the satisfiability problem for
ALC-expressions and the consistency problem for A-boxes with respect to
acyclic T-boxes.

Our first result reduces the two questions concidered so far to the correspond-
ing questions with respect to an empty T-box. This is similar in a way to
the deduction lemmata in classical logic.

Lemma 75 (Eliminating the T-box)
Let T be an acyclic T-box.

1. For any concept expression D there is an expression D′ such that D
is satisfiable with respect to T iff D′ is satisfiable with respect to the
empty T-box.

2. For any A-box A there is an A-box A′ such that A is consistent with
respect to T iff A′ is consistent with respect to the empty T-box.

Proof
ad 1 We may assume, see Exercise 3.9.19, that all equations in T are of the
form C = C1 where C1 only contains base symbols. Let D′ be obtained from
D by replacing each name symbol by its definition. Obviously, D is satisfiable
with respect to T iff D′ is satisfiable with respect to T . But, since D′ does
not contain any name symbols its satisfiability is completeley independent of
any T-box.

ad 2 We use the same trick as in part 1. Replace every name symbol D in
A by its definition to obtain the modified A-box A′. Again, A is consistent
with respect to T iff A′ is consistent with respect to T . But, since A′ does
not contain any name symbol its consistency is completely independent of
any T-box.

124

(C1 u C2)(c)
C1(c)
C2(c)

(C1 t C2)(c)
C1(c) C2(c)

(∃R.C)(c)
R(c, d)
C(d) d a new constant

(∀R.C)(c)
R(c, d)
C(d)

Figure 3.6: Tableau Rules for ALC

A concept expression C is called in negation normal form if the negation
symbol ¬ occurs in C only in front of concept symbols. From the results of
classical propositional logic and Exercise 3.9.16 it follows that for every con-
cept expression C there is an equivalent concept expression Cnnf in negation
normal form.

Definition 74 (ALC-Tableau)
An ALC-tableau is a tree, whose nodes are labeled by formulas of the form

C(c), R(c, d)

with C a concept expression in negation normal form, R ∈ R and constants
c, d ∈ K. For easy reference we will call formulas of this type A-box formulas.

For every internal node N the labels of the successor node(s) of N are
determined by the rules from Figure 3.6.
A branch B in an ALC-tableau is closed if B contains nodes with labels C(a)
and ¬C(a) for a constant a ∈ K and a concept symbol C ∈ C.
An ALC-tableau T is closed if all its branches are closed.

Example 20
It is intuitively clear that the formula ∃R.(C1 uC2) v (∃R.C1)u (∃R.C2) is

valid. This is equivalent to the formula ∃R.(C1uC2)u¬((∃R.C1)u (∃R.C2))
being not satisfiable. The negation normal form of this is ∃R.(C1 u C2) u
((∀R.¬C1) t (∀R.¬C2)). Thus (∃R.C1 u C2) u ((∀R.¬C1) t (∀R.¬C2))(c) is
formula number 0 on the tableau, which continues as follows

125

(∃R.C1 u C2)(c) 1[0]
(∀R.¬C1) t (∀R.¬C2))(c) 2[0]

R(c, d) 3[1]
(C1 u C2)(d) 4[1]

C1(d) 5[4]
C2(d) 6[4]

(∀R.¬C1)(c) 7[2] (∀R.¬C2)(c) 8[2]
¬C1(d) 9[7, 3] ¬C2(d) 10[8, 3]
closed [9, 5] closed [10, 6]

Theorem 76 (Tableau Soundness)
Let C be a concept expression in negation normal form and T be a closed

tableau with root label C(a) then C is not satisfiable.

Proof We need the auxiliary notion of a satisfiable tableau: An ALC-
tableau T is called satisfiable if there is a branch B and an interpretation I
that satisfies all the A-box formulas in B.
As mentioned in the paragraph following Definition 72 an interpretation I has
to follow the unique naming convention, i.e., cI 6= dI for different constants
c, d ∈ K. For new constants, and only for the new constants, introduced
during the construction of a tableau we drop this requirement. Different
new constant symbols d1, d2 may be interpreted by the same element in ∆,
dI1 = dI2 and they may also have the same interpretation as constants from
K, dI1 = dI .
Following the usual strategy of soundness proofs for tableau calculi we will
show that:

if a tableau T is satisfiable and T1 is obtained from T by appli-
cation of a rule from Figure 3.6 then T1 is also satisfiable.

We will only consider the case that T1 is obtained from T by application of
the ∃R rule. There is a branch B of T that is satisfiable by an interpreta-
tion I. Without loss of generality we may assume that the rule is applied
to a formula ∃R.C(d) on B and d′ the newly introduced constant. Since
dI ∈ (∃R.C)I there is an element a ∈ ∆ with RI(dI , a) and a ∈ CI . If we
extend the interpretation I to I ′ by I ′(d′) = a then I ′ satisfies the extended
branch B1.

126

The rest of the argument is as usual. A closed tableau is clearly not satis-
fiable. Applying the above fact repeatedly we know that the initial tableau
consisting only of the root labeled by C is not satisfiable. This is the same
thing as saying that C is not satisfiable.

Theorem 77 (Tableau Completeness)
Let C be an unsatisfiable concept expression in negation normal form then

there exists a closed tableau with root label C.

Proof Assume by way of contradiction that the tableau with root label
C making all efforts cannot be closed. There is thus a tableau T and an
open branch B of T such that for all formulas on B the corresponding rule
application has been performed. We will later see that T can be chosen to be
finite, but at the moment we also have to consider the case that B is infinite.
From B we will construct an interpretation I satisfying C. This contradicts
the assumptions of the theorem and will show that a closed tableau with root
label C exists.
Now for the construction of I. Let ∆ be the set of all constants, new and
old, occurring in formulas on B. We set dI = d. Furthermore we define for
any R ∈ R and C ∈ C

RI(c, d) iff R(c, d) occurs in B
c ∈ CI iff C(c) occurs in B

By structural induction it is easily proved that for any A-box formula C(d) on
B this definition yields CI = true. To get a taste of the proof let us look at
the case that C(d) = ∀R.C1(d) is on B. In order to arrive at C(d)I = true we
consider an element c ∈ ∆ satisfying RI(d, c). By definition of I this can only
be the case if R(d, c) occurs on the branch B. Now the ∀R rule is applicable
and since we assumed that all rule applications have been exhausted we know
that C1(c) is in B. By induction hypothesis C1(c)I = true which finishes the
argument.

Example 21
We look here at the subsumption relation ∃R.C1 u ∃R.C2 v ∃R.(C1 u C2)

inverse to that considered in Exercise 20. It is equivalent to ∃R.C1u∃R.C2u

127

¬∃R.(C1 uC2) = ∅ or in negation normal form ∃R.C1 u ∃R.C2 u ∀R.(¬C1 t
¬C2) = ∅.

∃R.C1 u ∃R.C2 u ∀R.(¬C1 t ¬C2)(c) 0[]
∃R.C1(c) 1[0]
∃R.C2(c) 2[0]

∀R.(¬C1 t ¬C2)(c) 3[0]
R(c, d1) 4[1]
C1(d1) 5[1]
R(c, d2) 6[2]
C2(d2) 7[2]

(¬C1 t ¬C2)(d1) 8[3, 4]
(¬C1 t ¬C2)(d2) 9[3, 6]

¬C1(d1) 10[8] (¬C2)(d1) 11[8]
closed [10, 5] ¬C1(d2) 12[9] ¬C2(d2) 13[9]

open closed [13, 7]

According to our understanding of tableau rules we could in the previous
example again apply the ∃R rule on lines 1 and 2 and obtain new elements
d2 and d3 and so on. The correctness theorem tells us that we will never
reach a closed tableau. We will proof that there is a bound n , that can be
easily computed from the root label, such that if after n steps we have not
reached a closed tableau we need not look any further.

The first step towards this goal is a more reglemented application of tableau
rules.

Definition 75 (Optimized ALC-Tableau)
Optimized ALC-tableaux use the same rules as ALC-tableau in general but

they restrict the way these rules are applied.

1. For the u and ∀R rule the new formulas C1(c), C2(c) C(d) are only
added if they do not already occur on the branch.

2. For the t rule: if one of the formulas C1(c) or C2(c) already occurs on
the branch no action is taken. Only if both of them are not yet present
the tableau forks as described by the rule.

128

3. For the ∃R rule: if there already exists a constant such that R(c, d) and
C(d) occur on the branch no action is taken. Only if this is not the
case both formulas are added with a new constant d.

We should observe that for every closed tableau there is a closed optimized
tabelau with the same root label. Or alternatively, one could check that
the soundness and completeness proofs are still true for optimized tableaux.
Both claims can be easily seen.

Lemma 78 (Termination Bounds)
Let T be an optimized tableau with root label C0(c0). For the purposes of

this proof we distinguish the constants that are introduced during the tableau
proof from constants that may already be present otherwise. We call the new
constants parameters. In particular c0 is a parameter. For every branch B
of T the following is true

1. For every parameter c 6= c0 occuring in B there is a unique sequence of
roles R1, . . . Rk with k ≥ 1 and a unique sequence of parameter symbols
c1, . . . ck−1 such that each formula Ri(ci−1, ci) and R(ck−1, c) occurs on
B for 1 ≤ i ≤ k.
In this case we say that c is a parameter of level k in B.

2. If a concept expression C(c) occurs on B with c a parameter at level k
then rd(C) ≤ rd(C0)− k.
Thus for any parameter c its level k satisfies k ≤ rd(C0).

3. If C(d) occurs in B then C is a subexpression of C0, in symbols C ∈
SubEx(C0).

4. If R(c, c1), . . . R(c, cm) occur on B for different symbols c1, . . . , cm then
m is less than or equal to the number of existential expressions in
SubEx(C0).

Here rd is the role depth defined in Definition 62 on page 117.

129

Proof The proof proceeds by structural induction on T . For the initial
tableau consisting only of the root node all 4 claims are trivially true.
Consider the case that branch B satisfies all four claims and branch B1 arises
from an application of the u rule on C(d) = (C1 uC2)(d) ∈ B. Since no new
R(x, y) formula is added claims 1 and 4 remain true. For claim two we need
only consider the new formulas C1(d) and C2(d) and rd(Ci) ≤ rd(C) and the
induction hypothesis rd(C) ≤ rd(C0) − k yield the claim. For claim 3 we
note that Ci is a subexpression of C which in turn is a subexpression of C0.
The case that B1 arises from B by an application of the t rule is similar and
we skip it.
Let us now consider the more interesting case that B1 is obtained from B
by an application of the ∃R rule on the formula C(d) = (∃R.C1)(d). A new
parameter d1 is added and R(d, d1) is the only R-formula on B involving
d1. Since there is by induction hypothesis a unique chain of role symbols
and parameters testifying that d is of level k, there is a unique testifying
chain that d1 is of level k + 1. Thus claim 1 is still true. Note also, that the
newly added R-formula cannot destroy the previous uniqueness properties.
For claim 2 we need to consider the newly added formula C1(d1). From the
induction hypthesis rd(C) ≤ rd(C0) − k and rd(C) = rd(C1) + 1 we obtain
rd(C1) = rd(C) − 1 ≤ rd(C0) − (k + 1). Claim 3 follows from the obvious
observation that C1 is a subexpression of C which by induction hypothesis
is a subsexpression of C0. We now turn to claim 4. This does not depend
on the inductive proof. Let R(d, d2), . . .R(d, dm) be all R-formulas with first
parameter d that occur already on B. Now, R(d, d1) is added. We observe
that on each branch of an optimized tableau the ∃R rule can be applied only
once to a formula (∃R.Ci)(d). The only way formulas of the form R(d, x)
can surface on a branch is through the application of a rule on ∃R.C(d). The
R(d, di) thus must arise from different existential formulas.
Finally we consider the case that B1 is obtained from B by an application of
the ∀R rule on the formula C(d) = (∀R.C1)(d). The formula C1(d′) is added
and we know that R(d, d′) occurs already on B. Since no R-formula is added
claims 1 and 4 remain trivially true. If k is the level of parameter d then d′

is of level k + 1. Thus rd(C1) = rd(C) − 1 ≤ rd(C0) − (k + 1) as required.
Finally claim 3 is obviously satisfied since C1 is a subexpression of C.

Lemma 79 (Termination Lemma)

130

The construction of an optimized tableau reaches after finitely many steps a
tableau were no more rules can be applied.

Proof Let C(c0) be the root label, s the number of all subexpressions of
C0 and e the number of existential subexpressions. Then at most erd(C0) new
parameters can be generated. Thus at most s× erd(C0) concept formulas and
at most erd(C0) R-formulas can occur.
This is a very rough estimate. It is indeed known that the ALC satisfiability
problem is PSPACE complete, which is only slightly better.

Theorem 80 (Tabelau Resoning for A-boxes)
Let A be an arbitrary, finite A-box.

Let T0 be the initial tableau that consists of one branch labeled by the formulas
in A.

The optimized tableau construction starting with T0 terminates after finitely
many step.

The final tableau is closed if and only if A is inconsistent.

Proof The proofs are direct consequences from previous theorems and lem-
mas.

Description Logic with Role Hierarchies

It became soon apparent that for practical purposes the logic ALC is not
expressive enough. Of the many extensions that have been proposed we will
consider the description logic called SHIQ.

Definition 76 (Vocabulary)
A vocabulary V = C∪R for the logic SHIQ consists of a set C of concept

symbols and a set R of role symbols such that

1. C always contains the symbol > for the universal concept

131

2. There is a set R0 of atomic roles and for every role symbol R there is
the symbol R− for the inverse of R such that

R = R0 ∪ {R− | R ∈ R0}

3. There is a subset R0
t ⊆ R0 of transitive atomic roles.

We say that a role R is transitive if

• either R is atomic and R ∈ R0
t

• or R = R−1 and R1 ∈ R0
t

Note that it does not make sense to consider role descriptors of the form
(R−)− since (R−)− = R.

Definition 77 (Vocabulary)
A role hierarchy H is a finite set of formulas of the form R1 v R2 for role

symbols R1, R2 ∈ R.
We say that R1 is a subrole of R2.

Definition 78 (SHIQ expressions)
The set of SHIQ expressions of a given vocabulary V = C∪R and a given

role hierarchy H is inductively defined by

1. every concept symbol C ∈ C is a SHIQ expression,
in particular > is a SHIQ expression,

2. if C1, . . . , Ck are SHIQ expressions, so are C1u . . .uCk, C1t . . .tCk
and ¬C1,

3. if C is a SHIQ expression, R a role symbol from R, then ∃R.C und
∀R.C are also SHIQ expressions,

4. if R is a simple role in R, C a SHIQ expression and n ∈ N then also
≤ nR.C and ≥ nR.C are SHIQ expressions. A role symbol R is called
simple if R is not transitive and furthermore that there is no transitive
subrole of R.

132

Example 22
In addition to the concepts and roles from Example 19 we use here the

concept F of all female persons. The expression

C = Pa u ≥ 2R.F

denotes the set of parents with at least two daughters.

Note, that it is the reference to subroles in clause 4 that makes Definition 78
dependent on the role hierarchy H.

Definition 79 (Interpretation for SHIQ)
An interpretation for the vocabulary V and a role hierarchy H consists of a

domain of objects ∆ and a mapping I such that:

1. for every concept symbol C ∈ C its interpretation CI is a subset of ∆,
in particular >I = ∆,

2. for every atomic role symbol R ∈ R0 its interpretation RI is a binary
relation on ∆, i.e. RI ⊆ ∆×∆,

3. for every atomic role symbol R ∈ R0
t its interpretation RI is a transitive

relation on ∆,

4. for every atomic role symbol R ∈ R0 the interpretation of its inverse
symbol (R−)I is the relation inverse to RI, i.e.

(d1, d2) ∈ (R−)I ⇔ (d2, d1) ∈ RI

5. if R1 v R2 is in H then RI1 ⊆ RI2 .

Definition 80 (Semantics of SHIQ expressions)
Let I be an interpretation. The meaning of SHIQ expressions not already

covered by Definition 65 is explained as follows

1. (≤ nR.C)I = {d ∈ ∆ | #{e | (d, e) ∈ RI und e ∈ CI} ≤ n}

2. (≥ nR.C)I = {d ∈ ∆ | #{e | (d, e) ∈ RI und e ∈ CI} ≥ n}

133

Definition 81 (Satisfiability)
Let H by a role hierarchy.

1. A set T of formulas of the form C1 v C2 with SHIQ expressions
C1, C2 is called a terminology

2. An interpretation I is called a model of a terminology T , if CI1 ⊆ CI2
for all C1 v C2 ∈ T .

3. A SHIQ expression C is satisfiable with respect to T , if there is a
model I of T with CI 6= ∅

4. D subsumes C with respect to T , if for every model I of T also CI ⊆
DI is true.

Theorem 81
The satisfiability and the subsumption problems for SHIQ are decidable.

Proof see [Horrocks et al., 2000].

If in clause 4 of Definition 78 the restriction to simple roles is dropped the
satisfiability problem becomes undecidable. Even if only cardinality formulas
of the form ≤ nR.> und ≥ nR.> are allowed, see again [Horrocks et al.,
2000].

Adding conjunction of roles to SHIQ one obtains SHIQu. Satisfiability
for SHIQu is still decidable but with greater complexity, see [Glimm et al.,
2008].

134

3.7 Knowledge Representation in the Seman-

tic Web

The slogan Semantic Web refers to an endeavor to add additional infor-
mation to resources in the world wide web. The World Wide Web Con-
sortium (W3C) has issued a number of standards for knowledge represen-
tation languages that may be used for this purpose. We will present here
the Resource Description Framework (RDF) and Web Ontology Language
(OWL). We draw on [Allemang & Hendler, 2008, Hitzler et al., 2009] and
http://www.w3.org/TR/rdf-mt/ as references.

RDF

The basic concept of the resource description frame work is the triple

Definition 82 (RDF Triples)
Let R be a set of resources and V a set of literals, with R ∩ V = ∅.

Then every term
〈a, b, c〉

with a, b ∈ R and c ∈ R ∪ V is called a triple.
a is the subject, b is the predicate, and c is called the object of the triple.

In the context of the semantic web everything is either a value or a resource.
In other contexts one might have used the word object, entity or just thing
instead of resource. But, it does make sense to name the creatures populating
the universe of the web resources. Literal we might think of as strings,
numbers and the like. Here is an example

Example 23
Let R = {DC20030602, T,D, d, F, L, P} and V = {st1, st2, st3, st4, en, st6}.
Then

〈DC20030602, T, st1〉 〈DC20030602, D, st2〉
〈DC20030602, d, st3〉 〈DC20030602, F, st4〉
〈DC20030602, L, en〉 〈DC20030602, P, st6〉

135

http://www.w3.org/TR/rdf-mt/

is a set of triples. This is not very illuminating. So, let us be a little less
cryptic:

〈DC20030602, title,
”Dublin Core Metadata Element Set, Version 1.1: Reference Description”〉
〈DC20030602, description,
”The reference description, version 1.1 of the Dublin Core Metadata Element Set”〉
〈DC20030602, date, 2004− 12− 20〉
〈DC20030602, format, ”text/html”〉
〈DC20030602, language, en〉
〈DC20030602, publisher, ”Dublin Core Metadata Initiative”〉

Now, it is clear that we are looking at RDF meta-data for a document, here
called DC20030602. The literals st1− st6 have been replaced by their specific
(string) values.

In the logical approach the vocabulary used to build up formulas is fixed
locally for a specific paper, or for a whole book by its authors or it is
agreed upon by a standard committee. The approach with RDF is dif-
ferent: vocabularies are built and shared globally by the world wide web
community. To facilitate this approach resources are given by Uniform Re-
source Identifiers (URI). So, instead of DC20030602 we should have used
http://dublincore.org/documents/2003/06/02/dces/.

Also title is a resource with URI http://dublincore.org/2008/01/14/

dcelements.rdf#title. Here are a few more correspondences:

Short name URI
name

DC20030602
http://dublincore.org/documents/2003/06/02/dces/

T title
http://dublincore.org/2008/01/14/dcelements.rdf#title

D description
http://dublincore.org/2008/01/14/dcelements.rdf#description

d date
http://dublincore.org/2008/01/14/dcelements.rdf#date

A URI can be a URL, for example you can visit the page http://

dublincore.org/documents/2003/06/02/dces/. The other URIs including

136

http://dublincore.org/documents/2003/06/02/dces/
http://dublincore.org/2008/01/14/dcelements.rdf#title
http://dublincore.org/2008/01/14/dcelements.rdf#title
http://dublincore.org/documents/2003/06/02/dces/
http://dublincore.org/2008/01/14/dcelements.rdf#title
http://dublincore.org/2008/01/14/dcelements.rdf#description
http://dublincore.org/2008/01/14/dcelements.rdf#date
http://dublincore.org/documents/2003/06/02/dces/
http://dublincore.org/documents/2003/06/02/dces/

the # sign all point to the same page, which you can visit likewise. There are
precise rules about how URIs are formed set out in the RDF standard and
there are agreed ways to abbreviate them via what are called qnames. For
working with RDF triples these are indispensible but we do not go into these
details here. Also the way we represented triple via the 〈a, b, c〉 notation is
our own invention. In the semantic web community it is customary to use
XML representations, as exemplified in Figure 3.7.

<rdf:RDF>

<rdf:Description rdf:about="http://dublincore.org/documents/

2003/06/02/dces/">

<dc:title>

Dublin Core Metadata Element Set, Version 1.1: Reference Description

</dc:title>

<dc:description>

The reference description, version 1.1 of the Dublin

Core Metadata Element Set.

</dc:description>

<dc:date>2004-12-20</dc:date>

<dc:format>text/html</dc:format>

<dc:language>en</dc:language>

<dc:publisher>Dublin Core Metadata Initiative</dc:publisher>

</rdf:Description>

</rdf:RDF>

Figure 3.7: XML representation of of meta-data for DC20030602

In addition to the triple

〈DC20030602, title, st1〉

we have seen above we also

〈title, issued, 2008-01-14〉

(e.g. on page http://dublincore.org/2008/01/14/dcterms.rdf#title).

The resource title may thus occur in the predicate position and also in the
subject position, as well – we have not presented an example for this – in

137

http://dublincore.org/2008/01/14/dcterms.rdf#title

the object position. The same resource may by used in all three positions
of a triple. The only restriction is that values may only occur in the third
position.

There are two problems that may occur when there is no central authority
that fixes the vocabulary.

1. The same name may be used for different things.

2. Different names may be used to denote the same thing.

When URIs are used to define vocabularies the hierarchic organisation of
URIs greatly helps in avoiding problem 1. Of course when I set up a vo-
cabulary Vmy that refers to a web location over which I have control I have
to take care that no clashes occur locally in Vmy. On the other hand it is
hard to avoid problem 2. See [Hitzler et al., 2009, Section 2.2.6] for further
comments on this naming issue.

So far the choice of a vocabulary was arbitrary and left completely to the
user. In the languages RDFS, which stands for RDF with schemata, a couple
of fixed ressources are assumed to be present in the signature and some
constraints are assumed for the semantics of these symbols. In the usual
language description first simple triples are considered, then RDF and then
RDFS. After our cursory introduction above to simple triples we immediately
jump to RDFS. We will consider the following vocabulary

rdf:type rdfs:Class

rdf:Property rdfs:domain rdfs:range

rdfs:subClassOf rdfs:subPropertyOf

In the RDFS standard some more symbols are specified. For the reader’s
information here is a list of those that we skip in our presentation:

rdf:XMLLiteral rdf:nil rdf:List rdf:first rdf:rest

rdf:Statement rdf:subject rdf:predicate rdf:object

rdf:Seq rdf:Bag rdf:Alt rdf:_1 rdf:_2 ... rdf:value

rdfs:Resource rdfs:Literal rdfs:Datatype

rdfs:member rdfs:Container rdfs:ContainerMembershipProperty

rdfs:comment rdfs:seeAlso rdfs:isDefinedBy rdfs:label

138

1 rdf:type rdf:type rdf:Property .

2 rdfs:domain rdfs:domain rdf:Property .

3 rdfs:range rdfs:domain rdf:Property .

4 rdfs:subPropertyOf rdfs:domain rdf:Property .

5 rdfs:subClassOf rdfs:domain rdfs:Class .

6 rdf:type rdfs:range rdfs:Class .

7 rdfs:domain rdfs:range rdfs:Class .

8 rdfs:range rdfs:range rdfs:Class .

9 rdfs:subPropertyOf rdfs:range rdf:Property .

10 rdfs:subClassOf rdfs:range rdfs:Class .

Figure 3.8: Axiomatic Tripels for RFDS

We could now go on and present the restrictions on the semantics of the
RDFS symbols listed above. We will take a different approach and first
translate triples into atomic formulas in a first order logic. The semantic
restrictions will then be given in terms of formulas of first-order logic.

Relation to First-Order Semantics

For the purposes of this section we will consider triples without literals. From
a logical point of view literals do not add anything to the understanding of
the phenomena we want to address. Also the details of the use of literals
in RDFS are quite cumbersome and have been expertly explained elsewhere,
see [Hitzler et al., 2009].

Let us compare what we have seen so far with first-order logic. We notice
that there are no variables, and therefore also no quantifieres, there are no
propositional connectives, except the implicit conjunction - a set of triples is
thought of as the conjunction of the triples in the set. So it only makes sense
to compare RDF triples with ground atomic formulas in first-order logic.
One way to view triples as first-order logic atomic formulas, is to consider a
vocabulary V3 with just one ternary relation symbol and an arbitrary number
of constant symbols, see also Exercise 1.2.4. That will certainly do. Another
possibility is to consider a vocabulary V2 which contains a binary relations
symbol Rb for every resource b occuring in the predicate position of at least

139

one triple and the constant symbol b for all resources b occuring in the other
two positions. We might then have of course both a constant b and a binary
relation Rb at the same time. But, this causes no harm. This basically mimics
the normative semantics described in [Hayes, 2004]. We say basically, because
the cited reference also explains the interpretation of literals, which we did
not go into.

One might have wondered what happened to unary predicates. How do we
express in triple notation that a resource x is red? The solution in RDFS is
to use the predicate type and write 〈x, type, red〉.
We will define the semantics of RDFS by reduction to the semantics of first-
order logic.

Definition 83 (First translation into first-order logic)
Let G be a set of triples in the vocabulary V .

The first-order vocabulary V1 is obtained by treating all symbols in V as con-
stant symbols and adding in addition a binary relation symbol Rb for every b
in V . For the rest of this subsection we will uise the shorthand

• in instead of Rrdfs:type,

• subC instead of Rrdfs:subClassOf and

• subP instead of Rrdfs:subPropertyOf.

Let G∗ be the union of G with the axiomatic triples from Figure 3.8.

Let

t1(G) = {Rp(a, b) | 〈a, p, b〉 ∈ G∗}
t2(G) = {∀u, v(Ra(u, v)→ in(u, b) | 〈a, rdfs:domain, b〉 ∈ G∗} rdfs2
t3(G) = {∀u, v(Ra(u, v)→ in(v, b) | 〈a, rdfs:range, b〉 ∈ G∗} rdfs3
t4(G) = {∀u(in(u, a)→ in(u, b) | 〈a, rdfs:subClassOf, b〉 ∈ G∗} rdfs9
t5(G) = {∀u, v(Ra(u, v)→ Rb(u, v) | 〈a, rdfs:subPropertyOf, b〉 ∈ G∗} rdfs7
t6 = {∀x(in(x, rdfs:Property)→ subP (x, x)), rdfs6

∀x, y, z((subP (x, y) ∧ subP (y, z)→ subP (x, z)), rdfs5
∀x(in(x, rdfs:Class)→ subC(x, x)), rdfs10
∀x, y, z((subC(x, y) ∧ subC(y, z)→ subC(x, z))} rdfs11

t(G) = t1(G) ∪ . . . ∪ t5(G) ∪ t6

140

The rdfsi in the last column are the names of the inference rule used in the
W3 standard http: // www. w3. org/ TR/ rdf-mt/ .

Definition 84 (RDF Inference)
Let G be a set of triples and 〈a, p, b〉 an individual triple. We say that 〈a, p, b〉

can be derived from G, in symbols

G `RDFS 〈a, p, b〉

iff the first-order inference

t(G) ` Rp(a, b)

holds true. In particular 〈a, p, b〉 is an RDFS tautology if t(∅) ` Rp(a, b)
holds.

Definition 84 is accompanied by the implicit claim that G `RDFS 〈a, p, b〉 as
defined there coincides with the inference defined in the W3 Standard.

1. in(rdf:type,rdf:Property)

2. Rdomain(rdfs:domain,rdf:Property)

3. Rdomain(rdfs:range,rdf:Property)

4. Rdomain(rdfs:subPropertyOf;rdf:Property)

5. Rdomain(rdfs:subClassOf,rdfs:Class)

6. Rrange(rdf:type,rdfs:Class)

7. Rrange(rdfs:domain,rdfs:Class)

8. Rrange(rdfs:range,rdfs:Class)

9. Rrange(rdfs:subPropertyOf,rdf:Property)

10. Rrange(rdfs:subClassOf,rdfs:Class)

Figure 3.9: Translated Axiomatic Triples for RFDS

141

http://www.w3.org/TR/rdf-mt/

Lemma 82 The following formulas are RDFS tautologies, i.e., they are log-
ical consequences of t(∅).

1. in(rdfs:Class,rdfs:Class)

2. in(rdf:Property,rdfs:Class)

3. in(rdfs:domain;rdf:Property)

4. in(rdfs:range,rdf:Property)

5. in(rdfs:subPropertyOf,rdf:Property)

6. in(rdfs:subClassOf,rdf:Property)

Proof of 1 Since rdfs:range rdfs:range rdfs:Class is an axiomatic
triple in ∅∗, see Figure 3.8(8), we get from Definition 83

∀u, v(Rrange(u, v)→ in(v, rdfs:Class)) ∈ t3(∅). (3.11)

The fact rdfs:range rdfs:range rdfs:Class ∈ ∅∗ in addition entails
Rrange(rdfs:range,rdfs:Class) ∈ t1(∅). We now obtain from 3.11, as desired
in(rdf:Class,rdfs:Class).

Proof of 2 By Figure 3.8(9) we have
rdfs:subPropertyOf rdfs:range rdfs:Property ∈ ∅∗.
Thus Rrange(rdfs:subPropertyOf,rdfs:Property) ∈ t1(∅). Again using impli-
cation 3.11 we arrive at in(rdf:Property,rdfs:Class).

Proof of 3 By Figure 3.8(2) rdfs:domain rdfs:domain rdfs:Property

∈ ∅∗. Thus by Definition 83

∀u, v(Rdomain(u, v)→ in(u, rdfs:Property)) ∈ t2(∅). (3.12)

Since also Rdomain(rdfs:domain,rdfs:Property) ∈ t1(∅) we infer by instan-
tiating the universally quantified variables u with rdfs:domain and v with
rdfs:Property and modus ponens in(rdfs:domain,rdfs:Property).

142

Proof of 4 By Figure 3.8(3) rdfs:domain rdfs:range rdfs:Property ∈
∅∗, i.e., Rdomain(rdfs:range,rdfs:Property) ∈ t1(∅). Now, 3.12 immediately
yields in(rdfs:range,rdfs:Property).

Proof of 5 By Figure 3.8(4)
rdfs:domain rdfs:subPropertyOf rdfs:Property ∈ ∅∗. By Definition 83
Rdomain(rdfs:SubPropOf,rdfs:Property) ∈ t1(∅). Again using 3.12 yields the
desired conclusion in(rdfs:subPropertyOf,rdfs:Property).

Proof of 6 Again we follow the line of argument as in the last subproofs.
By Figure 3.8(5) rdfs:domain rdfs:subClassOf rdfs:Class ∈ ∅∗, i.e.,
Rdomain(rdfs:SubClassOf,rdfs:Class) ∈ t1(∅) and in a last step 3.12 entails
in(rdfs:subClassOf,rdfs:Property).

The attentive reader may have noticed that so far we did not speak about
consistency or consistent sets of triples. The plain reason is that this notion
does not exist. There is no negation sign in the language of RDFS triples nor
any negative requirements in the semantic restrictions. The following triples

rdf:type rdf:type rdf:type

rdfs:Class rdfs:Class rdf:Property

rdfs:Class rdfs:Class rdf:Class

rdfs:Class rdfs:SubPropertyOf rdf:domain

rdfs:subClassOf rdfs:domain rdfs:Class

rdf:range rdfs:type rdfs:Class

rdfs:range rdfs:type rdfs:Property

are individually and collectively possible triples, though it is hard, or better
impossible, to image what they should mean.

Blank Nodes

We start this subsection with another possibility to translate RDF triples
into first-order logic vefore we turn to the subject of blank nodes.

143

Definition 85 (Second translation into first-order logic)
Let G be a set of triples in the vocabulary V .

The first-order vocabulary V2 is obtained treating all symbols in V as constant
symbols and adding in addition one ternary relation symbol Tr.

Let G∗ be the union of G with the axiomatic triples from Figure 3.8.

s1(G) = {Tr(c, d, e) | 〈c, d, e〉 ∈ G∗}
s2 = ∀a, b∀u, v (Tr(a, rdfs:domain, b) ∧ Tr(u, a, v))

→ Tr(u, rdfs:type, b)) rdfs2
s3 = ∀a, b∀u, v (Tr(a, rdfs:range, b) ∧ Tr((, u, ,)a, v)

→ Tr(v, rdfs:type, b)) rdfs3
s4 = ∀a, b∀u (Tr(a, rdfs:subClassOf, b) ∧ Tr(u, rdfs:type, a)

→ Tr(u, rdfs:type, b)) rdfs9
s5 = ∀a, b∀u, v (Tr(a, rdfs:subPropertyOf, b) ∧ Tr(u, a, v)

→ Tr(u, b, v)) rdfs7
s6 = {∀x (Tr(x, rdfs:type, rdfs:Property)

→ Tr(x, rdfs:subPropertyOf, x)), rdfs6
∀x, y, z (Tr(x, rdfs:subPropertyOf, y)

∧Tr(y, rdfs:subPropertyOf, z)
→ Tr(x, rdfs:subPropertyOf, z)) rdfs5

∀x (Tr(x, rdfs:type, rdfs:Class)
→ Tr(x, rdfs:subClassOf, x)) rdfs10

∀x, y, z (Tr(x, rdfs:subClassOf, y)
∧Tr(y, rdfs:subClassOf, z)
→ Tr(x, rdfs:subClassOf, z))} rdfs11

Note that s1(G) and s6 are sets, while the remaining si are single formulas.
Finally

s(G) = s1(G) ∪ {s2, . . . s5} ∪ s6

Again the rdfsi in the last column are the names of the inference rule used in
the W3 standard.

We leave the topic of translation into first-order logic for a moment and
extend the triple representation. So far we have considered sets of RDF
triples just as a collection of triples that are all assumed to be true. For
example:

144

〈z1, line of, 1982953 〉 〈z2, line of, 1982953 〉 〈z1, item, Fleece〉
〈z1, size, M〉 〈z2, item, Shirt〉 〈z2, size, L〉

z1

z2

1982953

Fleece

Shirt

M

L

line of

line of

item

item
si

ze
si

ze

Figure 3.10: A simple RDF graph

It is quite common to arrange triples into a graph, socalled RDF graphs.
Subjects and objects are represented as nodes while predicates occur as an-
notations on edges. The above six triples will result in the graph shown in
Figure 3.10.

It is obviously easy to switch from a graphical to a sequential notation. This
will become a little bit more complicated when we come to allow blank nodes.
The RDF graph in Figure 3.10 results as a part of the solution to Excercise

3.9.23. The resource names z1 and z2 have been introduced to code n-ary
relations as conjucntions of binary relations. They do not really matter. For
this reason RDF offers the possibility to leave nodes empty as in Figure 3.11.
Note that blank nodes can only occur at subject and object positions. There
is no such thing as a blank edge label.

A direct translation of the graph in Figure 3.11 would result in

〈 , line of, 1982953 〉 〈 , line of, 1982953 〉 〈 , item, Fleece〉
〈 , size, M〉 〈 , item, Shirt〉 〈 , size, L〉

which obviously does not contain the same information. Thus, to translate

145

blank nodes into triple notation we have to introduce place holders or vari-
ables for them, different variables for different blank nodes. We could view
z1, z2 in the original triple set as such variables. But, what exactly is the
semantics of blank nodes in RDF? We given an answer by extending the
translation into first order logic from Definition 85.

Definition 86 (Translation into first-order logic)
Let G be as in Definition 85, but now we assume that G may contain place

holders for blank nodes. Let x1, . . . , xn be all such place holders in G. In
extending the definition of S(G) to this case we only need to redefine s1(G):

s1(G) = {∃x1, . . . , xn(
∧
〈c,d,e〉∈G Tr(c, d, e))} ∪

{Tr(c, d, e) | for all axiomatic triples 〈c, d, e〉}

1982953

Fleece

Shirt

M

L

line of

line of

item

item

si
ze

si
ze

Figure 3.11: A simple RDF graph with blank nodes

OWL(Under Construction)

146

3.8 Translation into First-Order Logic

In Lemma 66 it was shown that characterizability of a frame property can
be formalized by formula in monadic second order logic. We now want to
turn to a simpler problem: formalizing validity of modal logic in first-order
logic. Here is an informal example of what we mean by this. The modal
formula 3p → 2p is true in a Kripke structure if for every possible world
g , such that there is world accessible from g satisfying p then all worlds
accessible from g satisfy p. We could formalize the same requirements in
first-order logic by ∀x(∃y(R(x, y) ∧ p(y)) → ∀y(R(x, y) → p(y))). At this
point of the relationship between the two formalizations is rather informal.
The precise definitions and lemmas will follow below. But, we can already
see here that two translations are involved: a translation of modal formulas
in first-order formulas and a translation of Kripke structures in first-order
structures, see Figure 3.12. Furthermore, the formula A∗ will contain exactly

(K, g) |= A

K∗ |= A∗[g]

Figure 3.12: Translation from Modal to First-order Formulas

one free variable, denoted by x. We use the more concise notationM |= F [g]
instead of (M, β) |= F with β(x) = g. One might argue that the translation
scheme visualized in Figure 3.12 looks a bit strange. We could think of a
weird translation from A to A∗ match it with an equally weird translation
from K to K∗ and get a valid diagram. First of all, the translations we will
propose below are very intuitve. Second, even if the translations were weird
with a bit of extra effort we derive from the diagram: A is a modal tautology
iff A∗ is a first-order tautology. At this point we no longer care about the
details of the translations.

Definition 87 (Formula Translation) Let PVar be a set of propositional
variables. The first-order signature ΣPVar consists of

1. a binary relation r(x, y)

147

2. a unary relation p(x) for every p ∈ PVar.

Every modal formula A using atoms from PVar is inductively translated in a
first-order ΣPVar formula A∗ by

1. p∗ = p(x)

2. (A ∧B)∗ = A∗ ∧B∗, (A ∨B)∗ = A∗ ∨B∗, (¬A)∗ = ¬A∗

3. (2A)∗ = ∀y(r(x, y)→ A∗[x/y], with y a new variable

4. (3A)∗ = ∃y(r(x, y) ∧ A∗[x/y], with y a new variable

The translated formula A∗ will contain exactly one free variable, named by
x. In the definition of (2A)∗ we need to replace the subformula A∗ by A∗(x

y
),

replacing x by y.

Example 24 ()
(23p→ 32p)∗ = ∀y(r(x, y)→ ∃z(r(y, z) ∧ p(z)))→

∃y(r(x, y) ∧ ∀z(r(y, z)→ p(z)))
to be done:

give more details

Definition 88 (Structure Translation)
Let K = (G,R, v) by a Kripke structure. The universe of the translated

first-order structure K∗ will be G and the interpretation of the symbols in
ΣPVar is given by

g ∈ I(p) ⇔ v(g, p) = true
(g1, g2) ∈ I(r) ⇔ R(g1, g2)

Lemma 83 (Translationlemma)
Let A be a modal formula, K a Kripke structure g ∈ G then

(K, g) |= A iff K∗ |= A∗[g]

148

Proof: Structural induction on A.
If A = p is an atom, the claim follows directly from Definition 88.
The cases A = A1 ∧ A2, A = A1 ∨ A2, A = ¬A1 are simple.
If A = 2A1, then

(K, g) |= 2A iff for all h with R(g, h) we have (K, h) |= A
iff for all h with R(g, h) we have K∗ |= A∗[h]
iff K∗ |= ∀y(r(x, y)→ A∗(x

y
)[g]

iff K∗ |= (2A)∗[g]

The case A = 3A1 proceeds completely analogous.

Theorem 84 (Translationtheorem)
Let A be a modal formula in the vocabulary PVar. Then

A is a modal K tautology iff ∀xA∗ is a first-order tautology

Proof: This is rather straight forward. Nevertheless, let us spell it out in
detail to be prepared for a more complicated situation of the same kind later.

To proof the direction from right to left, we assume that ∀xA∗ is a first-order
tautology and consider an arbitrary world g in an arbitrary Kripke structure
K with the aim of showing (K, g) |= A. The assumption yields K∗ |= A∗[g]
which by Lemma 83 yields (K, g) |= A, as desired.

The reverse implication is a notch more complicated. We assume the left
hand side and consider an arbitrary ΣPVar structure M and an element g in
the universe ofM. We need to showM |= A∗[g]. It is easy to see that there
is a Kripke structure K with K∗ =M. Since A is a modal tautology we get
(K, g) |= A and Lemma 83 yields the desired conclusion K∗ |= A∗[g].

3.8.1 Decidable Fragments of First-Order Logic

Theorem 85 For the following classes of formulas the satisfiability problem
is decidable:

149

1. All formulas with prefix ∃∗∀∗ with equality and no function symbols
(this includes the requirement that there are no constant symbols).
Bernays-Schönfinkel-Ramsey class.

2. All formulas with prefix ∃∗∀2∃∗ no equality, and no function symbols.
Gödel-Kalmár-Schütte class.

3. All formulas with only 1-place relation and 1-place function symbols.
Löb-Gurevich class.

4. All formulas with prefix ∃∗∀∃∗ no equality.
Maslov-Orevkov-Gurevich class

5. All formulas with prefix ∃∗ with equality, no restrictions on relation and
function symbols.
Gurevich class.

Proof See [Börger et al., 1982].

Theorem 86 Let FOLk denote the fragment of formulas of first-order logic
that use at most k different variables.

1. FOL2 is decidable.

2. FOL3 is undecidable.

Proof For (1) see [Mortimer, 1975] for (2) [Surányi, 1943].

Definition 89 (Guarded Fragment) The guarded fragment, GF , of
first-order logic is defined as usual with the exception that quantification is
only allowed in the special forms

∀x(α→ φ) and ∃x(α ∧ φ)

where α is an atomic formula that contains all variables that occur free in φ.

Theorem 87 The guarded fragment GF is decidable.

Proof See [H.Andréka et al., 1998, Grädel, 1999].

150

3.9 Exercises

Definition 90
A Kripke frame (G2, R2) is a subframe of a Kripke frame (G1, R1), if

1. G2 ⊆ G1 and

2. for all g, h ∈ G2 R2(g, h) iff R1(g, h)

A subframe (G2, R2) of (G1, R1) is called a closed subframe, if every world
that is accessible from G2 is already a world in G2. Formally

3. for all g, h ∈ G1 satisfying g ∈ G2 and R1(g, h) we have h ∈ G2.

Exercise 3.9.1
Prove the following lemma:

If (G2, R2) is a closed subframe of (G1, R1), and v1 : G1 × P → {0, 1} an
arbitrary interpretation function, and g ∈ G2 an arbitrary world then for
every formula F in PModFml:

(G1, R1, v1, g) |= F iff (G2, R2, v2, g) |= F.

Here v2 is the restriction of v1 to the domain G2 × P .

Exercise 3.9.2
Show that the following formulas are not modal tautologies

1. (2P → 2Q)→ 2(P → Q)

2. 2(P ∨Q)→ (2P ∨2Q)

Exercise 3.9.3
Show that the following two formulas are S5-tautologies, i.e. valid in all

Kripke structure where the accessability relation R is an equivalence relation.

1. 32p↔ 2p

2. 23p↔ 3p

151

Exercise 3.9.4
Prove cases 2,3 and 5 – 11 of Lemma 56.

Exercise 3.9.5
For an arbitrary frame (G,R) prove the following equivalences:

1 (G,R) |= C(0, 1, 2, 0) iff R ist transitive
2 (G,R) |= C(0, 1, 0, 0) iff R ist reflexive
3 (G,R) |= C(1, 1, 0, 0) iff R ist symmetric
4 (G,R) |= C(1, 0, 1, 0) iff R ist functional

Exercise 3.9.6
For every n ∈ N, every Kripke structure K = (G,R, v) and every world
g ∈ G:

1. (K, g) |= 2nF iff for all h ∈ G with Rn(g, h) we have (K, h) |= F

2. (K, g) |= 3nF iff there is h ∈ G with Rn(g, h) and (K, h) |= F

Exercise 3.9.7 Show that the class of non-empty frames, i.e., the class
of frames satisfying ∃x∃yR(x, y) cannot be characterized by a formula in
PModFml.
Hint: Use the result of Exercise 3.9.1.

Definition 91
The disjoint sum (G,R) = (G1, R1)] (G2, R2) of two frames (G1, R1),
(G2, R2) is defined by

1. G = G1]G2

If G1 and G2 are disjoint G is thus the usual set theoretic union G1∪G2.
Otherwise, we need to use disjoint copies of G1 and G2, e.g., G =
({1} ×G1) ∪ ({2} ×G2)

2. R is the relational sum of R1 and R2, i.e.,
R(g, h) iff R1(g, h) or R2(g, h)

Definition 92
The disjoint sum K = K1] K2 of two Kripke structures K1 = (G1, R1, v1),
K2 = (G2, R2, v2) is defined by K = (G,R, v) with

152

1. (G,R) = (G1, R1)] (G2, R2)

2. v(g, p) =

{
v1(g, p) if g ∈ G1

v2(g, p) if g ∈ G2

This definition works if G1 and G2 are disjoint. In the general case we
have to take the isomorphisms j1 and j2 into account that replace Gi

by disjoint copies. Thus

v(g, p) =

{
v1(j1(g), p) if g ∈ G1

v2(j2(g), p) if g ∈ G2

Exercise 3.9.8 Assume, for simplicity, that G1 and G2 are disjoint sets
of worlds and K1 = (G1, R1, v1), K2 = (G2, R2, v2) Kripke structures and
K = K1] K2 .

Show that for all F ∈ PModFml:

K |= F iff K1 |= F and K2 |= F

Exercise 3.9.9 Show that the class of universal frames, i.e., the class
of frames satisfying ∀x∀yR(x, y) cannot be characterized by a formula in
PModFml.
Hint: Use the result of Exercise 3.9.8.

Exercise 3.9.10 Show that 2p → 22p is a characterizing formula for the
class of transitive frames by the method exemplified in Examples 12 and 13.

Exercise 3.9.11 Show that 2p → 3p is a characterizing formula for the
class of serial frames by the method exemplified in Examples 12 and 13.

Exercise 3.9.12 Find the characterizing formula for the class of frames of
trivial frames G = {(G,R) | ¬∃x∃yR(x, y)}.
Don’t use the Ackermann method for this simple case.

Exercise 3.9.13 For a Kripke structure K = (G,R, v), g ∈ G and a formula
F ∈ PModFml it is intuitive clear that (K, g) |= F does not depend on
worlds g′ ∈ G that can not be reached from g. We will formulate a more
detailed statement to the effect that (K, g) |= F does not depend on world
g′ ∈ G that cannot be reached from g within less than md(F) steps (for the
definition of the modal depth, md(F), see Definition 35 on page 74).
To make this a precise statement we need the following definitions.

153

Definition 93 Let K = (G,R, v), g ∈ G. The set Gn
g ⊆ G is defined by

induction on n:

1. G0
g = {g},

2. Gn+1
g = Gn

g ∪ {g2 ∈ G | R(g1, g2) for some g1 ∈ Gn
g}

We set Kns = (Gn
g , R

n
g , v

n
g) with Rn

g = R∩(Gn
g×Gn

g) and vnG = v∩(Gn
g×PVar).

Claim:
Given K = (G,R, v), g ∈ G, n ∈ N and F ∈ PModFml .
For any k ≤ n and g1 ∈ Gk

g if md(F) ≤ n− k:

(K, g1) |= F ⇔ (Kng , g1) |= F

For k = n, md(F) ≤ n this says that (K, g) |= F is equivalent to (Kng , g) |= F .
Now, it its your job to prove this.

Exercise 3.9.14 On page 80 an example was given showing that the de-
duction theorem is not true for the global modal consequence relation. This
exercise presents a substitute.
For F1, F2 ∈ PModFml with md(F1),md(F2) ≤ n:

F1 `G F2 ⇔ ` (F1 ∧2F1 ∧ . . .2nF1)→ F2

Exercise 3.9.15 In the paragraph following Example 19 an example of a
translation of description logic expressions into first-order formulas was
given.

1. Give a general definition of this translation.

2. Make precise what is the semantic relationship between the concept ex-
pression and its first-order translation.

Exercise 3.9.16 Show that the concept formula ¬∀R.C = ∃R.¬C is valid.

Exercise 3.9.17 Show that if r is a transitive relation on a set ∆ then the
inverse relation r− is also transitive.

154

Exercise 3.9.18 Is it possible that a role hierachy H is inconsistent? i.e.,
that there is no interpretion I satisfying CI1 ⊆ CI2 for all C1 v C2 in H.
After all we could have formulas in H such as R1 v R−2 and R2 v R1.

Exercise 3.9.19 Show that any non-cyclic T-Box is definitorial.

Exercise 3.9.20 Let K = (G,R, v) be a Kripke structure, g ∈ G. The set
of all world reachable from g is defined to be the least subset RT (g) ⊆ G with

1. g ∈ RT (g)

2. if h ∈ RT (g) and R(h, h′) then h′ ∈ RT (g)

Let K∗ = (G∗, R∗, v∗) with

G∗ = RT (g)
R∗ = restriction of R to RT (g)
v∗ = restriction of v to RT (g)

Then for any modal formula F and any g∗ ∈ RT (g):

K, g∗ |= F ⇔ K∗, g∗ |= F

Exercise 3.9.21 Let A, F be modal formulas then

A |=G F ⇔ {2nA | n ≥ 0} |=L F

Exercise 3.9.22 Show that the translation from ALC expression into modal
logic formulas given in Definition 68 also works in the reverse direction. More
precisely, for every modal formula F there is an ALC expression F ◦ such that
the following variation of Lemma 74 is true.

1. For every modal formula F and every interpretation I

(F ◦)I = {d ∈ ∆ | (KI , g) |= F}

2. There is an interpretation I and an object d ∈ ∆ satisfying d ∈ (F ◦)I

iff F is satisfiable.

155

Exercise 3.9.23 The following order may be viewed as an 5-place relation:

Order: 1982953
Item Id color size quantitiy

Fleece 313169M6 orange M 2
Shirt 1911409M6 smaragd L 1
Top 249708M6 navy dotted S 1

Translate it into triple notation.

See also Exercise 1.2.5.

Exercise 3.9.24 Taken from B. Nebels lecture. Translate the following
SHIQ expressions in satisfiability equivalent formulas of first order logic

1. ∀r−1.(C u ¬∃s.D)

2. ∀r u s.(∀t.(¬C t ∃r.D))

3. ∃r.((C t (¬s v t)) u ∀s.(t v u))

Exercise 3.9.25 Correctness and completeness theorems 69 and 71 were
done for the modal logic K. If we redo the proofs for the modal logic T
(with reflexive accessability relation R) where will it be neccessary to use the
definition of T-accessability of prefixes?

Exercise 3.9.26 The first-order semantics for the vocabulary V2 introduced
in Definition 85 would require to provide a universe ∆ and an interpretation
function I such that I(c) ∈ ∆ for each constant symbol in V2 and I(Tr) ⊆ ∆3

for the only relation symbol Tr ∈ V2.

The triple semantics given in http: // www. w3. org/ TR/ rdf-mt/ also re-
quires a universe ∆ and an interpretation function I such that I(c) ∈ ∆
for each constant symbol in V2. But now, things differ. The RDF triple se-
mantics requires that there is a function ext : ∆→ P(∆2), i.e., the function
ext associates with every element d ∈ ∆ a subset ext(d) ⊆ ∆2 of pairs of
elements from ∆.

Can you see that these two approaches are equivalent?

156

http://www.w3.org/TR/rdf-mt/

Exercise 3.9.27 C1, C2 are concept symbols, R a role symbol.
Which of the following inclusions, if any, are universally valid?

1. C1 u ∃R.C2 v ∃R.(C1 u C2)

2. ∃R.(C1 u C2) v C1 u ∃R.C2

157

Chapter 4

Dynamic Logic

158

Dynamic Logic provides a logical framework to describe and reason about
complex systems that are determined by a set of states and actions transform-
ing the system from one state to another. This is a very general application
area. The systems we will consider here will be programming languages. In
this case the states are the states of computation reached during the exe-
cution of a computer program, while the actions are the commands of the
programming language.

The roots for this type of a logic for programs go back to the paper
[V.R.Pratt, 1976] by V. R. Pratt. The name Dynamic Logic was coined
by D. Harel in [Harel, 1979], which is an extension of his dissertation com-
pleted in 1978. The exposition in this paper is for the greatest part based on
Harel’s work. Other references still worth reading today are [Harel, 1984],
[Goldblatt, 1987, Section 10] und, [Goldblatt, 1982, Part Three]. The most
recent account is the book [Harel et al., 2000].

4.1 Motivating Example

We will use the well known puzzle called the towers of Hanoi to explain the
principal approach of dynamic logic. The goal of the game is to move all

(a) Initial State (b) Final State

Figure 4.1: The Towers of Hanoi

disks from the first pile to the last pile making use of an auxiliary pile in the
middle, as shown in Figure 4.1. Of course only the top most disk of a pile
can be moved. Furthermore, the restriction has to be observed that never a
larger disk may be placed on top of a smaller one.

The towers of Hanoi puzzle is mostly used as an example for recursive pro-
gramming. But, there is also a suprisingly simple iterative solution that can
be described by the following instructions:

1. Move alternatingly the smallest disk and another one.

159

2. If moving the smallest disk put it on the stack it did not come from in
its previous move.

3. If not moving the smallest disk do the only legal move,

We could try to describe this sequence of actions by

moveS;moveO;moveS;moveO; . . .

Or even more concise if we use the unbounded iteration operator ∗ known
from regular expressions:

(moveS;moveO)∗

This shows that in Dynamic Logic we can explicitly refer to actions and
that it is possible to compose composite actions from simpler ones. What
we have is still a very crude approximation of the solution of the towers of
Hanoi puzzle. We need to add an action, that checks for termination:

moveS; testForStop; (moveO;moveS; testForStop)∗

This is a perfect description of the required actions. It could for example
be used by the legendary priest in the legendary Indian temple to make one
move with the 64 golden disks per day until after he moved the last disk
on the rightmost pile the world will come to an end. The description of the
required actions is sufficient in a situation where you have access to the real
world and are confronted with a physical realisation of the puzzle. If we
want to argue and reason about it we also need a formal presentation of the
possible states. This is in this case fairly easy. We may e.g., use the following
two-place function stack:

stack(n,m) =


k > 0 on stack n at position m

there is a disk of size k
0 on stack n at position m

there is no disk

with 1 ≤ n ≤ 3 and 1 ≤ m ≤ d with d the number of disks. Thus the
following state

160

would be represented by the following functions, which we here define via its
function table.

stack first second third

position 4 0 0 0
position 3 0 0 0
position 2 0 0 1
position 1 4 3 2

The final position could then be characterised by the formula

∀m(1 ≤ m ≤ d→ stack(3,m) 6= 0)

This formula says that all disks are on stack 3. Another property we would
want to be satisfied throughout is that no larger disk is placed on top of a
smaller one:∧

1≤n≤3 ∀m1,m2 ((1 ≤ m1 < m2 ≤ d ∧ stack(n,m1) 6= 0)
→ stack(n,m1) > stack(n,m2))

∧∧
1≤n≤3 ∀m1,m2 ((1 ≤ m1 < m2 ≤ d)

→ stack(n,m1) ≥ stack(n,m2))

i.e., on each of the three pegs the disks are arranged in decreasing order.
So far we have seen examples of properties of states formalised in first-order
predicate logic. It is a particular feature of Dynamic Logic that it allows to
relate properties of states to actions. One of the simplest relations of this
kind is to demand that a formula φ should be an invariant for an action A:

whenever φ is true before A
it is also true after the execution of action A.

Formally we could write

OrderedStacks→ 〈moveS〉 OrderedStacks

when we agree that a formula of the form 〈A〉 φ should be read
as: after performance of action A a state is reached that satisfies
formula φ. This already points to the issue of termination; do ac-
tions always terminate? We are e.g., not certain that the action
moveS; testForStop; (moveO;moveS; testForStop)∗ terminates. It could

161

loop infinitely and never pass through the final state. Thus we do not require
that actions terminate. A statement of the form 〈A〉 φ however incorporates
the claim that A terminates. The formula

〈moveS; testForStop; (moveO;moveS; testForStop)∗〉true

thus says that moveS; testForStop; (moveO;moveS; testForStop)∗ always
terminates. In other cases we might only want to make a partial assertion,
if action A terminates it should be in a state statisfying φ, if A does not
terminate we do not care. For this the formal notation [A] φ would be used.

4.2 Syntax and Semantics of Regular Dy-

namic Logic

For the definition of the syntax of Dynamic Logic DLreg we start - as usual
- by fixing a vocabulary Σ. We proceed - again as usual - by defining terms
DLTΣ and formulas DLFΣ of the logic. In addition - and that is particular
for Dynamic Logic - we will define the set of programs Π. The definitions of
DLFΣ and Π will be mutually recursive.

Definition 94 (Vocabulary) A vocabulary Σ consists of

• a set of function symbols f, g, fi, . . . with fixed number of arguments,

• 0-place function symbols will also be called constant symbols,

• a set of predicate symbols p, q, pi, . . . with fixed number of arguments.

By Var we denote an infinite set of variable symbols.

Definition 95 (DL Terms)

1. x ∈ DLTermΣ for x ∈ Var
Every variable symbols is a term.

2. f(t1, . . . , tn) ∈ DLTermΣ

for every n-place function symbol f ∈ Σ and t1, . . . , tn ∈ DLTermΣ

162

Definition 96 (DL Formulas and Programs)

1. atomic formulas
r(t1, . . . , tn) ∈ DLFmlΣ
for every n-place relation symbol r ∈ Σ and terms ti ∈ DLTermΣ.

2. equations
t1 = t2 ∈ DLFmlΣ
for t1, t2 ∈ DLTermΣ

3. closure under predicate logic operators
F1 ∨ F2 F1 ∧ F2, F1 → F2, ¬F1, ∀xF1 and ∃xF1 ∈ DLFmlΣ
for all F1, F2 ∈ DLFmlΣ.

4. modal operators
[π]F, 〈π〉F ∈ DLFmlΣ
for F ∈ DLFmlΣ and π ∈ Π.

5. atomic programs
(x := t) ∈ Π for t ∈ DLTermΣ and x ∈ Var.

6. composite programs
If π1,π2 ∈ Π then

(a) π1; π2 ∈ Π sequential composition

(b) π1 ∪ π2 ∈ Π nondeterministic choice

(c) π∗ ∈ Π iteration

7. tests
con? ∈ Π for every quantifierfree formula con ∈ DLFmlΣ.

There are other choices for the set Π of programs, see e.g., Section 4.2.1. Our
choice is called the set of regular programs, because of the close similarity
to the syntax of regular expressions. Consequently the particular version of
Dynamic Logic is called regular Dynamic Logic. Other versions could e..g, be
based on the concept of while programs known from theoretical Computer
Science, or Π could consist of the programs of a real programming language
like Java, see [Beckert et al., 2007, Chapter 3].

163

Before we give examples let us first define the semantics of regular Dynamic
Logic.

Let M = (M, valM) be a first-order structure. As usual the function valM
interprets function and relation symbols as functions and relations of the
universe M . Will will use the same notation valM for the interpretation
of terms and formulas. In general it is necessary to provide in addition an
assignments of the (free) variables in terms and formulas. We use Var→M
to denote the set of variable assignments for M. For u ∈ (Var → M) and
t ∈ DLTermΣ we will use the notation valM,u(t) for the usual first-order
evaluation of t inM with variables in t interpreted via u. For s ∈ (Var→M),
x ∈ Var, a ∈M we will need the following notation

s[x/a](y) =

{
a if y = x
s(y) otherwise

Definition 97 (Kripke Structure) For every given first-order structure
M = (M, valM) the Kripke structure

KM = (S, ρ, |=)

is determined by

S = Var→M the set of states
ρ : Π→ S × S accessibility relations

subject to the following constraints:

(s, s′) ∈ ρ(x := t) iff s′ = s[x/valM,s(t)]
(s, s′) ∈ ρ(π1; π2) iff there exists t ∈ S with

(s, t) ∈ ρ(π1) and (t, s′) ∈ ρ(π2)
(s, s′) ∈ ρ(π1 ∪ π2) iff (s, s′) ∈ ρ(π1) or (s, s′) ∈ ρ(π2)
(s, s′) ∈ ρ(π∗) iff there exists n and s1, . . . sn ∈ S

such that s1 = s and sn = s′ and
(si, si+1) ∈ ρ(π) for 1 ≤ i < n

(s, s′) ∈ ρ(con?) iff s = s′ and s |= con

M is called the domain of computation of K.

Let K be a Kripke structure with computation domainM = (M, valM). For
every formula F ∈ DLFml and every state s of K the following definition

164

will explain inductively when F is true in state s, written as s |= F . The
meaning ρ(π) of a program π ∈ Π given as a set of pairs of begin state and
end state is already completely determined by the contraints in Definition
97.

Definition 98 (DLreg Semantics)
s |= r(t1, . . . , tn) iff (valM,s(t1), . . . , valM,s(tn)) ∈ valM(r)
s |= t1 = t2 iff valM,s(t1) = valM,s(t2)
s |= F F matching one of F1 ∨ F2, F1 ∧ F2,

F1 → F2,¬F1, ∀xF1 or ∃xF1

as usual.
s |= [π]F iff s′ |= F for all s′ with (s, s′) ∈ ρ(π)
s |= 〈π〉F iff there exists s′ with (s, s′) ∈ ρ(π) and s′ |= F

If s |= F holds, we say that formula F is true in state s. If it is not clear
from the context, we say F is true in state s of K, and write in symbols
(K, s) |= F .

We say F is true in the Kripke structure KM = (S, ρ), in symbols KM |= F ,
if s |= F is true for all s ∈ S.

Notice, that once the domain of computationM is fixed, the Kripke structure
KM = (S, ρ, |=) is uniquely determined.

We note the following elementary observations on the semantics of regular
programs.

Lemma 88 For any program π ∈ Π let FV (π) be the set of variables occur-
ing on the left hand side of an assignment statement in π and V π all variables
occuring in π.

1. The program π only changes variables in FV (π);
that is, if (s, s1) ∈ ρ(π) then s(x) = s1(x) for all variables x 6∈ FV (π).

2. Variables outside V π do not influence the program π;
that is, if x 6∈ V π and (s, s1) ∈ ρ(π) then also
(s[x/a], s1[x/a]) ∈ ρ(π) for arbitrary a.

3. more general: If (s, s1) ∈ ρ(π) and s′ is a variable assignment such that
s′(y) = s(y) for all y ∈ V π then there is s′1 such that

165

(a) (s′, s′1) ∈ ρ(π) and

(b) s′1(x) = s′(x) for all x 6∈ V π

(c) s′1(y) = s1(y) for all y ∈ V π.

Proof Simple.

Now it is time to look at a few examples.

Example 25 Let’s warm up with a simple question: For a formula con and
a program π what does (u, u′) ∈ ρ(con?; π) mean? Here is the answer:

(u, u′) ∈ ρ(con?; π) iff exists w with
(u,w) ∈ ρ(con?) and (w, u′) ∈ ρ(π)

iff exists w with
u |= con, w = u and (w, u′) ∈ ρ(π)

iff u |= con and (u, u′) ∈ ρ(π)

Example 26 We can use Example 25 to find out the meaning of (u, u′) ∈
ρ((con?; π1) ∪ (¬con?; π2))

(u, u′) ∈ ρ((con?; π1) ∪ (¬con?; π2))
iff (u, u′) ∈ ρ((con?; π1)) or (u, u′) ∈ ρ((¬con?; π2))
iff u |= con and (u, u′) ∈ ρ(π1) or u |= ¬con and (u, u′) ∈ ρ(π2)
iff (u, u′) ∈ ρ(if con then π1 else π2)

Thus:
(con?; π1) ∪ (¬con?; π2) ≡ (if con then π1 else π2)

Example 27

(u,w) ∈ ρ((A?; π)∗;¬A?)
iff there exist n ∈ N and u1, . . . , un ∈ S with u1 = u

(ui, ui+1) ∈ ρ(A?; π) for all i, 1 ≤ i < n and
(un, w) ∈ ρ(¬A?)

iff there exist n ∈ N and u1, . . . , un ∈ S with u1 = u, un = w
(ui, ui+1) ∈ ρ(π) and ui |= A for all i, 1 ≤ i < n and
w |= ¬A

iff (u,w) ∈ ρ(while A do π)

166

Thus

while A do π ≡ (A?; π)∗;¬A?

Examples 26 and 27 show that the programs covered by regular Dynamic
Logic are at least as powerful as while programs.

Next item on the agenda for introducing a logic is the explanation of logical
validity and derivability for Dynamic Logic. In first-order logic there is just
one natural way to define these concepts. For Dynamic Logic there are
choices. First we distinguish the uninterpreted case form the interpreted
case. In the uninterpreted case we take into account all structures M as
domains of computation that fit the given vocabulary. This corresponds
most closely to universal validity in first-order logic. In the interpreted case
we fix one domain of computation. This is most useful in Computer Science
applications, where we want e.g., a fixed model of arithmetic. On a second
level we distinguish local and global logical consequence relations, as is done
in many modal logics.

Definition 99 (Uninterpreted Validity)
` F F is valid KM |= F for all M.

G ` F G (locally) entails F for all M and all s ∈ S
if s |= G then also s |= F

G `gF G globally entails F for all M
if s |= G for all s ∈ S
then s |= F for all s ∈ S

Definition 100 (Deterministic Programs)
A program π is called deterministic if for all Kripke structures K = (S, ρ, |=)

(s, s1) ∈ ρ(π) and (s, s2) ∈ ρ(π) implies s1 = s2.

Lemma 89 (Uninterpreted Tautologies) Assume that the variable x
does not occur in the program π. Then,the following formulas are valid in
the uninterpreted semantics.

1. (∃x 〈π〉F)↔ (〈π〉∃x F)

2. (∀x [π]F)↔ ([π]∀x F)

167

3. (∃x [π]F)→ ([π]∃x F)

4. ([π]∃x F)→ (∃x [π]F) if π is deterministic

5. (〈π〉∀x F)→ (∀x 〈π〉F)

6. (∀x 〈π〉F)→ (〈π〉∀x F) if π is deterministic

7. (〈π〉(F ∧G))→ ((〈π〉F) ∧ 〈π〉G)

8. (〈π〉(F ∧G))↔ ((〈π〉F) ∧ 〈π〉G) if π is deterministic

Proofs
Proof of (1). Since this is the first proof in a series of similar spirit we present

it in full detail. The assumption x 6∈ V π will make the applications of the
elementary observations in Lemma 88 in the following proof possible.

⇒:

1 s � ∃x〈π〉F assumption
2 s[x/b] � 〈π〉F for some b
3 t � F with (s[x/b], t) ∈ ρ(π)
4 t � ∃xF classical predicate logic
5 t[x/s(x)] � ∃xF classical predicate logic
6 s � 〈π〉∃xF from (s[x/b], t) ∈ ρ(π) we get by

Lemma 88 (s, t[x/s(x)]) ∈ ρ(π)

⇐:

1 s � 〈π〉∃xF assumption
2 t � ∃xF with (s, t) ∈ ρ(π)
3 t[x/b] � F for some b
4 s[x/b] � 〈π〉F from (s, t) ∈ ρ(π) we get by

Lemma 88 (s[x/b], t[x/b]) ∈ ρ(π)
5 s � ∃x〈π〉F predicate logic

Proof of (2). Follows from (1) and Exercise 4.7.4(1)

Proof of (3). From now on, we will not prove the two implications separately.
Any line in the following proof outlines is an equivalence transformation.

168

Consider an arbitrary state s in a Kripke structure KM.

1 s � ∃x [π]F assumption
2 s[x/a] � [π]F for some a
3 t � F for all t with

(s[x/a], t) ∈ ρ(π)
3 t � ∃xF for all t with

(s[x/a], t) ∈ ρ(π)
4 s[x/a] � [π]∃xF Def. of [] operator
5 s � [π]∃xF since x 6∈ V π

Proof of (4). Consider again an arbitrary state s in a Kripke structure KM.

1 s � [π]∃xF assumption
2 t � ∃xF for all t with (s, t) ∈ ρ(π)

by determinacy this is equivalent to:
3 t � ∃xF for the unique t with (s, t) ∈ ρ(π)
4 t[x/b] � F for the unique t with (s, t) ∈ ρ(π)

and some b ∈M
5 s[x/b] � [π]F since by the basic observation

t[x/b] is the unique state with
(s[x/b], t[x/b]) ∈ ρ(π)
for some b ∈M

5 s[x/b] � ∃x[π]F predicate logic
6 s � ∃x[π]F predicate logic

Proof of (5). Follows from (3) and Exercise 4.7.4(1).

Proof of (6). Follows from (4) and Exercise 4.7.4(2).

Proof of (7).

1 s � 〈π〉(F ∧G) assumption
2 t � F ∧G with (s, t) ∈ ρ(π)
3 t � F and t � G
4 s � 〈π〉F and s � 〈π〉G
5 s � 〈π〉G ∧ 〈π〉F

Proof of (8). Because of (7) only the implication ← needs to be proved.

169

1 s � 〈π〉F ∧ 〈π〉G assumption
2 t1 � F and t2 � G with (s, ti) ∈ ρ(π)
3 t2 � F and t2 � G since t1 and t2 coincide on x 6∈ V π

and no x ∈ V π occurs in F
4 t2 � F ∧G
5 s � 〈π〉(F ∧G)

Example 28

Assume that the vocabulary Σ contains the two unary function symbols f, g
and a unary predicate symbol p and let M be an arbitrary structure for Σ.
Then the following DL formula is valid in the Kripke structure KM.

x = y ∧ ∀x(f(g(x)) = x)→
[while p(y) do y := g(y)]〈while y 6= x do y := f(y)〉true

Let s be a state of K satisfying with s(x) = s(y) and s |= ∀x(f(g(x)) = x).
We need to show

s |= [while p(y) do y := g(y)]〈while y 6= x do y := f(y)〉true

That is to say, for any t such that (s, t) ∈ ρ(while p(y) do y := g(y)) we
need to show that there is t′ such that (t, t′) ∈ ρ(while y 6= x do y := f(y))
By the choice of t we know that there is an n ∈ N and there are states
t1, . . . , tn with t1 = s and tn = t such that ti |= p(y) for all 1 ≤ i < n,
tn |= ¬p(y) and ti+1(y) = g(ti(y)) for all 1 ≤ i < n, i.e., tn(y) = gn−1(s(y)).
Also we know that s(z) = ti(z) for all z 6= y and all i.
Let uj 1 ≤ j ≤ n be states such that uj(z) = s(z) = ti(z) for all j and z 6= y
and uj(y) = f j−1(tn(y)), in particular that means u1(y) = tn(y). Obviously
(uj, uj+1) ∈ ρ(y := f(y)). From un(y) = fn−1(tn(y)) = fn−1(gn−1(sn(y)))
andM |= ∀x(f(g(x)) = x) we obtain un(y) = s(y). By the initial assumption
on s and the fact that the value of x is never changed we get un(y) = s(x) =
un(x). This shows that (tn, un) ∈ ρ(while y 6= x do y := f(y)) and we are
finished. Since we have no information on what f and g do the while-loop
might terminate earlier, but it will certainly terminate after n iterations.

Definition 101 (Interpreted Validity)

170

Let M be a fixed first-order structure.

`M F F is M-valid KM |= F .

G `M F G (locally) M-entails F for all s ∈ S
if s |= G then also s |= F

G `gM F G globally M-entails F if s |= G for all s ∈ S
then s |= F for all s ∈ S

Example 29

LetM = (N, 0,+,−, >) be the computational domain of the natural numbers.
The following formulas are M-tautologies.

1. (p(0) ∧ ∀x(p(x)→ p(x+ 1)))→ ∀xp(x)

2. ¬∃x(0 < x ∧ x < 1)

Example 30

Fixing a computation domain greatly increases the expressive power. Let M
be the natural numbers as in the previous example 29 and R a binary relation
symbol in the vocabulary Σ. Then we can define the transitive closure of R.
We start with the auxiliary definition:

TC0
R(x, y, z) ↔ (z = 0 ∧ x = y)∨

(z > 0 ∧ ∃u(TC0
R(x, u, z − 1) ∧R(u, y))

and arrive at the definition

TCR(x, y)↔ ∃z(TC0
R(x, y, z))

It is easily seen that TCR(x, y) defines the reflexive, transitive closure of R.

This example also shows that Definitions 99 and 101 may be refined to allow
part of the vocabulary Σ to stay fixed while the rest may vary.

171

4.2.1 Boogie PL

As an alternative to the language of regular programs from Definition 96 we
sketch in this section the intermediate programming language, sometimes also
called a verification language, Boogie PL from [Barnett et al., 2005, Leino,
2008], which plays an important role in Microsoft’s program verification tool
suite. We leave out some details and concentrate on the parts necessary to
compare Boogie PL to the language of regular programs. In particular, we
omit procedure calls, which were also not considered within regular programs.
We also omit Boogie’s typing discipline. Types were anyhow ignored in the
generation of verification conditions, at least in the paper [Barnett et al.,
2005].

We will start with the definition of what we call core Boogie programs. This
Definition will be extended to Boogie programs without any qualification in
Definition 104.

Definition 102 (Syntax of Core Boogie Programs) A Core Boogie
program π is a labeled sequence of commands taken from the following list:

1. v := t;

2. assume F ;

3. havoc v;

4. goto L;

where v stand for a (program) variable, t a term, F a formula in a first order
language, and L for a set of labels.
Every command in π is prefixed by a unique label.

In the original definition a program is composed of blocks, i.e., sequences of
commands without jumps, and sets of block labels occur as parameters of
goto commands. Thus, our version corresponds to Boogie programs where
every line is a block of its own.

For the purposes of the semantics of Boogie programs a state s is a mapping
from program variables to values. Again the domain of values as well as
the interpretation of the function and predicate symbols of the first-order

172

language are determined by a computation domain M as in Definitions 97
and 98. There is a difference though. Among the program variables there is
an implicit variable called pc (for program counter). Implicit means that the
variable does not occur in programs only in the semantics definition. Variable
pc takes positive integers as values that are interpreted as line numbers. We
assume that every line contains exactly one labeled command. For a label
l we use line(l) to denote the number of the line where label l occurs and
label(n) to denote the label in the line with number n. We start numbering
lines from 0. If n is the last line number we use the constant endπ to stand for
n+ 1. In principle we could have used line numbers as labels, thus avoiding
the additional line and label functions but that would have made giving
examples very tediuos because of the necessary shifting of line numbers.

Definition 103 (Semantics of Core Boogie Programs)
Let π = l1 : c1, . . . , lncn be a Boogie program with labels li and commands ci.

Because of the presence of goto statements the present case is a bit more
involved than Definition 98. In particular the semantics function ρ all the
time depends on the whole program π. Symbolic execution from top to bottom
is not possible.

Single steps the pair (s1, s2) will be in ρ0(π) if s2 is reached from s1 by
executing one command of π. Which command is executed depends on the
value of pc in state s1.

Case line s1(pc) is l : v := t;

(s1, s2) ∈ ρ0(π) iff s2(x) =


valM,s1(t) if x = v
s1(pc) + 1 if x = pc
s1(x) otherwise

Case line s1(pc) is l : assume F ;
(s1, s2) ∈ ρ0(π) iff (M, s1) |= F and

s2(x) =

{
s1(pc) + 1 if x = pc
s1(x) otherwise

Case line s1(pc) is l : havoc v;

(s1, s2) ∈ ρ0(π) iff s2(x) =


arbitrary if x = v
s1(pc) + 1 if x = pc
s1(x) otherwise

173

Case line s1(pc) is l : goto L;

(s1, s2) ∈ ρ0(π) iff s2(x) =


line(l) if x = pc
for some l ∈ L
s1(x) if x 6= pc

If s1(pc) is not a line number occuring in π there is no s2 with (s1, s2) ∈ ρ0(π).

Composite programs the pair (s1, s2) will be in ρn(π) if s2 is reached
from s1 by executing n commands of π.

(s1, s2) ∈ ρ1(π) ⇔ (s1, s2) ∈ ρ0(π)
(s1, s2) ∈ ρn+1(π) ⇔ there is a state s such that

(s1, s) ∈ ρn(π) and (s, s2) ∈ ρ0(π)

(s1, s2) ∈ ρ(π) ⇔ ∃n((s1, s2) ∈ ρn(π) and s2(pc) = endπ)

Notice

1. If in case that line s1(pc) is l : assume F we have (M, s1) 6|= F then
there is no s with (s1, s) ∈ ρ0(π).

2. Typically we will use (s1, s2) ∈ ρ(π) when s1(ps) = 0, i.e., when execu-
tion of π starts with the first statement.

Example 31 (Branching) The command if (F) π1 else π2 may be used
as a macro in Boogie PL. A line in a program π

l : if(F) π1 else π2

m : next command

can be equivalently replaced by

l : goto {l0, l1}
l0 : assume F
l01 : π1

l02 : goto {m}
l1 : assume ¬F
l11 : π2

m :

All labels except l and m are assumed to be new. If l is the label of the last
line, then also m will be a new label for a line with a vacuous command, e.g.,
x := x.

174

Example 32 (Loops) The command while(F) π1 may be used as a macro
in Boogie PL. A line in a program π

l : while(F) π1

m : next command

can be equivalently replaced by

l : goto {l0, l1}
l0 : assume F
l01 : π1

l02 : goto {l}
l1 : assume ¬F
m :

Again all labels except l and m are assumed to be new.

So far we have seen no equivalent to the dynamic logic formulas [π]F or 〈π〉F .
Indeed, asserting program properties is done differently in the Boogie pro-
gramming language. Instead of requiring that a formula F is true after (all)
execution(s) of a program in Booge PL assertions may be placed anywhere
in the program code, with the intuitive requirement that they should be true
whenever they are reached by program execution.

Definition 104 (Syntax of Boogie Programs) A Boogie program is a
sequence of commands taken from the list in Definition 102 and in addition

5. assert F ;

where F a formula in a first order language.

Let S as in Definition 103 be the set of all states, i.e., all functions mapping
program variables, including the implicit program counter variable pc to val-
ues. To extend the semantics definition to programs containing assert state-
ments we need an additional state denoted by , that is intended to signify
failure of an assertion. We are thus looking at the set of state S+ = S ∪{ }.

175

Definition 105 (Semantics of Boogie Programs)
Let π = l1 : c1, . . . , ln : cn be a Boogie program with labels li and commands
ci.
Single steps

Case line s1(pc) is l : assert F ;

(s1, s2) ∈ ρ0(π) iff (M, s1) |= F and

s2(x) =

{
s1(pc) + 1 if x = pc
s1(x) otherwise

or
(M, s1) |= ¬F and s2 =

Composite programs

No changes in the definition of ρn. But, observe that (s1, s2) ∈ ρ0(π) implies
s1 6= .

(s1, s2) ∈ ρ(π) ⇔ ∃n((s1, s2) ∈ ρn(π) and
(s2(pc) = endπ or s2 =))

Definition 106 (Correctness of Boogie Programs)
We say a Boogie program π is correct if for every state s ∈ S with s(pc) = 0

the pair (s,) is not in ρ(π).

Note, this notion of correctness does not include termination of π.

In the next lemma we want to compare state transitions of a regular program
pi with a corresponding Boogie prograsm πB. The state spaces, S : V ar →
V alues on the DL side and SB : V ar ∪ {pc} → V alues on the Boogie side,
differ only in their domains. We stipulate that the variable pc does not occur
in π, i.e. pc 6∈ V ar. For s ∈ S we write s+ val for the state in SB given by

(s+ val)(v) =

{
s(v) if v 6= pc
val if v = pc

Lemma 90 For every regular program π there is a Core Boogie program πc

such that for all states s1, s2 ∈ S with :

(s1, s2) ∈ ρDL(π) ⇔ (s1 + 0, s2 + endπ) ∈ ρBoogie(πc)

176

Proof We use superscripts to distinguish ρDL as given in Definition 98 from
ρBoogie as given in Definition 103.

Looking at items 5,6,7 in Definition 96 we see that assignment and sequential
composition are common to both languages. Furthermore F? in regular
programs is equivalent to assume F in Boogie PL.

l : π1 ∪ π2;
m : next command

can be simulated by the Boogie program
l : goto {l1, l2};
l1 : π1;
l11 : goto {m};
l2 : π2;
m :

l : π∗;
m : next command

can be simulated by

l : goto {l1,m };
l1 : π;
l12 : goto {l};
m :

Lemma 91 For every regular program π let πc be the corresponding Core
Boogie program from Lemma 90. Note, that πc contains no assert statement.
Let π1 = πc; assert F ; then for all states s:

s |= [π]F ⇔ (s+ 0,) 6∈ ρ(π1)
s |= 〈π〉F ⇔ there is s2 ∈ SB with 6= and (s+ 0, s2) ∈ ρ(π1)

Proof Straightforward

177

4.3 Propositional Dynamic Logic

The previous section 4.2 contains an introduction to regular Dynamic Logic.
This is a first-order logic allowing universal and existential quantification. In
this section we will present a propositional version of Dynamic Logic.

Definition 107 (Syntax of PDL) Let PVar be a set of propositional
variables.

The set PFml of formula propositional Dynamic Logic is defined by the
following inductive definition:

1. atomic formulas
p ∈ PFml for any propositional variable p ∈ PVar.

2. closure under propositional logic operators
If F1, F2 ∈ PFml then also F1 ∨ F2 F1 ∧ F2, F1 → F2, ¬F1

3. modal operators
[π]F, 〈π〉F ∈ PFml for F ∈ PFml and π ∈ Π.

4. atomic programs
a ∈ Π for every atomic program a ∈ AP

5. composite programs
If π1,π2 ∈ Π then

(a) π1; π2 ∈ Π sequential composition

(b) π1 ∪ π2 ∈ Π nondeterministic choice

(c) π∗ ∈ Π iteration

6. tests
con? ∈ Π for every con ∈ PFml.

To avoid notational clutter we still use Π to denote the set of programs for
propositional Dynamic Logic. If necessary we will write more specifically
ΠPDL.

Definition 107 refers to the new concept of atomic programs. In a propo-
sitional logic there are no variables for objects, and consequently there can
be no assignment statements in programs. But, assignments were the basis

178

for programs, all other constructs did produce new programs from already
existing ones. Atomic programs serve as the basis for defining more com-
plex programs in Propositional Dynamic Logic. The semantics of atomic
programs will be explained in due course below.

Definition 108 (PDL Kripke Structure) A PDL Kripke structure

K = (S, |=, ρ)

is determined by:

S the set of states
|= ⊆ (S × PVar) evaluation of propositional atoms in states
ρ : AP→ P(S × S) the accessibility relations for atomic programs

Notice the differences to Definition 97: For PDL Kripke structures there is
no computational domain, since this is a first-order and not a propositional
concept. In Definition 97 the interpretation ρ of programs was uniquely
determined by the computational domain. Here it depends on the arbitrary
interpretation AP→ P(S × S) of atomic programs.

The following semantics definition extends

• |= ⊆ (S × PVar) to a relation |= ⊆ (S × PFml) and

• ρ from a function AP→ P(S × S) to a function Π→ P(S × S).

Definition 109 (PDL Semantics)

s |= p, p ∈ PV ar iff s |= p
s |= F iff F matching one of F1 ∨ F2, F1 ∧ F2,

F1 → F2,¬F1 as usual.
s |= [π]F iff s′ |= F for all s′ with (s, s′) ∈ ρ(π)
s |= 〈π〉F iff there exists s′ with (s, s′) ∈ ρ(π)

and s′ |= F
(u, u′) ∈ ρ(a), a ∈ AP iff (u, u′) ∈ ρ(a)
(u, u′) ∈ ρ(π1; π2) iff there exists w ∈ S with

(u,w) ∈ ρ(π1) and (w, u′) ∈ ρ(π2)
(u, u′) ∈ ρ(π1 ∪ π2) iff (u, u′) ∈ ρ(π1) or (u, u′) ∈ ρ(π2)
(u, u′) ∈ ρ(π∗) iff there exists n and u1, . . . un ∈ S

such that u1 = u and un = u′ and
(ui, ui+1) ∈ ρ(π) for 1 ≤ i < n

(u, u′) ∈ ρ(con?) iff u = u′ and u |= con

179

Lemma 92 (Tautologies of PDL)

1. [π1; π2]F ↔ [π1][π2]F

2. [π1 ∪ π2]F ↔ ([π1]F ∧ [π2]F)

3. [(π)∗]F ↔ (F ∧ [π][(π)∗]F)

4. 〈π〉F ↔ ¬[π]¬F

5. 〈π1; π2〉F ↔ 〈π1〉〈π2〉F

6. 〈π1 ∪ π2〉F ↔ (〈π1〉F ∨ 〈π2〉F)

7. 〈(π)∗〉F ↔ (F ∨ 〈π〉〈(π)∗〉F)

8. [π](F → G)→ ([π]F → [π]G)

9. [(π)∗](F → [π]F)→ (F → [(π)∗]F)

Proofs The proofs are easy and straightforward. The reader may want to
try finding them himself before reading on.
For all proofs we look at an arbitrary PDL Kripke structure K and an arbi-
trary state s of K.

Proof of (1).
s |= [π1; π2]F ⇔ for all t with (s, t) ∈ ρ(π1; π2) t |= F

⇔ for all t1, t2 with (s, t1) ∈ ρ(π1) and (t1, t2) ∈ ρ(π2)
t2 |= F

⇔ for all t1 with (s, t1) ∈ ρ(π1) t1 |= [π2]F
⇔ s |= [π1][π2]F

Proof of (2).
s |= [π1 ∪ π2]F ⇔ for all t with (s, t) ∈ ρ(π1 ∪ π2) t |= F

⇔ for all t with (s, t) ∈ ρ(π1) or (s, t) ∈ ρ(π2) t |= F
⇔ for all t with (s, t) ∈ ρ(π1) t |= F and

for all t with (s, t) ∈ ρ(π2) t |= F
⇔ s |= [π1]F ∧ [π2]F

180

Proof of (3).
s |= [(π)∗]F ⇔ for all n ∈ N and t1, . . . , tn with s = t1 and

(ti, ti+1) ∈ ρ(π) for all 1 ≤ i < n we have tn |= F
⇔ s |= F and

for all n ∈ N n > 0 and t1, . . . , tn with s = t1 and
(ti, ti+1) ∈ ρ(π) for all 1 ≤ i < n we have tn |= F

⇔ s |= F and
for all t1 with (s, t1) ∈ ρ(π) it is true that
for all n ∈ N and t2, . . . , tn with t1 = t2 and
(ti, ti+1) ∈ ρ(π) for all 2 ≤ i < n we have tn |= F

⇔ s |= F and
for all t1 with (s, t1) ∈ ρ(π) t1 |= [(π)∗]F

⇔ s |= (F ∧ [π][(π)∗]F)

Proof of (4). This is Exercise 4.7.4.

Proof of (5).
〈π1; π2〉F ↔ ¬([π1; π2]¬ F) by (4)

↔ ¬([π1][π2]¬ F) by (1)
↔ ¬([π1]¬(¬[π2]¬ F)) logic
↔ ¬([π1]¬F) by (4)
↔ 〈π1〉〈π2〉F again by (4)

Proof of (6). Use (2) and (4) in the same way as in the proof of (5).

Proof of (7). Use (3) and (4) in the same way as in the proof of (5).

Proof of (8). This is Exercise 4.7.4.

Proof of (9). Assume s |= [(π)∗](F → [π]F) and aim to show s |= (F →
[(π)∗]F)
By assumption we know for all n ∈ N and all t1, . . . , tn with s = t1 and
(ti, ti+1) ∈ ρ(π) for all 1 ≤ i < n it is true that tn |= (F → [π]F). Let us
keep this in mind and start the verification of s |= (F → [(π)∗]F). Thus we
look at s |= F and need to show s |= [(π)∗]F). So we consider m ∈ N and
s1 . . . sm with s1 = s and (si, si+1) ∈ ρ(π) and need to show sm |= F . We
prove by induction that for all 1 ≤ i ≤ m si |= F ist true. For i = 1 this is
obvious since s = s1. For the step from i to i+ 1 we start from the inductive
assumption si |= F . At this point we remember our initial assumption, which
yields si |= (F → [π]F). Since si |= F is guaranteed we get si |= [π]F from
which we conclude si+1 |= F .

181

4.4 Decidability of Propositional Dynamic

Logic

Almost any propositional modal logic with just the two classical modal oper-
ators 2 and 3 is decidable. It is much harder to prove that also propositional
Dynamic Logic is decidable. The guiding idea is to use again the concept of
a filtration of Kripke structures. But, the details are much more involved.

Definition 110 (Normalized PDL formulas)
We call a formula F ∈ PFml normalized if the only propositional connec-

tives are ∨ and ¬ and 〈.〉 is the only modal operator.
Obviously, every F is logically equivalent to a normalized formula.

Later, the size of a PDL formula and programs will play a role in the de-
cidability proof. Though, it is pretty obvious what the size should be, we
give a precise definition to remove any ambiguities, such as: do we count
parenthesis? Does 〈〉 count for one symbol or two?.

Definition 111 (Size PDL formulas)
Let PP be a normalized PDL formula or a PDL program. The size of PP ,
sz(PP) is recursively defined as follows

sz(p) = 1 for p ∈ PV ar
sz(a) = 1 for a ∈ AP
sz(¬PP) = sz(PP) + 1
sz(PP1 ∨ PP2) = sz(PP1) + 1 + sz(PP2)
sz(PP1;PP2) = sz(PP1) + 1 + sz(PP2)
sz(PP1 ∪ PP2) = sz(PP1) + 1 + sz(PP2)
sz(PP ∗) = sz(PP) + 1
sz(PP?) = sz(PP) + 1
sz(〈PP1〉PP2) = sz(PP1) + 1 + sz(PP2)

The formulas 〈π1〉G, 〈π2〉G are not subformulas of 〈π1; π1〉G, yet they have
the flavour of subformulas. This motivates the following definition.

182

Definition 112 (Extended Subformulas)
Let G a normalized PDL formula. The set ESub(G) of all (strict) extended

subformulas of G is inductively defined by

ESub(p) = {p} p ∈ PV ar
ESub(¬G) = {¬G} ∪ ESub(G)
ESub(G1 ∨G2) = {G1 ∨G2} ∪ ESub(G1) ∪ ESub(G2)
ESub(〈a〉G) = {〈a〉G} ∪ ESub(G) a ∈ AP
ESub(〈π1; π2〉G) = {〈π1; π2〉G} ∪ ESub(〈π1〉G) ∪ ESub(〈π2〉G)
ESub(〈π1 ∪ π2〉G) = {〈π1; π2〉G} ∪ ESub(〈π1〉G) ∪ ESub(〈π2〉G)
ESub(〈F?〉G) = {〈F?〉G} ∪ ESub(F) ∪ ESub(G)
ESub(〈π∗〉G) = {〈π∗〉G} ∪ ESub(G)

The operation ESub is extended to sets of normalized formulas by
ESub({F1, . . . , Fk}) = ESub(F1) ∪ . . . ∪ ESub(Fk).

Note that we have set up this definition such that G ∈ ESub)G).

ESub(G) is a finite set of normalized PDL formulas for every normalized
PDL formula G and we prove the following simple observations:

Lemma 93 Let G be a normalized PDL formula and F ∈ ESub(G) with
F 6= G. Then

sz(F) < sz(G)

Proof The proof - obviously - proceeds by structural induction on G. We
use the notation ESub0(G) = ESub(G) \ {G}. The claim can thus be stated
as:

F ∈ ESub0(G)⇒ sz(F) < sz(G)

Before we start we note, that the claim implies sz(F) ≤ sz(G) for all
F ∈ ESub(G). This will tacitly be used in the application of the induc-
tion hypothesis.

The initial case, G = p, is trivially true since ESub0(G) = ∅.
For the induction step we distinguish the remaining seven cases from Defini-
tion 112.

If F ∈ ESub0(¬G) then F ∈ ESub(G). By induction hypothesis
sz(F) ≤ sz(G) < sz(G) + 1 = sz(¬G).

183

If F ∈ ESub0(G1 ∨G2) then F ∈ ESub(G1) ∪ ESub(G2).
By induction hypothesis we obtain
sz(F) ≤ sz(G1) or sz(F) ≤ sz(G2) and thus
sz(F) < sz(G1) + sz(G2) < sz(G1 ∨G2).

If F ∈ ESub0(〈a〉G) then F ∈ ESub(G). By induction hypothesis
sz(F) ≤ sz(G) < sz(G) + 1 = sz(〈a〉G).

If F ∈ ESub0(〈π1; π2〉G) then F ∈ ESub(〈π1〉G) ∪ ESub(〈π2〉G)
By induction hypothesis
sz(F) ≤ sz(〈π1〉G) = sz(π1) + sz(G) + 1 or
sz(F) ≤ sz(〈π2〉G) = sz(π2) + sz(G) + 1,
and thus sz(F) < sz(π1) + sz(π2) + sz(G) + 1 and furthermore
sz(F) < sz(〈π1; π2〉G) = sz(π1) + sz(π2) + sz(G) + 2.

If F ∈ ESub0(〈π1 ∪ π2〉G) then F ∈ ESub(〈π1〉G) ∪ ESub(〈π2〉G)
Completely analogous to the previous case.

If F ∈ ESub0(〈G1?〉G2) then F ∈ ESub(G1) ∪ ESub(G2).
By induction hypothesis
sz(F) ≤ sz(G1) or sz(F) ≤ sz(G2) and thus
sz(F) < sz(G1 + sz(G2) < sz(〈G1?〉G2) = sz(G1 + sz(G2) + 2.

If F ∈ ESub0(〈π∗〉G then F ∈ ESub(G). By induction hypothesis
sz(F) ≤ sz(G) < sz(〈π∗〉G) = sz(π) + sz(G) + 2.

Lemma 94 Let F0 be a normalized PDL formula and F1 ∈ ESub(F0) and
F2 ∈ ESub(F1) then F2 ∈ ESub(F0).

Proof The proof proceeds by a lengthy structural induction on F0.

F0 = p
Then F1 = F2 = p.

We observe that the case F1 = F0 is trivially true. In all of the following
arguments we will thus concentrate on the case F1 6= F0.

F0 = ¬F00

Thus F1 ∈ ESub(F00) and by induction hypothesis F2 ∈ ESub(F00). Since
ESub¬F00 = {¬F00} ∪ ESub(F00) we immediately get F2 ∈ ESub(¬F00), as
desired.

184

F0 = F01 ∨ F02

By definition of ESub(F0) we obtain F1 ∈ ESub(F01) or F1 ∈ ESub(F02)
and by induction hypothesis F2 ∈ ESub(F01) or F2 ∈ ESub(F02). Again by
definition of ESub(F0) this gives F2 ∈ ESub(F0).

F0 = 〈a〉F00

By definition of ESub(F0 we need to consider F1 ∈ ESub(F00, by induction
hypothesis F2 ∈ ESub(F00, and again resorting to the definition of ESub(F0

we get F2 ∈ ESub(F0.

F0 = 〈π1; π2〉F00

By definition of ESub(F0) we obtain F1 ∈ ESub(〈π1〉F00) or F1 ∈
ESub(〈π2〉F00) and by induction hypothesis F2 ∈ ESub(〈π1〉F00) or F2 ∈
ESub(〈π2〉F00). This immediately results in F2 ∈ ESub(〈π1; π2〉F00).

F0 = 〈π1 ∪ π2〉F00

Completely analogous to the previous case.

The remaining cases F0 = 〈F01?〉F00 and F0 = 〈π∗〉F00 follow the same pat-
tern. We skip them.

For a more fine grained an analysis of ESub we need to define subprograms
of a program π. Since via tests also formulas occur in programs we even need
two concepts: subprograms SProg(π) of π and subformulas SFml(π) of π.

Definition 113 Let π ∈ Π be a program.
SProg(a) = {a} if a ∈ AP
SProg(π1; π2) = {π1; π2} ∪ SProg(π1) ∪ SProg(π2)
SProg(π1 ∪ π2) = {π1 ∪ π2} ∪ SProg(π1) ∪ SProg(π2)
SProg(π∗) = {π∗}
SProg(G?) = {G?}
SFml(a) = ∅ if a ∈ AP
SFml(π1; π2) = SFml(π1) ∪ SFml(π2)
SFml(π1 ∪ π2) = SFml(π1) ∪ SFml(π2)
SFml(π∗) = ∅
SFml(G?) = ESub(G)

Lemma 95 Let π be a program.

1. For every π′ ∈ SProg(π) with π 6= π: sz(π′) < sz(π).

185

2. For every G ∈ SProg(π): sz(G) < sz(π).

Proof Easy

Lemma 96 For any program π ∈ Π and formula G:

ESub(〈π〉G) = {〈π0〉G | π0 ∈ SProg(π)} ∪ SFml(π) ∪ ESub(G)

Proof The proof proceeds by structural induction on π.
For π = a we get
SProg(π) = {a}
{〈π0〉G | π0 ∈ SProg(π)} = {〈a〉G}
SFml(π) = ∅
ESub(〈π〉G) = {〈a〉G} ∪ ESub(G) Def. of ESub

For π = π1; π2 we get
ESub(〈π〉G) = {〈π〉G} ∪ ESub(〈π1〉G) ∪ ESub(〈π2〉G)

Def. of ESub
= {〈π′〉G | π′ ∈ {π} ∪ SProg(π1) ∪ SProg(π2)}
∪ SFml(π1) ∪ SFml(π2) ∪ ESub(G)

Ind.Hyp
= {〈π′〉G | π′ ∈ SProg(π1; π2)}

Def. of SProg
∪ SFml(π1) ∪ SFml(π2) ∪ ESub(G)

= {〈π′〉G | π′ ∈ SProg(π)} ∪ SFml(π) ∪ ESub(G)
Def. of SFml

The case π = π1 ∪ π2 is completely analogous to the previous one.

For π = π∗1 we get
ESub(〈π〉G) = {〈π〉G} ∪ ESub(G) Def. of ESub

= {〈π′〉G | π′ ∈ {π}} ∪ ∅ ∪ ESub(G) simple
= {〈π′〉G | π′ ∈ SProgπ)}∪ Def. of SProg

SFml(π) ∪ ESub(G) Def. of SFml

For π = G1? we get

186

ESub(〈π〉G2) = {〈π〉G2} ∪ ESub(G1) ∪ ESub(G2) Def. of ESub
= {〈π′〉G2 | π′ ∈ SProg(π)}∪ Def. of SProg

ESub(G1) ∪ ESub(G2)
= {〈π′〉G2 | π ∈ SProg(π)}∪

SFml(π) ∪ ESub(G2) Def.of SProg

One deficiency of ESub is that it does not look inside the iteration program
π∗. This limits the usefulness of the concept of extended subformulas for
more advanced proofs by structural induction.

Definition 114 Let G be a formula. We inductively define the sets FLn(G)
of formulas.

FL0(G) = ESub(G)

Πn(G) = {π | 〈π∗〉F ∈ FLn(G) \⋃0≤i<n FLi(G)}
FL′n(G) = {〈π〉〈π∗〉F | 〈π∗〉F ∈ FLn(G) \⋃0≤i<n FLi(G)}
FLn+1(G) = ESub(FL′n)

FL(G) =
⋃
n≥0 FLn(G)

Lemma 97 For every normalized PDL formula there is k such that

FL(G) =
⋃

0≤n≤k

FLn(G)

FL(G) is called the Fischer-Ladner Closure of G.

Proof Let us look at π ∈ Πn+1(G). By Definition 114 there is a formula
F such that 〈π∗〉F ∈ FLn+1(G) and 〈π∗〉F 6∈ FLi(G) for all i ≤ n. Since
FLn+1(G) = ESub(FL′n(G)) we get from the definition of FL′n(G) a for-
mula F0 and a program π0 such that 〈π∗0〉F0 ∈ FLn(G) \⋃0≤i<n FLi(G) and
〈π∗〉F ∈ ESub(〈π0〉〈π∗0〉F0). We note for later reference that this also entails
π0 ∈ Πn. By Lemma 96 there thus three cases

1. 〈π∗〉F ∈ {〈π1〉〈π∗0〉F0 | π1 ∈ SProg(π0)}
Thus π∗ ∈ SProg(π0) and since π∗ 6= π0 (otherwise π∗0 ∈ SProg(π0))
by Lemma 95 sz(π) < sz(π∗) < sz(π0).

187

2. 〈π∗〉F ∈ SFml(π0)
We obtain directly from Lemma 95 sz(π∗) < sz(〈π∗〉F) < sz(π0).

3. 〈π∗〉F ∈ ESub(〈π∗0〉F0)
From 〈π∗0〉F0 ∈ FLn(G) = ESub(FL′n−1(G)) and transitivity this
would entail 〈π∗〉F ∈ FLn(G) contradicting the choice of F . So, this
case cannot arise.

In total we have shown that for any πm ∈ Πm(G) there are πi ∈ Πi(G)
such that sz(π0) > . . . > sz(πi) > . . . > sz(πm). In other words for m >
max{sz(π) | π ∈ Π0(G)} we must have Πm(G) = ∅, which also entails
FL′m(G) = FLm+1(G) = ∅.

Lemma 98 (Fischer-Ladner Closure)
Let S0 be a set of normalized formulas in PFml.

The Fischer-Ladner closure of S0 is the smallest subset S ⊆ PFml satisfying:

1 S0 ⊆ S
2 ¬G ∈ S ⇒ G ∈ S
3 (G1 ∨G2) ∈ S ⇒ G1 ∈ S and G2 ∈ S
4 〈π〉G ∈ S ⇒ G ∈ S
5 〈π1; π2〉G ∈ S ⇒ 〈π1〉〈π2〉G ∈ S
6 〈π1 ∪ π2〉G ∈ S ⇒ 〈π1〉G ∈ S and 〈π2〉G ∈ S
7 〈π∗1〉G ∈ S ⇒ 〈π1〉〈π∗1〉G ∈ S
8 〈G1?〉G2 ∈ S ⇒ G1 ∈ S and G2 ∈ S

For normalized F ∈ PFml we denote by FL(F) the Fischer-Ladner closure
of {F}.

Example 33

188

We compute the Fischer-Ladner closure for G = (p→ 〈(q?; a)∗;¬q?〉r

FL0(G) = FL0(¬p ∨ 〈(q?; a)∗;¬q?〉r)
= ESub(¬p ∨ 〈(q?; a)∗;¬q?〉r)
= {G} ∪ ESub(¬p) ∪ ESub(〈(q?; a)∗;¬q?〉r)
= {G,¬p, p} ∪ ESub(〈(q?; a)∗;¬q?〉r)
= {G, 〈(q?; a)∗;¬q?〉r,¬p, p} ∪

ESub(〈(q?; a)∗〉r) ∪ ESub(〈¬q?〉r)
= {G, 〈(q?; a)∗〉r, 〈(q?; a)∗;¬q?〉r, ¬p, p}∪

ESub(r) ∪ ESub(〈¬q?〉r)
= {G, 〈(q?; a)∗〉r, 〈(q?; a)∗;¬q?〉r, ¬p, p}∪
{〈¬q?〉r} ∪ ESub(r) ∪ ESub(¬q?)

= {G, 〈(q?; a)∗〉r, 〈(q?; a)∗;¬q?〉r, 〈¬q?〉r}∪
{ ¬p, p, ¬q, q, r}

Π0(G) = {q?; a}
FL′0(G) = {〈q?; a〉〈(q?; a)∗〉r}
We omit from here on formulas already inFL0(G)
FL1(G) = ESub(FL′0(G))

= ESub(〈q?; a〉〈(q?; a)∗〉r)
= ESub(〈q?〉〈(q?; a)∗〉r) ∪ ESub(〈a〉〈(q?; a)∗〉r)
= {〈q?〉〈(q?; a)∗〉r, 〈a〉〈(q?; a)∗〉r}∪

ESub(q) ∪ ESub(〈(q?; a)∗〉r) ∪ ESub(r)
= {〈q?〉〈(q?; a)∗〉r, 〈a〉〈(q?; a)∗〉r}

Π1(G) = ∅

In total:

FL(G) = {G, 〈(q?; a)∗〉r, 〈(q?; a)∗;¬q?〉r, 〈¬q?〉r} ∪
{〈q?〉〈(q?; a)∗〉r, 〈a〉〈(q?; a)∗〉r} ∪
{ ¬p, p, ¬q, q, r}

Definition 115 (Equivalent States)
Let K = (S, |=, ρ) be a PDL Kripke structure, and Γ a subset of PFml.

The relation ∼Γ on S is defined by:

s1 ∼Γ s2 iff s1 |= F ⇔ s2 |= F for all F ∈ Γ

Lemma 99
For every Γ the relation ∼Γ is an equivalence relation on S.

189

Proof The claim easily follows from the fact the ⇔ is an equivalence rela-
tion.

Definition 116 (Filtration)
Let Γ be set of PDL formulas such that for all atomic programs a and all F
〈a〉F ∈ Γ implies F ∈ Γ. The filtration KΓ = (SΓ, |=Γ, ρΓ) of K = (S, |=, ρ)
with respect Γ is defined by:

[s] = {s′ | s ∼Γ s
′} equiv. class of s

SΓ = {[s] | s ∈ S}
[s] |=Γ p ⇔ s |= p for p ∈ Γ
[s] |=Γ p false (arbitrary) otherwise
([s1], [s2]) ∈ ρΓ(a) iff for all 〈a〉F ∈ Γ a ∈ AP

if s1 |= ¬〈a〉F then s2 |= ¬F

In the end we will use filtrations only for sets Γ that are Fischer-Ladner
closures. But, this definition at least works for more general Γ.

Lemma 100
Definition 116 is independent of the choice of representatives.

Proof Let s1, s2, s
′
1, s
′
2 be states in S with si ∼Γ s

′
i for i ∈ {1, 2}. We need

to convince ourselves that

1. s1 |= p ⇔ s′1 |= p

2. for all 〈a〉F ∈ Γ
if s1 |= ¬〈a〉F implies s2 |= ¬F
then also s′1 |= ¬〈a〉F implies s′2 |= ¬F

If p 6∈ Γ we chose s 6|= p for all s ∈ S. If p ∈ Γ, then we have by definition
of equivalent states si |= p ⇔ s′i |= p. This settles (1). To prove (2) consider
〈a〉F ∈ Γ and assume s1 |= ¬〈a〉F implies s2 |= ¬F and s′1 |= ¬〈a〉F . We
need to show s′2 |= ¬F . From the definition of equivalent states we first
obtain s1 |= ¬〈a〉F . By the assumed implication this yields s2 |= ¬F . By
assumptions of the lemma we also have F ∈ Γ. Thus the equivalence of state
s2 and s′2 yields s′2 |= ¬F as desired.

190

Lemma 101 (Filtration Lemma)
Let
F be PFml formula,
Γ = FL(F) the Fischer-Ladner closure of F
K = (S, |=, ρ) a PDL Kripke structure
KΓ = (SΓ, |=Γ, ρΓ) its quotient modulo ∼Γ,

then the following is true for all G ∈ Γ, π ∈ Π and s1, s2 ∈ S

1. The relation ∼Γ can have at most 2card(Γ) equivalence classes.
Since Γ is finite, SΓ is also finite.

2. ([s1], [s2]) ∈ ρΓ(π) implies for all 〈π〉B ∈ Γ
s1 |= ¬〈π〉B ⇒ s2 |= ¬B

3. (s1, s2) ∈ ρ(π) entails ([s1], [s2]) ∈ ρΓ(π)

4. s |= G iff [s] |= G

Proofs
Proof of (1). Obvious.

The following three claims will be proved by simultaneous induction on the
complexity of α respectively G.

Proof of (2). If π is atomic the claim is reduced to Definition 116. For the
induction step we need to consider four cases. In each case we assume that
claims (2) and (3) are true for programs α and β and that (4) is true for
formula F .
Case π ≡ α; β
Assume ([w1], [w2]) ∈ ρΓ(α; β). By definition of sequential composition there
is a state u such that

([w1], [u]) ∈ ρΓ(α) and ([u], [w2]) ∈ ρΓ(β)

By induction hypothesis we know for all 〈α〉B ∈ Γ and all 〈β〉C ∈ Γ
w1 |= ¬〈α〉B ⇒ u |= ¬B (1)
u |= ¬〈β〉C ⇒ w2 |= ¬C (2)

We need to show for all 〈α; β〉F ∈ Γ that w1 |= ¬〈α; β〉F implies w2 |= ¬F .

191

So let us assume w1 |= ¬〈α; β〉F . By definition of the Fischer-Ladner closure
〈α〉〈β〉F ∈ Γ and also 〈β〉F ∈ Γ hold. The assumption immediately yields

w1 |= ¬〈α〉〈β〉F

From (1) with B = 〈β〉F we obtain:

u |= ¬〈β〉F

Now using (2) with C ≡ F we arrive at w2 |= ¬F , as desired.

Case π ≡ α∗

We start with a pair ([w1], [w2]) in ρΓ(α∗). By definition of ρΓ(α∗) there are
states u0, . . . , uk such that [w1] = [u0], [w2] = [uk] and for all 0 ≤ i < k we
know ([ui], [ui+1]) ∈ ρΓ(α). By induction hypothesis for part (2) we have for
all 〈α〉C ∈ Γ

ui |= ¬〈α〉C ⇒ ui+1 |= ¬C
We need to show for all formulas 〈α∗〉B ∈ Γ

w1 |= ¬〈α∗〉B ⇒ w2 |= ¬B (3)

As a start we note that the formula

〈α∗〉B ↔ B ∨ 〈α〉〈α∗〉B

is a tautology of PDL. Thus the formula we get by negating both sides of
the equivalence is also a tautology;

¬〈α∗〉B ↔ ¬B ∧ ¬〈α〉〈α∗〉B

To prove (3) we assume u0 |= ¬〈α∗〉B and will show by induction on i for
0 ≤ i ≤ k that ui |= ¬〈α∗〉B is true. As we have just remarked ui |=
¬〈α∗〉B implies also ui |= ¬〈α〉〈α∗〉B. By the properties of the Fischer-
Ladner closure 〈α〉〈α∗〉B is in Γ. Thus the induction hypothesis is applicable
with C = 〈α∗〉B and yields ui+1 |= ¬〈α∗〉B. From uk |= ¬〈α∗〉B we get
using the tautology shwon above uk |= ¬B. Since [uk] = [w2] this also yields
w2 |= ¬B.

Case π ≡ F?
From ([w1], [w2]) ∈ ρΓ(〈F?〉) we get by the semantics of the test operator
[w1] = [w2] and [w1] |= F . Pick an arbitrary 〈F?〉B ∈ Γ. We assume

192

w1 |= ¬〈F?〉B and want to show w2 |= ¬B. From w1 |= ¬〈F?〉B we get
at least w1 |= ¬F ∨ ¬B. Since w1 ∼Γ w2 and F,B ∈ Γ we also have
w2 |= ¬F ∨¬B. From [w1] = [w2] |= F we get by part 3 w2 |= F , from which
w2 |= ¬B follows, as desired.

Case π ≡ α ∪ β
This is the easiest case and left to the reader.

Proof of (3). This is not a crucial step. We formulated it as an extra claim
since it is of some interest in itself and it will also make the argument for
part 4 a bit shorter in one case.

Assume (w1, w2) ∈ ρ(α).To prove ([w1], [w2]) ∈ ρΓ(α) according to the defi-
nition of ρΓ we consider an arbitrary formula ¬〈α〉B in Γ with w1 |= ¬〈α〉B.
This is equivalent to w1 |= [α]¬B. Thus we get w2 |= ¬B and are finished.
Proof of (4). If G ∈ Γ is a propositional variable the claim is part of the

definition of KΓ. The cases of the inductive step concerning propositional
connectives are trivial. We will present here the inductive step from B to
G = 〈α〉B.

If w1 |= 〈α〉B holds then there is a state w2 satisfying both (w1, w2) ∈ ρ(α)
und w2 |= B. By inductive hypothesis from part 4 we get [w2] |= B and from
part 3 also ([w1], [w2]) ∈ ρΓ(α). Thus [w1] |= 〈α〉B. To prove the reverse
implication assume [w1] |= 〈α〉B. This implies the existence of a state [w2]
satisfying ([w1], [w2]) ∈ ρΓ(α) and [w2] |= B. The inductive hypothesis imme-
diately gives us w2 |= B. If w1 |= ¬〈α〉B were true the inductive hypothesis
of part 2 would yield the contradiction w2 |= ¬B. Thus we must indeed have
w1 |= 〈α〉B.

Corollary 102 (Finite Model Property)
Let F be a PFml formula.

If F has a model, then it also has a finite model.
More precisely: If F has a model, then it also has a model with at most 2nF

elements where nF is the number of symbols in F .

Proofs Immediate consequence of Lemma 101.

193

Theorem 103 (Decidability of PDL)
The problem to determine wether F is a tautology for PFml formulas F is

decidable.

Proofs For given F generate all models for the signature of F with at most
2nF +1 elements. If none of them satisfies ¬F then ¬F is by Corrolary 102
not satisfiable, i.e. ` F .

The decision procedure given in the proof of Theorem 103 is of course very
inefficent. A more direct decision procedure is proposed in [Abate et al.,
2007].

Analogeous to Definition 99 we can define logical inference for propositional
dynamic logic. In the propositional case there is no distinction between an
interpreted and an uninterpreted case.

Definition 117 (Logical Inference)
G ` F G (locally) entails F for all Kripke structures K = (S, |=, ρ)

and all s ∈ S
if s |= G then also s |= F

G `gF G globally entails F for all K = (S, |=, ρ)
if s |= G for all s ∈ S
then s |= F for all s ∈ S

Corollary 104
The problem to determine wether G ` F is true for PFml formulas F,G is

decidable.

Proofs Immediate consequence of Theorem 103 and Exercise 4.7.6.

4.5 Alternatives in PDL

We have so far presented the standard material on PDL. In this subsection
we take a moment to reflect on alternative variations of PDL.

194

Alternative Accessibility

The semantics of PDL was introduced in two steps. The first step was taken
by Definition 108 in defining the concept of a PDL Kripke structure K =
(S, |=, ρ). This did fix s |= p for all s ∈ S and all atoms p and ρ(a) for all
atomic programs a. In the second step these relations were extented to s |= F
for arbitrary formulas F and ρ(π) for arbitrary programs in Definition 109.
This extension was deterministic, once a PDL Kripke structure K was fixed
the relations s |= F for arbitrary formulas F and ρ(π) for arbitrary programs
was also fixed. For the nonstandard semantics, that we will introduce now,
this will be different. Both definitions need to be merged into one.

Definition 118 (Nonstandard Kripke Structure)
A nonstandard PDL Kripke structure

K = (S, |=, ρ)

is determined by:

S the set of states
|= ⊆ (S × PFml) evaluation of propositional formulas in states
ρ : Π→ S × S the accessibility relations for programs

such that:

s |= p, p ∈ PV ar iff s(p) = true
s |= F iff F matching one of F1 ∨ F2, F1 ∧ F2,

F1 → F2,¬F1 as usual.
s |= [π]F iff for all s′ with (s, s′) ∈ ρ(π)s′ |= F
s |= 〈π〉F iff there exists s′ with (s, s′) ∈ ρ(π)

and s′ |= F
(u, u′) ∈ ρ(a), a ∈ AP iff (u, u′) ∈ ρ(a)
(u, u′) ∈ ρ(π1; π2) iff there exists w ∈ S with

(u,w) ∈ ρ(π1) and (w, u′) ∈ ρ(π2)
(u, u′) ∈ ρ(π1 ∪ π2) iff (u, u′) ∈ ρ(π1) or (u, u′) ∈ ρ(π2)
ρ(π∗) is reflexive and transitive relation with ρ(π) ⊆ ρ(π∗) and
s |= [a∗]B ↔ (B ∧ [a; a∗]B)
s |= [a∗]B ↔ (B ∧ [a∗](B → [a]B))

(u, u′) ∈ ρ(con?) iff u = u′ and u |= con

195

Note, that the only difference to Definition 109 is in the treatment of ρ(π∗).
The relation ρ(π∗) is not computed from ρ(π), but characterized by proper-
ties.

What are the differences between the standard Kripke semantics and the
nonstandard semantics?

Lemma 105 (Difference between Standard and Nonstandard Semantics)

Consider the following set of modal formulas

Γ = {〈a∗〉¬p} ∪ {[an]p | n ≥ 0}

where a ∈ AP, p ∈ PVar and an = a; . . . ; a︸ ︷︷ ︸
n times

.

Γ has a nonstandard Kripke model, but Γ is inconsistent in standard Kripke
semantics.

Proof That Γ is inconsistent in standard Kripke semantics is obvious. The
idea for the rest of the proof is as follows: There is a set of first-order axioms
Σns such that there is a one-to-one correspondence between models of Σns

and nonstandard Kripke structures. The same translation can be used to
find the first-order equivalent Γ′ of Γ. Since every finite subset of Γ′ ∪ Σns

is consistent the set itself is consistent by the compactness property of first-
order logic. A model of Γ′ ∪ Σns yields the required nonstandard Kripke
model of Γ.

Alternative set of Possible Worlds

Frequently, the set of possible worlds in a concrete application context is
uniquely determined by the set of propositional atoms and finite since only
finitely many atoms are relevant. Altogether this leads to Kripke structures
with a finite set of possible word. In this paragraph we assume that the set
PVar is finite.

Definition 119 (State Vector Kripke Structure)

196

1. A PDL Kripke structure K = (S, ρ, |=) is called a state vector Kripke
structure if S ⊆ 2PVar.

2. A formula F is state vector satisfiable if there is a state vector Kripke
structure K = (S ⊆ 2PVar, ρ, |=) and s ∈ S with s |= F .

3. F is a state vector consequence of a set of formulas H, in symbols
H `sv F , if for any state vector Kripke structure K = (S ⊆ 2PVar, ρ, |=)
and s ∈ S with (K, s) |= H we also have (K, s) |= F .

Obviously, a PDL tautology is also a tautology for state vector Kripke struc-
ture. But, is the converse also true? The answer is no.

Lemma 106
Let U ⊆ PVar be a subset of the set of propositional atoms.

Let stateU abbreviate the formula
∧
p∈U p ∧

∧
p 6∈U ¬p

and F an arbitrary PDL formula, π an arbitrary program. Then

〈π〉(stateU ∧ F)→ [π](stateU → F)

is true in all state vector Kripke structure.

Proof Let K = (S ⊆ 2PVar, ρ, |=) be a state vector Kripke structure and
s0 ∈ S such that s0 |= 〈π〉(stateU ∧ F). This implies the existence of s ∈ S
with (s0, s) ∈ ρ(π) and s |= stateu ∧ F . We need to show s0 |= [π](stateU →
F . So consider s′ ∈ S with (s0, s

′) ∈ ρ(π) and s′ |= stateU . We need to show
s′ |= F . But, s |= stateU and s′ |= stateU imply that s = s′. In total this
shows s |= 〈π〉(stateU ∧ F)→ [π](stateU → F).

We will next show that the formulas refered to in Lemma 106 are in a sense
the only difference between the state vector and the unrestricted semantics.

Theorem 107 (State Vector Semantics)
Let AP = {a1, . . . , ak} and let πall stand for the program (a1∪ . . .∪ak)∗. Let
H be the set of all formulas

〈πall〉(stateU ∧ F)→ [πall](stateU → F)

for all U ⊆ PVar and the notation from Lemma 106. Finally, consider an
arbitrary PDL formula F .

197

A. {F} ∪H is satisfiable iff F is state vector satisfiable.

B. H ` F iff `sv F .

Proofs
ad A The implication → is obvious.
Let K = (S, ρ, |=) be a Kripke structure, s ∈ S with (K, s) |= F . We will
produce a statisfying state vector Kripke structure for F . In a first step we
consider the set S0 of states that are recursively reachable from s via atomic
programs. Formally:

S0
0 = {s}
Si+1

0 = {s′ ∈ S | there are a ∈ AP and s0 ∈ Si0 with (s0, s
′) ∈ ρ(a)} ∪ Si0

S0 =
⋃
i≥0 S

i
0

Let K0 = (S0, ρ0, |=0) be the restriction of K to the set of world S0. It is
easy to see that

1. (s1, s2) ∈ ρ(π) and s1 ∈ S0 implies s2 ∈ S0 for all programs π. (This
fact makes the construction of K0 possible in the first place.)

2. for all formulas F and all states s′ ∈ S0 (K0, s
′) |= F iff (K, s′) |= F

From now on we will work with K0. No rigor is lost if we use in the following
ρ for ρ0 and |= for |=0. We have (K0, s) |= F to start with and we know by
construction of S0 that for any s′ ∈ S0 that (s, s′) ∈ ρ(πall).
We follow the general idea of the Filtrationlemma (Lemma 101), though
some of the details will crucially differ. Two states s1, s2 ∈ S0 are congruent,
in symbols s1 ∼sv s2, if for all p ∈ PVar s1 |= p iff s2 |= p. By [s′] we
denote the congruence class {s′′ | s′′ ∼sv s′} and we define the structure
Kquot = (Squot, ρquot, |=quot) mimicking Definition 116 by

Squot = {[s′] | s′ ∈ S0}
[s′] |=quot p ⇔ s′ |= p for p ∈ PVar
([s1], [s2]) ∈ ρquot(a) iff for all formulas F and a ∈ AP

if s1 |= [a]F then s2 |= F

As in Lemma 101 we will prove:

1. Squot ⊆ 2AP

198

2. ([s1], [s2]) ∈ ρquot(π) implies for all formulas F and all programs π
s1 |= [π]F ⇒ s2 |= F

3. (s1, s2) ∈ ρ(π) entails ([s1], [s2]) ∈ ρquot(π)

4. for all s′ ∈ S0 and all formulas F
s′ |= F iff [s′] |=qot F

Surprisingly, all the proofs go through as before even though this time there is
no given set of formulas Γ and we need not to make use of the assumptions H.
The crucial point is that we have not yet convinced ourselves that the above
definition of ρquot is independent of representatives. So consider s1, s2, s

′
1, s
′
2 ∈

S0 with s1 ∼sv s′1 and s2 ∼sv s′2 such that for all F s1 |= [a]F implies s2 |= F
for some a ∈ AP. Assume s′1 |= [a]F with the goal of showing s′2 |= F .

Let Ui = {p ∈ AP | s′i |= p} for i = 1, 2. Thus s′i |= stateUi
and because

of si ∼sv s′i also si |= stateUi
. By definition of S0 we have (s, s′1) ∈ ρ(πall).

Thus s |= 〈πall〉(stateU1 ∧ [a]F). Since s |= H by assumption we also get
s |= [πall](stateU1 → [a]F). Because, again by definition of S0, also (s, s1) ∈
ρ(πall) is true we obtain s1 |= (stateU1 → [a]F). As we have shown above
s1 |= stateU1 this yields s1 |= [a]F . By the initial assumption of this proof
of independence from the representatives we obtain ss |= F . By the same
argument using U2 instead of U1 we conclude s′s |= F .

ad B Since H is true in any state vector Kripke structure (Lemma 106) the
implication from left to right is obvious. For the reverse implication assume
`sv F . If H ` F is not true then H ∪ {¬F} is satisfiable. By part (1) this
implies that contradiction that ¬F should be state vector satisfiable.

199

4.6 Axiomatizations of Dynamic Logic

Failure of the Compactness Theorem

In this chapter we are back to full first-order dynamic logic.

Let us start by analysing the following infinite set of DL formulas

{〈while p(x) do x := f(x)〉true} ∪ {p(fn(x)) | n ≥ 0}

Let KM by a Kripke structure and s one of its states such that all formulas
in this set are true in state s. We denote the value of the program variable
x in state s by a = s(x). Thus in the domain M of computation we must
have pM(an) for all n and an = (fM)n(a). The while-loop starts with a the
value of x. After n iterations of the loop body x holds the value an. The first
formula in the set says that the while-loop terminates, i.e., for some n the
loop condition pM(an) should be false. A contradiction. The considered set
of formulas has no model, it is inconsistent. On the other hand it is easily
seen that every finite subset has a model. We have thus proved:

Lemma 108

1. The logic DLreg does not satisfy the compactness theorem, i.e., there is
an inconsistent set of formulas with all its finite subsets being consis-
tent.

2. There is no sound and complete calculus for DLreg .

Proof It remains to consider the second claim. Assume there is a com-
plete and correct calculus for DLreg and S is an inconsistent infinite set of
PModFml-formulas. By completeness there is a derivation of the contradic-
tion p∧¬p from the assumptions S. Since any derivation, no matter how it is
represented, is finite only a finite subset S0 of S is used. By the correctness of
the calculus this says that S0 is inconsistent. Part 1 of the lemma states that
there a counterexamples to this, i.e., there is at least one infinite inconsistent
set all of whose finite subsets are consistent. Thus the assumption of a sound
and complete calculus for DLreg has been refuted.

200

An Infinitary Axiomatization

Definition 120 (The Calculus DLINF)
Axioms

Axioms for first-order Logic
Axioms for PDL
〈x := t〉F ↔ F [x/t] for all first-order F
Rules

F , F → G
G

(modus ponens)

F
[π]F

F
∀xF (generalisations)

G→ [πn]F for all n
G→ [π∗]F

for any first-order formula F
(infinitary convergence)

Theorem 109 For any formula F

F is a tautology iff `INF F

Here `INF F is used to denote the fact that F is derivable from the axioms
and rules of the calculus DLINF . For a proof see [Harel, 1984]. The reason
why Theorem 109 does not contradict Lemma 108 lies in the fact that the
last rule of DLINF requires infinitely many premisses. A proof in DLINF
is thus no longer a finite object. This limits the usefulness of Theorem 109.
It is an interesting theoretical insight that pinpoints the reason for non-
axiomatisabilty in a classical proof system but it cannot be taken as a basis
for automatic theorem proving.

Arithmetic Completeness

Also the next axiom system, that we call DLARITH , stretches the usual notion
of an axiomatization beyond its limits. Derivations in DLARITH are simple
string manipulations that can easily be automated except for the first set of
axioms. The question which first-order formulas are true in N is undecidable.

Definition 121 (The Calculus DLARITH)

201

Axioms

All first-order formulas valid in N
Axioms for PDL
〈x := t〉F ↔ F [x/t] for all first-order F

Rules

F , F → G
G

(modus ponens)

F
[π]F

F
∀xF (generalisations)

∀n(F (n+ 1)→ 〈π〉F (n))
∀n(F (n)→ 〈π∗〉F (0))

for all first-order F
n does not occur in π

(convergence)

In [Harel et al., 2000] completeness for this calculus is proved. To distinguish
this concept of completeness from the usual one it is called arithmetic com-
pleteness. We will not reproduce this proof here. But, it is interesting to
look at the central part of this argument. The crucial lemma is:

Lemma 110 (Coding Lemma)
For every DL formula F there is a first-order formula FL such that

(KN, s) |= F iff (N, s) |= FL

for any s : Var → N with KN the Kripke structure with N as computational
structure.

One might wonder how Lemma 110 could ever be true. The following lemma
and the ensuing example should at least lend some confidence towards its
truth.

Lemma 111

1. There are formulas first and snd in the vocabulary of N such that:

N |= ∀a∀b∃k(∀x(first(k, x)↔ x = a) ∧ ∀x(snd(k, x)↔ x = b))

We may paraphrase this claim as: For any two numbers a, b there is
a number k that can serve as a code for the ordered pair 〈a, b〉 and
the formulas first(k, x), snd(k, y) can be used to decode the first, resp.
second element from the code k.

202

2. There is a formula seq in the vocabulary of N such that for every n ∈ N
and any sequence k0, . . . , kn−1 there is k ∈ N satisfying for each i,
0 ≤ i < n

N |= ∀x(seq(k, i, x)↔ x = ki)

This says: For any number n and any sequence k0, . . . , kn−1 of n num-
bers there is number k acting as a code for this sequence and the formula
seq(k, i, x) can be used to decode the i-the member of the coded sequence
from k. Note, that the formula seq is uniform for all n.

Proofs The proofs consist mostly of tedious computations. For (2) we can
use the following

k = 1
2
((a+ b)(a+ b+ 1)) + a

first(u, x) ≡ ∃z(u = 1
2
((x+ z)(x+ z + 1)) + x

snd(u, x) ≡ ∃z(u = 1
2
((z + x)(z + x+ 1)) + z

Now, it takes only basic arithmetic and some concentration to complete the
proof. For (2) we refer to the literature.

The following example gives an idea how these encodings can be used to prove
Lemma 110. We proceed in two phases. In the first we act as if there was a
decoding function seq(k, i) whose value is the i-th member of the sequence
coded by k. But, Lemma 111 does not provide such a function, only the
predicate defining its graph. In the second phase the function seq(k, i) is
replaced by the predicate seq(k, i, x).

Example 34 (Example to Coding Lemma)
We will compute the first-order coding FL of the dynamic logic formula
F (x) ≡ 〈(x > 0)?;x := x− 1)∗〉 x = 0.

203

FL(x) ≡ ∃n∃k(x = seq(k, 0) ∧ 0 = seq(k, n) ∧
∀i(0 ≤ i < n→ seq(k, i) > 0 ∧
seq(k, i+ 1) = seq(k, i))− 1))

≡ ∃n∃k(x = seq(k, 0) ∧
0 = seq(k, n) ∧
∀i(0 ≤ i < n→
→ seq(k, i) > 0 ∧
seq(k, i+ 1) = seq(k, i))− 1))

≡ ∃n∃k(∀z(seq(k, 0, z)→ x = z) ∧
∀z(seq(k, n, z)→ 0 = z) ∧
∀i∀u∀w(0 ≤ i < n ∧ seq(k, i, u) ∧ seq(k, i+ 1, w)
→ u > 0 ∧ w = u− 1))

Example 35 (Example Derivation)
We reuse the formula FL(x) from Example 34. We write for the purposes

of the derivation FL = ∃nF0

1 `N ∃nF0(n) since true in N
2 `N F0(0)→ x = 0 since true in N
3 `N ∀n(F0(n+ 1)→ 〈α〉F0(n)) since true in N
4 `N ∀n(F0(n)→ 〈α∗〉F0(0)) by convergence rule from 3
5 `N ∃n(F0(n))→ 〈α∗〉F0(0) first-order tautology
6 `N 〈α∗〉F0(0) 1, 5 and modus ponens
7 `N 〈α∗〉x = 0 2, 6 and modus ponens

with α ≡ x > 0?;x := x− 1.

As can be seen in the last example the crucial part of the proof consists
in convincing oneself that N |= ∃nF0(n), N |= F0(0) → x = 0 and N |=
∀n(F0(n + 1) → 〈α〉F0(n)) are true. This is a number theoretic problem
instead of a proof theoretical one. The completeness proof is just an add-on,
the crucial fact is contained in Lemma 110.

204

4.7 Exercises

Exercise 4.7.1
There is an intuitive feeling that the PDL Kripke structures from Definition

108 on page 179 are a generalisation of the ordinary Kripke structures as
definied in Definition 37 on page 75 . This exercise will turn this intuition
into a formal statement.

Let K = (S, |=, ρ) be a PDL Kripke structure and a ∈ AP an atomic program.
We define the ordinary Kripke structure Ka = (G,R, v) by

1. G = S,

2. R(g1, g2)⇔ (g1, g2) ∈ ρ(a),

3. v(g, p) = 1⇔ g |= p.

Next let F ∈ PFml be a PDL formula such that all modal operators occuring
in F are of the form [a] or 〈a〉. If we replace [a] by 2 and 〈a〉 by 3 we arrive
at an ordinary modal formula F a. Prove for all g ∈ G

(K, g) |= F ⇔ (Ka, g) |= F a

Exercise 4.7.2
Show that repeat α until A ≡ α; (¬A?;α)∗;A?

Exercise 4.7.3
Show that the test operator ? (see Definition 96 on page 163) in regular

Dynamic Logic can be expressed using if − then− else.

Exercise 4.7.4 Show that the following DL formulas are tautologies for any
program p.

1. ¬〈p〉F ↔ [p]¬F)

2. ¬[p]F ↔ 〈p〉¬F)

3. [p](F → G)→ (([p]F)→ [p]G)

205

These are very elementary tautologies, valid in almost any modal logic. The
proofs require little more then remembering the definitions.

Exercise 4.7.5
Let π be a PDL program. A pair of states (s1, s2) of a Kripke structure K

is called 〈π〉F -accesible if either s1 6|= ¬〈π〉F or s2 |= ¬F . This terminology
is only used for this exercise.
Show that a pair of states (s1, s2) is 〈π〉F -accessible iff

if s1 |= [π]¬F then s2 |= ¬F

Exercise 4.7.6 (Deduction Theorem for PDL)
For PDL formulas G,F

G ` F ⇔ ` G→ F

Exercise 4.7.7
The claim to be formulated in this exercise is the PDL analogon of the result

presented in Exercise 3.9.13 for modal logic.
Let K = (S, |=, ρ) be a PDL Kripke structure, A = {a1, . . . , an} ⊆ AP a
finite set of atomic programs, and s0 ∈ S. For the purposes of this exercise
we call a program π an A-program and a formula F ∈ PFml an A-formula
if for any atomic program occuring in somewhere in π respectively in F we
have a ∈ A.
Define inductively
S0
s0

= {s0}
Sn+1
s0

= Sns0 ∪ {s2 | (s1, s2) ∈ ρ(ai) for some s1 ∈ Sns0 and 1 ≤ i ≤ n}
SAs0 =

⋃
0≤n S

n
s0

Next we set KAs0 = (SAs0 , |=A
s0
, ρAs0) with

|=A
s0

= |= ∩(SAs0 × PVar)
ρAs0(ai) = ρ(ai) ∩ (SAs0 × SAs0)

Prove:

1. For any s ∈ SAs0, any A-program π, and (s, s′) ∈ ρ(π) we have s′ ∈ SAs0.

2. For any A-formula F and s ∈ SAs0

(K, s) |= F ⇔ (KAs0 , s) |= F

206

Exercise 4.7.8
Here the reader is asked to prove a version of a modified deduction theorem

for the global consequence relation for PDL. Let A = {a1, . . . , an} ⊆ AP be a
finite set of atomic programs and F1, F2 A-formulas (see Exercise 4.7.7 for
this terminology). Then

F1 `G F2 ⇔ ` [(a1 ∪ . . . ∪ an)∗]F1 → F2

Exercise 4.7.9 Show that the satisifability problem for the modal logic K
(see Definitions 40 and 41) is decidable.
Hint: Try to reduce the problem to Theorem 103.

Exercise 4.7.10 Show that the satisifability problem for the modal logic S4
with reflexive, transitive accessability relation (see Definitions 40 and 41) is
decidable.
Hint: Try to reduce the problem to Theorem 103.

Exercise 4.7.11 Because of the deduction theorems, see Theorem 54 for
modal logic and Exercise 4.7.6 for PDL, also the logical consequence F1 ` F2

is decidable for both logics.
What about the global consequence relation F1 `G F2?
Show that also F1 `G F2 is decidable for modal logic.
Hint: use Exercise 3.9.14.

Exercise 4.7.12 Show that F1 `G F2 is decidable also for PDL.
Hint: use Exercise 4.7.8.

207

Chapter 5

Temporal Logics

This chapter on Temporal Logics starts in Section 5.1 with automata on
infinite words, also called omega words. These automata are called Büchi
automata to honour the Swiss mathematician Julius Richard Büchi who in-
vented them in 1962. Büchi automata extend the well-known concept of
finite-state automata. The close connection between finite-state automata
and regular sets of (finite) words is paralleled by the correspondence between
Büchi automata and omega-regular sets of omega words. We will sometimes
use the greek letter ω instead of omega. The presentation in these lecture
notes assumes that the reader is already familiar with Büchi automata and
omega regular sets and thus only presents a quick review of the central defi-
nitions and facts. The main new results is Theorem 114 on the equivalence
of Büchi acceptance and definability in second-order logic.

There are many reasons why one might want to study omega words. Our
perspective in this lecture notes is on the formal analysis of discrete systems.
We do not want to enter a general overview on discrete systems, but we want
to offer some remarks on how the material covered in the following sections
fits into a more global context. In particular these remarks should help to
appreciate the next theorem. A discrete system starts in some initial state
s0 and proceeds through a series of steps s0, s1, . . . , si, Here the si are
taken from a finite set of possible system states. This scenario exludes con-
tinuous systems that are instead desribed by functions on the real numbers.
The analysis we have in mind usually takes place at the level of abstraction
where not all details of the system under investigation are taken into ac-
count. This is one reason why we look at non-deterministic systems. Thus

208

s0, s1, . . . , si, . . . is just one path, or computation sequence of the systems,
there might be others, e.g., s0, t1, . . . , ti, There is no limit to what kind
of analysis one might want to perform. Just to have some example in the
back of your mind while reading on we mention the two questions: Is it possi-
ble that the system starting in s0 will reach a state s with a certain property
P1? or will in all reachable states of the system the property P2 be true?
This necessitates that we have some means to express properties of states.
To keep things simple we will only consider properties that can be expressed
in propositional logic. This is by far the most commonly investigated case.
Consequently, we need the information which propositional atoms are true
in which states. The concept of an omega structure, see Definition 131, for-
malizes this concept of a path in a system or computation sequence. The
approach described so far leads to Linear Temporal Logic, LTL, that will be
reviewed in Section 5.2. The semantics of LTL so far was only formulated
with respect to one given path or omega structure. We stipulate that an
LTL formula is true for a discrete system, i.e., for the set of paths given
by the system, if the formula is true for all computation sequences. With
this definition it is not possible to formulate statements about the existence
of a computation with certain properties. This leads to the introduction of
Computation Tree Logic, CTL, in Section 5.4 that allows quantification over
computation paths.

There are many ways to describe the allowed steps or transitions from one
state s to the next state. The simplest way is to give for every s a set of pos-
sible successor states, this leads to the concept of a Kripke structure, or of a
simple transition system as given later on in Definition 138. More elaborate
descriptions of state transitions could include a guard formula that needs
to be statisfied for the transition to be activated. The description might
also include an action part that states what properties should hold in the
post state(s). Another possibility is to put labels on transitions. Since the
vocabulary for labels is completely arbitrary this is a very powerful mecha-
nism. Labels are used in finite automata or Büchi automata. In the case of
finite automaton the states do not carry additional information. There are
no propositional variables that can be used to express properties of states.
The typical questions one would ask about automata of this kind would be:
Is there a sequence of labels such that a particular state, e.g., a final state,
is reached?

Each of these possibilities has its own merits and draw-backs and its is fre-

209

quently possible to mimick one approach by another. One could e.g., com-
pensate the lack of guards on transitions in Kripke structures by adding
additional states.

The rich theory of LTL and CTL already make these logics an indispensible
topic in any curriculum of theoretical computer science. The full importance
of these logics however can only be appreciated after the presentation of
the corresponding model checking procedures. Given a formal description of
a system model M and an LTL or CTL formula A highly efficient model
checking algorithms can be used to determine fully automatically wether
property A holds true in the model M. Since LTL model checking has
already been covered in the Formal Systems 1 course Section 5.3 describes
an alternative approach: translating an LTL model checking task into a
propositional satisfiability problem. Section 5.5 is devoted to model checking
of CTL properties.

210

5.1 Büchi Automata

We assume that the reader is familiar with the basic concepts of omega-
words and Büchi automata. For the ease of the reader we repeat the crucial
definitions here. Further information may be found in [Schmitt, 2008].

Definition 122 (Omega words)
Let V be a finite alphabet.
V ω denotes the set of infinite words made up of letters from V .
In contrast V ∗ denotes the set of all finite words over V .
For n ≥ 0 the notation w(n) refers to the n-th letter in w and w ↓ (n) stands
for the finite initial segment w(0) . . . w(n) of w.
Omega words are sometimes also called infinite words or referenced as ω
words using the last letter of the Greek alphabet.

Definition 123 (Operations on omega words)
Let K ⊆ V ∗ be a set of finite words and J ⊆ V ω a set of infinite words.

1. Kω denotes the set of omega words

w1 . . . wi . . . such that wi ∈ K for all i

2. The concatenation of K with J is defined by

KJ = {w1w2 | w1 ∈ K,w2 ∈ J}

Note, that concatenation of two sets of infinite words does not make
sense.

3.
~K = {w ∈ V ω | w ↓ (n) ∈ K for infinitely many n}

Since we may think of ~K as a kind of limit of K (in the mathematical
sense of the word) some authors denote it by lim(K).

Definition 124 (Büchi Automaton)
A Büchi automaton A = (S, V, s0, δ, F) is a non-deterministing finite au-
tomaton with

211

S a finite set of states
V an alphabet
s0 ∈ S the initial state
δ : S × V → P(S) the transition function
F ⊆ S the set of accepting (or final) states

A run (also called a computation sequence) for A is an infinite sequence
s0, . . . , sn, . . . of states, starting with s0 such that for all 0 ≤ n there is an
a ∈ V with sn+1 ∈ δ(sn, a).
A run (sn)n≥0 is called an accepting run if sn ∈ F is true for infinitely many
n.

Given an omega-word w ∈ V ω we call a run s0, . . . , sn, . . . a run for w, if
for all 0 ≤ n

sn+1 ∈ δ(sn, w(n))

is true. The language Lω(A) accepted by A is defined by

Lω(A) = {w ∈ V ω | there is an accepting run for w}

The sets L of omega-words accepted by a Büchi automaton A, i.e., Lω(A) = L
are also called omega-regular sets.

Note, that a Büchi automaton A is nothing else but a well known nondeter-
ministic finite automaton. It is the acceptance condition that makes all the
difference.

s0 s1
a

{a, b} a

Figure 5.1: The Büchi automaton Nafin

We usually present the small examples of automata in this lecture notes
graphically as in Figure 5.1. It can be easily seen that Lω(Nafin) is the set

212

of all omega words that eventually are equal to a. Using the operators from
Definition 123 we may write Lω(Nafin) = {a, b}∗aω

Second-Order Definability

So far we have modelled omega words as functions from N into the alphabet
V . We will now present another, less obvious, way to represent omega words.
We will consider them as structures for a logic with the following vocabulary
ΣV .

Definition 125 (ΣV)
Let V be a finite alphabet. The vocabulary ΣV consists of the following

functions and relation symbols:

a constant symbol 0 the first element
a unary function symbol s the successor function
a unary relation symbol a(x) for any letter a in V
a binary relation symbol < the order relation

IfW is a structure in this vocabulary we think of the elements in the universe
W of W as the positions of a word. 0W will be the first position and sW will
yield for any position the next position. W |= a[p] for a position p ∈ W is
supposed to mean that at p the letter a ∈ V occurs. Of course not every ΣV

structure makes sense. We need to make sure that

1. 0 is interpreted as the smallest element.

2. For every element exactly one of the atomic formulas a(x) for a ∈ V is
true.

3. For all elements p s(p) is the successor of p.

4. The successor s is injective.

5. < is a transitive and irreflexive relation.

6. All elements are of the form sn(0) for some n ∈ N.

213

Except item 6 these properties could be expressed as formulas in first-order
logic. But, property 6 requires that we use second order logic, more precisely
we will use the monadic second order logic introduced in Section 3.4. Let us
denote the conjunction of the following monadic second-order formulas by
FOW :

1. ∀x(0 = x ∨ 0 < x)

2. ∀x∨a∈V (a(x) ∧∧a,b∈V,a6=b ¬(a(x) ∧ b(x))

3. ∀x(x < s(x)) ∧ ¬∃z(x < z ∧ z < s(x))

4. ∀x∀y(s(x) = s(y)→ x = y)

5. ∀x∀y∀z(x < y ∧ y < z → x < z) ∧ ∀x¬(x < x)

6. ∀X(X(0) ∧ ∀x(X(x)→ X(s(x)))→ ∀y(X(y)))

Lemma 112
There is a 1-1 correspondence between omega words over the alphabet V and

ΣV structures satisfying FOW .
For w ∈ V ω we will denote the correspondig structure by Ww. Without loss
of generality we will assume that the universe of Ww is the set N of natural
numbers.

Proof Simple.

The following lemma will be useful to shorten the proof of Theorem 116
below.

Lemma 113 (Definability of the order relation)
The following formula

less(x, y) = ∀X(X(x) ∧ ∀z(X(z)→ X(s(z)))→ X(y)) ∧ x 6= y

defines the order relation in all structures satisfying FOW .

214

Proof Let W be a model of FOW. Without loss of generality we may
assume that the universe W of W is N and sW(n) = n + 1. For n ∈ N we
define the set Nn = {n′ | n < n′}. If lessW(n,m) then n 6= m and m ∈ Nn,
i.e., n < m. The other way round if n < m is true and S is a subset with
n ∈ S and for all n′ n′ ∈ S → (n′ + 1) ∈ S then we must also have m ∈ S.
This shows lessW(n,m).

The representation of infinite words from Lemma 112 opens the possibility
to define sets L ⊆ V ω by formulas F in monadic second order logic. Consider
the formula F = ∃n∀m(n < m→ a(m)). The set of words defined by F , let
us denote it by Lω(F), equals the set of words Lω(Nafin) defined by the Büchi
automaton in Figure 5.1. Spelled out in full, this means that for any w ∈ V ω

the structure Ww satisfies the formula F (i.e., Ww |= F) iff w ∈ Lω(Nafin).
We will use the short version from now on. Whenever we talk about monadic
second order formulas we mean second order formulas in the signature ΣV .

Theorem 114 (Charactization of Büchi acceptance)
Let L ⊆ V ω be a set of infinite words.
There is a Büchi automaton accepting L iff there is a second order formula
in signature ΣV defining L.

Since the proofs for both directions of Theorem 114 are quite involved we
split this theorem into Theorem 115 and Theorem 116.

Theorem 115 (Second Order Definability Büchi acceptance)
Let L ⊆ V ω be a set of infinite words.
If there is a Büchi automaton N accepting L, i.e., Lω(N) = L, then there is
a second order formula Φ defining L. i.e., Lω(Φ) = L.

Proof This is the easier implication in the equivalence claim of Theorem
114. We start from a given Büchi automaton N = (S, V, s0, δ, F). Let S =
{q1, . . . , qn} with F = {q1, . . . , qf}. Let us carefully examine the definition
of w ∈ Lω(N):

• there is a run s = (si)0≤i of N for w with infinitely many final states.

The essential trick is to rephrase this as follows:

215

• there are finitely many subsets Xk ⊆ N, 1 ≤ k ≤ n such that

1.
⋃

0≤kXk = N
2. the Xk are mutually disjoint

3. the sequence of states si definied by

si = qk ⇔ i ∈ Xk

is a run of N for w with infinitely many final states.

Now we are in bussiness.

Φ = ∃X1 . . . ∃Xn(U ∧D ∧R ∧ F)

with
U = ∀x(

∨
1≤k≤nXk(x))

D =
∧

1≤k<r≤n ¬∃x(Xk(x) ∧Xr(x))
R = ∀x(

∧
1≤k,r≤n(Xk(x) ∧Xr(s(x))→ ∨

a∈Vk,r a(x)))

with Vk,r = {a ∈ V | δ(qk, a) = qr}
F =

∨
1≤k≤f ∀x∃y(x < y ∧Xk(y))

It should be clear that this Ww |= Φ exactly if w ∈ Lω(N).

Theorem 116 (Omega Regularity of Definable Sets)
For any second order formula Φ in the signature ΣV the set Lω(Φ) = L is
omega regular.

Proof Be prepared, this proof will take a while.

Naturally, the proof will proceed by induction on the complexity of Φ. This
necessitates that we also consider formulas Φ(x1, . . . , xp, X1, . . . , Xq) with
free first-order and second-order variables. What is the claim of the theorem
in this case? We will for any numbers p of first-order and q of second-
order free variables define new vocabularies Vp,q such that V0,0 = V and
Φ(x1, . . . , xp, X1, . . . , Xq) defines an omega-regular subset of V ω

p,q.

As a first step of filling in the details of this new claim we introduce a
more convenient notation of relating free variables to their assignments.

216

Instead of valM,β,γ(Φ(x1, . . . , xp, X1, . . . , Xq)) = 1, we will write M |=
Φ(x1, . . . , xp, X1, . . . , Xq)[s1, . . . , sp, S1, . . . , Sq] with si = β(xi) and Sj =
γ(Xj). Postfixing the assignments in square brackets to the formula is more
convenient than manipulating the βs and γs and in our present restricted
context there is no danger of confusing which element or which set gets as-
signed to which variable.

Definition 126 (Vp,q) The letters in Vp,q are sequences of length p + q + 1
of letters from V in the first position and 0 and 1 in the rest. More precisely

Vp,q = V × {0, 1}p × {0, 1}q

For p = q = 0 we get Vp,q = V , as promissed. As an example consider p = 3,
q = 2 and a ∈ V . Then

b1 = 〈a, 0, 0, 0, 0, 0〉
b2 = 〈a, 0, 0, 1, 0, 0〉
b3 = 〈a, 0, 1, 0, 0, 1〉

are all letters in V3,2.

The subset Kp,q ⊆ V ω
p,q will play a crucial role in what follows.

Definition 127 (Kp,q) The subset Kp,q ⊆ V ω
p,q is defined by

Kp,q = {w ∈ V ω
p,q | for all 1 ≤ i ≤ p there is exactly one k such that the

i-th position in the letter w(k) equals 1}
If we use the notation a[i] for 1 ≤ i ≤ p+ q+ 1 to denote the i-th position of
a letter a ∈ Vp,q we can rewrite the definition of Kp,q as

Kp,q = {w ∈ V ω
p,q | for all 1 ≤ i ≤ p there is exactly one k with w(k)[i] = 1}

Observe that K0,0 = V . It is left as an intext exercise to the reader to convince
herself/himself that Kp,q is omega-regular.

A word w ∈ Kp,q codes a word w0 ∈ V ω, p elements sw,i ∈ N and q subsets
Sw,j ⊆ N:

w0(n) = w(n)[1] n ∈ N
sw,i = the unique n with w(n)[1 + i] = 1 1 ≤ i ≤ p
Sw,j = {n ∈ N | w(n)[1 + p+ j] = 1 1 ≤ j ≤ q

217

The claim we will prove by structural induction on Φ can now be stated as

For any formula
Φ(x1, . . . , xp, X1, . . . , Xq)

the set
Lω(Φ(x̄, X̄)) = {w ∈ Kp,q | Ww0 |= Φ[sw,1, . . . , sw,p, Sw,1, . . . , Sw,q]}
is omega regular

(5.1)

Ww0 is the structure from Lemma 112. Also note that the special case of
p = q = 0 is the claim of the theorem we want to prove.

The inductive proof of claim 5.1 starts with considering the atomic and
negated atomic formulas Φ. Taking into account the definability result from
Lemma 113 we need to consider

xi = xk, xi = s(xk), a(xi), Xj(xi)

We consider the cases xi = xk.
Let Ai,k ⊆ Vp,q be the set of all letters a with a[1 + i] = a[1 + k] = 0 and
Bi,k ⊆ Vp,q be the set of all letters b with a[1 + i] = a[1 + k] = 1. Then with
the notation used in claim 5.1

Lω(xi = xk) = {w ∈ Kp,q | Ww0 |= xi = xk[si, sk]}
= Kp,q ∩ A∗i,kBi,kA

ω
i,k

Using the results from [Schmitt, 2008] we see that Lω(xi = xk) is omega
regular.

The case xi = s(xk) is only a minor variation of this proof.

Let Da,i be the set of letters d ∈ Vp,q with d[1] = a and d[1 + i] = 1. Then

Lω(a(xi)) = {w ∈ Kp,q | Ww0 |= a(xi)[si]}
= for the unique n with w(n)[1 + i] = 1 we must have w(n)[1] = a
= Kp,q ∩ V ∗p,qDa,kV

ω
p,q

Finally let Ei,j = {e ∈ Vp,q | e[1 + i] = 1 ∧ e[1 + p+ j] = 1} then

Lω(Xj(xi)) = Kp,q ∩ V ∗p,qEi,jV ω
p,q

In all cases we see that omega regular sets arise.

218

The inductive steps Φ = ¬Φ1 Φ = Φ1∧Φ2 and Φ = Φ1∨Φ2 follow immediately
form the fact that omega regular sets are closed under complement, intersec-
tion and union, see e.g., [Schmitt, 2008]. It remains to consider first order
and second order quantification. It suffices to consider existential quantifiers.

Φ(x̄, X̄) = ∃xiΦ0(x̄′, X̄). To avoid tedious manipulation of indices we assume
that i = p. Thus Φ(x1, . . . , xp−1, X̄) = ∃xpΦ0(x1, . . . , xp−1, xp, X̄). By induc-
tion hypothesis we know that L1 = {w ∈ Kp,q | Ww0 |= Φ0(x̄, xp, X̄)[s̄, sp, S̄]}
is an omega regular subset of V ω

p,q. We want to show that L = {w ∈ Kp−1,q |
Ww0 |= ∃xpΦ0(x̄, X̄)[s̄, sp, S̄]} is an omega regular subset of V ω

p−1,q. Relating
subsets over different vocabularies is something we have not encountered be-
fore. We consider the mapping µ : Vp,q → Vp−1,q that maps letters from Vp,q
to letters in Vp−1,q be simply dropping the 1 + p-th position, i.e.,

µ((a, c1, . . . , cp−1, cp, d1, . . . , dq)) = (a, c1, . . . , cp−1, d1, . . . , dq)

For w ∈ V ω
p,q we denote by µ(w) ∈ V ω

p−1,q the word that arises from w by
replacing each letter c by µ(c).

We will first show that L = {µ(w) | w ∈ L1} = µ(L1). To increase readability
we supress all variables except xp.

w ∈ L1 iff Ww0 |= Φ1(xp)[sp]
⇒ Ww0 |= ∃xpΦ1

iff Wµ(w)0 |= ∃xpΦ1 µ(w)0 = w0 and also the assigments of the
not shown free variables are the same for
w and µ(w) since µ only touches position p

iff µ(w) ∈ L

w′ ∈ L iff W(w′)0 |= ∃xpΦ1

iff Ww0 |= ∃xpΦ1

iff W(w′)0 |= Φ1(xp)[np] for some np ∈ N
iff Ww0 |= Φ1(xp)[sp] for an appropriate w ∈ V ω

p,q

iff w ∈ L1

The appropriate w is obtained by replacing the letter w′(n) =

(a, c1, . . . , cp−1, d1, . . . , dq) by

{
(a, c1, . . . , cp−1, 1, d1, . . . , dq) if n = np
(a, c1, . . . , cp−1, 0, d1, . . . , dq) if n 6= np

Obviously µ(w) = w′. Thus L = µ(L1) is established. It remains to argue

219

that because L1 is omega regular µ(L1) is also. This is the content of the
following lemma, whose simple proof is left as an exercise, see Exercise 5.6.7.

Lemma 117 (Homomorphic images of omega regular sets)
Let V1, V2 be two vocabularies, µ : V1 → V2 an arbitrary mapping and L an

omega regular subset of V ω
1 .

Then µ(L) is an omega regular subset of V ω
2 .

The induction step from Φ to ∃XjΦ can be proved along the same lines.

220

5.2 Linear Temporal Logic

The linear temporal logic, LTL, belongs to the family of propositional modal
logics.

Definition 128 (LTL Formulas)
Let PVar be a set of propositional atoms. The set of LTL formulas, LTLFor

(if needed will will write more precisely LTLForPVar) is defined by

1. PVar ⊆ LTLFor

2. true, false ∈ LTLFor

3. If A,B in LTLFor, then also ¬A, A ∧B, A ∨B, A→ B

4. if A,B ∈ LTLFor then also

(a) GA and FA,

(b) A U B ∈ LTLFor
(c) X A

It would be more consistent with a modal interpretation of temporal logic to
write 2A and 3A instead of GA and FA. But, this latter notion is more
widespread. It may be easier to remember when you think of F refering to
sometime in the future and G to mean globally true for all times to come.

Later we will need the maximal nesting depth od(A) of temporal operators
in a given LTL-formula A. Here is the precise definition.

Definition 129 (Operator Depth)

1. od(A) = 0 for A ∈ PVar

2. od(true) = od(false) = 0

3. od(¬A) = od(A), od(A ∧B) = max{od(A), od(B)}, etc . . .

4. od(GA) = od(A) + 1, od(FA) = od(A) + 1,

221

5. od(A U B) = max{od(A), od(B)}+ 1

6. od(X A) = od(A) + 1

Definition 130 (Temporal Structures)
A temporal structure is a triple T = (S,R, I) with

S a nonempty set, called the set of abstract time points.
R a strict transitive relation

thought of as representing the temporal before relation,
we will use the more suggestive symbol < instead of R

I a valuation function I : (PVar×S)→ {W,F}

Definition 131 (Omega Structures)
An omega structure (S,R, I) is the special case of a temporal structure with

(S,R) = (N, <).

We will present omega structures in the equivalent form

T = (N, <, ξ)

with ξ : N→ 2PVar and the intuition

p ∈ ξ(n)⇔ in T atom p is true at time point n

For ξ : N→ 2PVar and n ∈ N we will use ξn to stand for the final segment of
ξ starting at n. In symbol ξn(m) = ξ(n+m). In particular ξ0 = ξ.

Definition 132 (LTL Semantics)
Let T = (N, <, ξ) be an omega structure of the propositional signature PVar.

ξ |= p iff p ∈ ξ(0) (p an AL atom)
ξ |= op(A,B) for a propositional combination op(A,B)

of A and B as usual
ξ |= GA iff for all n ∈ N it is true ξn |= A
ξ |= FA iff there exists an n ∈ N with ξn |= A
ξ |= A U B iff there is n ∈ N with ξn |= B and

for alle m with 0 ≤ m < n we have ξm |= A
ξ |= X A iff ξ1 |= A

222

Lemma 118 (Simple LTL Tautologies)
The following formulas are true for all omega structures:

1. FA↔ true U A

2. GA↔ ¬(true U ¬A)

Lemma 118 shows that the logical constants true and false and the U
operator suffice to express the other temporal operators. For convenience,
clarity, or other reasons it is sometime useful to consider additional definable
operators. We will study here Uw and V . Uw is called the weak until operator
while there is no agreed name for V .

Definition 133 (Additional Operators)
ξ |= A Uw B iff ξn |= (A ∧ ¬B) holds for all n ∈ N or

there exists an n ∈ N such that ξn |= B and
ξm |= A for all m with 0 ≤ m < n

ξ |= A V B iff ξ |= B and for all n ∈ N holds
if ξn |= ¬B then there is m such that
0 ≤ m < n and ξm |= A

Lemma 119 For all omega structures the following equivalences are true:

1. A U B ↔ A Uw B ∧3B

2. A Uw B ↔ A U B ∨2(A ∧ ¬B)

3. A V B ↔ ¬(¬A U ¬B)

4. A U B ↔ (B ∨ (A ∧X (A U B)))

5. A V B ↔ (B ∧ A) ∨ (B ∧X (A V B))

223

Proofs: See Formale Systeme lecture notes [Schmitt, 2008].

Comparing omega structures and Büchi automata we notice that the states
in the automata model do not carry any information about propositional
variables being true or false. This can be compensated by coding it into the
label. This is exactly what happens in the next theorem. On one side, in
fact on the left-hand side of the equation, sequences of labels of an Büchi
automaton are considered. On the right-hand side there occur omega struc-
tures. Omega structures can be coded as sequences of labels, or as omega
words, by choosing an appropriate label vocabulary. If PVar is the set of
propositional variabels occuring in the omega structures then a letter in the
label vocabulary V should be a subset of PVar. In total V is a subset of all
subsets of PVar.

Theorem 120 For every LTL formula C there is a Büchi automaton AC
such that

Lω(AC) = {ξ ∈ V ω | ξ |= C}.

Proof See [Schmitt, 2008, Theorem 11.3].

One particularly interesting step in the proof of Theorem 120 is the inductive
step where C is a conjunction C1 ∧ C2. This is handled by the next lemma.

Lemma 121 Let A1 = (S1, V, s
0
1, δ1, F1), A2 = (S2, V, s

0
2, δ2, F2) be given

Büchi automata, C1, C2 LTL formulas such that Lω(A1) = {ξ ∈ V ω | ξ |= C1}
and
Lω(A2) = {ξ ∈ V ω | ξ |= C2}
Then there is a Büchi automaton C satisfying

Lω(C) = {ξ ∈ V ω | ξ |= (C1 ∧ C2)}

We sometimes use the notation C = A1 ∧ A2.

224

Proof See [Schmitt, 2008, Lemma 11.2].
In fact, the automaton A1 ∧ A2 can be explicitely defined by:

S = S1 × S2 × {1, 2}
s0 = (s0

1, s
0
2, 1)

F = F1 × S2 × {1}
for all s1 ∈ S1, s2 ∈ S2, i ∈ {1, 2}

(t1, t2, i) ∈ δ0((s1, s2, i), a) ⇔ t1 ∈ δ1(s1, a) and t2 ∈ δ2(s2, a)
if s1 ∈ F1

(t1, t2, 2) ∈ δ1((s1, s2, 1), a) ⇔ t1 ∈ δ1(s1, a) and t2 ∈ δ2(s2, a)
if s2 ∈ F2

(t1, t2, 1) ∈ δ2((s1, s2, 2), a) ⇔ t1 ∈ δ1(s1, a) and t2 ∈ δ2(s2, a)
δ((s1, s2, 1), a) = δ0((s1, s2, 1), a) ∪ δ1((s1, s2, 1), a)
δ((s1, s2, 2), a) = δ0((s1, s2, 2), a) ∪ δ2((s1, s2, 1), a)

We now turn our attention to an alternative of the semantics for LTL formulas
as given in Definition 132. This alternative, which is in fact only a small
shift in the point of view, is motivated by applications of LTL, where one is
interested in proving properties of system models. Typically a system may
be modelled by a Büchi automaton. The statement, a Büchi automaton
A satisfies an LTL formula A, in symbols A |= A, is supposed to mean
that for any accepting computation sequence s of A the omega structure ξ
(represented as an infinite word over a suitable alphabet) associated with s
satisfies the formula, in symbols ξ |= A. Defining truth of a formula with
respect to an omega structure ξ has the advantage of greater modularity; the
theory of the logic LTL can be developed without reference to where omega
structures come from. But, when we deal exclusively with the task of model
checking, as we will do in Section 5.3, it makes more sense to define directly
when an accepting computation sequence s = (si)i≥0 satisfies an LTL formula
A. Remember, that ξ(n) is the label of the edge leading from sn to sn+1 and
labels are sets of propositional atoms. The definition s |= A now reads:

Definition 134 (Semantics of LTL for computation sequences)

225

s |= p iff p ∈ ξ(0) (p an atom)
s |= op(A,B) for propositional connectors op(A,B)

of A und B as usual
s |= GA iff for all n ∈ N it is true that sn |= A
s |= FA iff there is an n ∈ N satisfying sn |= A
s |= A U B iff there is n ∈ N with sn |= B and

sm |= A for all m with 0 ≤ m < n
s |= X A iff s1 |= A

Here sn is the tail (sm)m≥n of s.

Lemma 122 below contains a deep result on the expressive power of LTL for-
mulas. Roughly speaking, LTL formulas can only express periodic properties
of computation sequences. The following text makes this statement precise.

Definition 135 (Cyclic Words) We call an omega word w ∈ V ω cyclic
if there are finite words x, y ∈ V ∗ with w = xyω.
In the same way we speak of a cyclic computation sequence s if s = s0s

ω
1 is

true for finite sequences s0, s1 of states and of a cyclic omega structure ξ if
ξ = ξ(0) . . . ξ(i− 1)(ξ(i) . . . ξ(k − 1))ω for appropriate i and k.

Lemma 122 Let φ be an LTL formula using atoms from PVar.
Let A be a Büchi automaton with the vocabulary V = P(PVar). Thus every
word w ∈ V ω naturally corresponds to an omega structure ξw.
If there is a word w ∈ Lω(A) with ξw |= φ, then there is already a cyclic
omega word xyω ∈ Lω(A) satisfying ξxyω |= φ and xy is an initial segment of
w.

Proof For simple formulas like φ ≡ Gp or φ ≡ Fp it can be eas-
ily seen that the statement of the lemma is true. If t is an accept-
ing computation sequence for the omega word w with ξw |= Gp. Then
there is a final state sF that occurs infinitely often in t. Thus there
is an initial segment t0 . . . ti−1sF ti+1 . . . tksF of t. The cyclic sequence
t0 . . . ti−1(sF ti+1 . . . tk)

ω is also an accepting computation sequence of A and
also w0 . . . wi−1(wiwi+1 . . . wk)

ω |= Gp.

In case ξw |= Fp is true, we pick the smallest i such that p ∈ wi. If ti occurs
before the first occurence of sF , we proceed as just described, otherwise we

226

consider the initial subsequence of t up to the first appearance of sF after ti.
It is however hard to see, how this easy construction can be generalized or
replaced by an inductive argument to work for arbitrary φ. We will therefore
resort to the following trick.

By Theorem 120 there exists a Büchi automaton Bφ such that
Lω(Bφ) = {ξ | ξ |= φ}. Furthermore let C be the automaton A ∩ Bφ
from Lemma 121 with the propety Lω(C) = Lω(A) ∩ Lω(Bφ). By the
assumption of the lemma we are about to prove we know Lω(C) 6= ∅. There
is thus an accepting computation sequence s′ of C, such that the omega
structure ξ′ associated with s′ satisfies ξ′ |= φ. By the Büchi acceptance
condition there is a final state sF occuring infinitely often in s′. Let s′i
be the first and s′k the second occurence of sF in s′ and s the sequence
s′1, . . . , s

′
i−1(s′i, . . . , s

′
k−1)ω. Then s also is an accepting computation sequence

of C. Consequently the omega structure ξ associated with s satisfies again
ξ |= φ.

Now, unfortunately, we have to take a closer look at the internal structure of
C. Every state sj in the sequence s is of the form sj = (s1

j , s
2
j , kj) with s1

j a
state ofA, s2

j a state of Bφ and kj ∈ {1, 2}. By construction of C we know that
s1
F is a final state of A. Thus the projection of s to its first coordinate, s1 =
s1

1, . . . , s
1
n, . . . is an accepting computation sequence of A. The projection s2

of s to its second coordinate is likewise an accepting computation sequence
of Bφ. Finally, we observe that the omega structures associated with s1

and s2 both coincide with ξ. Thus we have found a cyclic omega structure
ξ = ξ(0) . . . ξ(i− 1)(ξ(i) . . . ξ(k − 1))ω proving the claim of the lemma.

227

5.2.1 Expressiveness of Linear Temporal Logic

Definition 136 (Partial Isomorphism) Let T1 = (N, <, ξ1), T2 = (N, <
, ξ2) be two omega structures. A partial isomorphism, f from T1 to T2 is a
function with

1. domain dom(f) ⊆ N and range ran(f) ⊆ N

2. f is strict order preserving, i.e., f(n) < f(m)⇔ n < m

3. ξ1(m) = ξ2(f(m)) for all m ∈ dom(f).

Note that item 2 entails injectivity, f(n) = f(m)⇒ n = m.

We write f : T1 � T2 to denote that f is a partial isomorphism from T1 to
T2.

Definition 137 (Partial n-Isomorphism) The notion of a partial n-
isomorphism between two omega structures T1 = (N, <, ξ1), T2 = (N, <, ξ2),

in symbols f : T1

n
� T2, is inductively defined.

1. f : T1

0
� T2 iff f : T1 � T2

2. f : T1

n+1
� T2 iff

(a) for every m1 ∈ N there is m2 ∈ N such that f ′ : T1

n
� T2 where f ′

is the mapping with dom(f ′) = dom(f) ∪ {m1} extending f (i.e.,
f(m) = f ′(m) for m ∈ dom(f), and f ′(m1) = m2

(b) for every m2 ∈ N there is m1 ∈ N such that f∗ : T1

n
� T2 where

f ∗ is the mapping with dom(f ∗) = dom(f) ∪ {m1} extending f
(i.e., f(m) = f ∗(m) for m ∈ dom(f), and f ∗(m1) = m2

We will write f ′ = f ∪ {(m1,m2)} and f ∗ = f ∪ {(m1,m2)}.

We observe that f : T1

n
� T2 implies f : T1

k
� T2 for all k ≤ n.

Theorem 123 Let T1 = (N, <, ξ1), T2 = (N, <, ξ2) be two omega structures

and f a partial n-isomorphism, f : T1

2n
� T2.

For every LTL-formula A with od(A) ≤ n we have for all m ∈ dom(f)

ξ1
m |= A⇔ ξ2

f(m) |= A

228

Proof Since a formula A with od(A) = 0 contains no temporal operator
we get ξ1

m |= A ⇔ ξ2
f(m) |= A for every m ∈ dom(f) from the property of f

being a partial isomorphism.

So let us assume the claim is true for n and set out to prove it for n + 1.

So, we work from the assumption f : T1

2n+2
� T2. Now, A is a formula

with od(A) = n + 1. We may restrict attention to the cases A = X B and
A = B1 U B2.

Assume ξ1
m |= X B. Thus ξ1

m+1 |= B. By definition of an 2n+2 isomorphism

there is k such that f ′ : T1

2n+1
� T2. for f ′ = f∪{(m+1, k)}. Since f ′ is strictly

order preserving we know f(m) < k. We claim that even k = f(m) + 1 is
true. Otherwise we would find m1 with f(m) < m1 < k. But then there has

to be some m0 such that f ′′ : T1

2n
� T2 for f ′′ = f ′ ∪ {(m0,m1)}. This would

imply m < m0 < m+ 1, a contradiction. Thus f ′(m+ 1) = f(m) + 1. From

f ′ : T1

2n
� T2 and the induction hypothesis we obtain ξ2

f ′(m+1) |= B, thus

ξ2
f(m)+1 |= B, thus ξ2

f(m) |= X B. The reverse implication ξ2
f(m) |= X B ⇒

ξ1
m |= X B is proved analogously.

Next assume ξ1
m |= B1 U B2. Thus there is m0 such that

1. m ≤ m0

2. ξ1
m0
|= B2

3. ξ1
m′ |= B1 for all m ≤ m′ < m0.

In case m0 = m the induction hypothesis yields ξ2
f(m) |= B2 and thus ξ2

f(m) |=
B1 U B2. So we assume m < m0 from now on. By definition of 2n+2 partial

isomorphisms there is k such that f ′ : T1

2n+1
� T2 for f ′ = f ∪ {(m0, k)}. By

induction hypothesis this gives already ξ2
k |= B2. Assume there is k′, f(m) ≤

k′1 < k with ξ2
k′1
|= ¬B1. There would then be some k′0 with f ′′ : T1

2n
� T2

for f ′′ = f ′ ∪ {(k′0, k′1)}. Since f ′′ is strictly order preserving we must have
m ≤ k′0 < m0. Since od(¬B1) = od(B1) we obtain furthermore, by induction
hypothesis ξ1

k′0
|= ¬B1. A contradiction to the choice of m0. This proves

alltogether ξ2
f(m) |= B1 U B2. The reverse implication ξ2

f(m) |= B1 U B2 ⇒
ξ1
m |= B1 U B2 is again proved analogously.

229

5.3 Bounded Model Checking (Optional)

In this section we will present an interesting connection between LTL model
checking and propositional satisfiability. It is the theoretical basis for an
alternative to model checking with Büchi automata by employing programs
to solve propositional satisfiability problem, commonly called SAT solvers.
This approach goes by the name bounded model checking and was pioneered
in the paper [Biere et al., 1999].

Our starting point are statements of the form s |= A, the LTL formula A is
satiesfied for the computation sequence s, as detailed in Definition 134.

In the course of this section we will express statements of the form, s |= A,
by a propositional formula. The first problem with this plan is the infinity
of s. Its solution has already been prepared by Lemma 122: it suffices to
consider finite, cyclic computation sequences.

We are now ready to start with propositional coding.

Lemma 124 For any given Büchi automaton A, any LTL formula F and
any k ∈ N there is a propositional formula Mk such that

Mk is satisfiable iff there is a cyclic computation sequence s
of length k satisfying s |= F

If necessary we will write more precisely Mk(A, F) instead of Mk.

Proof We will describe an explicit construction for Mk. This construction
is quite involved, but easy to follow. We will therefore not include an addi-
tional proof that the proposed construction really does what it should. We
will illustrate the different steps for the special case of the automaton Adbp
from Figure 5.2 and the formula F = FGp.

Let us assume that A has n states. We will refer to these states by using the
numbers from 1 to n. As a first preparatory step we need a binary coding of
these state numbers. The coding will use the Boolean variables c1, . . . , cm.

The example automaton Adbp uses only two states, thus one Boolean variable
c suffices. I(c) = false characterizes the initial state and I(c) = true the
uniques final state.

230

P

V P

Figure 5.2: The example automaton Adbp

The formula F also contains propositional variables. Let these be Σ =
{p1, . . . , pr}.
In the example p and q are the only propositional variables in Σ even though
only p occurs in our example formula.

Later on we will need additional auxiliary variables which we will introduce
when we get there.

Since the formula Mk will have to talk about sequences of states of length k
there will be k copies of each variable, i.e., cij with 1 ≤ i ≤ k und 1 ≤ j ≤ m
and pij with 1 ≤ i < k und 1 ≤ j ≤ r.

In our example we will work with k = 3. Thus we have the propositional
variables c1, c2, c3, p1, p2 and q1, q2 at our disposal.

The formula Mk is made up of several parts

Mk ≡ Init ∧ Trans ∧
∨

1≤i<k

Li

For any interpration I of the propositional variables we read the values
I(ci1), . . . , I(cim) for every 1 ≤ i ≤ k as the binary encoding of a number
ni. This gives us a sequence of states π = n1, . . . , nk. Likewise we read
I(pi1), . . . , I(pir) as the coding of a subset bi of the variables p1, . . . , pr. Thus
bi is a letter in the vocabulary V of edge labels of the automaton A. Taken
all together the bi form a word b1, . . . , bk−1 of length k − 1. The formulas
Init and Trans will take care, when satisfied by I, that n1, . . . , nk is a legal
computation sequence of A with b1, . . . , bk−1 as its sequence of edge labels.

Let us consider in our example the following interpretations I1, I2

c1 c2 c3 p1 p2 q1 q2

I1 0 1 1 1 1 1 0
I2 0 1 1 1 0 0 1

231

I1 and I2 code the sequence π = 0, 1, 1 of states. I1 codes the sequence of
letters w1 = {p, q}, {p} and I2 the word w2 = {p}, {q}. Obviously w1 is a
correct edge labeling for the state sequence π, while w2 is not.

If d = d1, . . . , dm is the binary code for a state of A then Sid = Sid1,...,dm

is used to denote the propositional formula
∧
dj=1 c

i
j ∧

∧
dj=0 ¬cij. If b is a

letter of the alphabet V , that is to say b ⊆ Σ, then Bi
b denotes the formula∧

pj∈b p
i
j ∧
∧
pj 6∈b ¬pij.

If d0 = d1, . . . , dm is the binary code of the inital state of A then

Init ≡ S1
d0

Let (d1
a, d

1
e, b

1), . . . (dKa , d
K
e , b

K) be all edges of the automaton A. An edge is
seen here as a transition form a state with binary code dja to a state with
binary code dje and edge label bj for 1 ≤ j ≤ K.

Trans ≡
∧

1≤i<k

∨
1≤j≤K

(Si
dja
∧ Si+1

dje
∧Bi

bj)

For our example we get Init = ¬c1 and the set of all edges is

(0, 0, {}), (0, 0, {p}), (0, 0, {q}), (0, 0, {p, q})
(0, 1, {p}), (0, 1, {p, q})
(1, 1, {p}), (1, 1, {p, q})

which yields

Trans =
(¬c1 ∧ ¬c2) ∨ (¬c1 ∧ c2 ∧ p1) ∨ (c1 ∧ c2 ∧ p1)
∧
(¬c2 ∧ ¬c3) ∨ (¬c2 ∧ c3 ∧ p2) ∨ (c2 ∧ c3 ∧ p2)

To obtain this simple formula we have already performed some simplifica-
tions, e.g., (¬c1 ∧ ¬c2 ∧ p1 ∧ q1) ∨ (¬c1 ∧ ¬c2 ∧ ¬p1 ∧ q1) ∨ (¬c1 ∧ ¬c2 ∧ p1 ∧
¬q1)∨(¬c1∧¬c2∧¬p1∧¬q1) has been equivalently replaced by (¬c1∧¬c2). As
an additional simplification (c1∧c2∧p1) could be dropped since it contradicts
Init.

The formulas Li will guarantee that the finite computation sequence π ex-
tracted from a satisfying interpretation I is i-cyclic and accepting and, most
importantly , satisfies the formla F :

Li = Zi ∧ Akzi ∧ erfFi

232

The first two components are easy

Zi ≡ ∧1≤j≤m(ckj ↔ cij)
Akzi ≡ Fini ∨ Fini+1 . . . ∨ Fink−1

with Fini ≡ Si
df1
∨ . . .∨Si

dfR
where df1 , . . . , d

f
R are the binary codes of all final

states of A.

It remains to explain erfFi. We want that satisfiability of this formula by
an interpretation I guarantees that the i-cyclic computation sequence π ex-
tracted from I satisfies formula F . At this point we need additional propo-
sitional variables. It is true that we are only interested in validity or non-
validity of F at position 1 in π, but by the definition of the temporal operators
it cannot be avoided to consider validity at all positions j with 1 ≤ j ≤ k.
In addition validity depends on the cyclic loop-back index i. We need thus
for every subformula C, for every i, 1 ≤ i < k and every j, 1 ≤ j ≤ k a new
propositional variable denoted by [C]ji . The defining formulas for every [C]ji
are listed in Figure 5.3. The entries for GC and FC are infact superfluous.
But, having seen the definitions of the simple formulas GC and FC may
help to understand the case of the more complicated operators C1 U C2 and
C1 V C2. There is no entry involving the negation symbol. This is because
we assume that F is given in negation normal form. In particular the formu-
las ¬C2 on the right hand side of the definition for [C1 V C2]ji are understood
as a short hand notation for its negation normal form. In addition to the
propositional equivalences in Figure 5.3 we need the final equivalence

erfFi ↔ [F]1i

Let us now compute the formulas L1 and L2 for our running example. We
start with Z1 ≡ c1 ↔ c3 and Z2 ≡ c2 ↔ c3. Since c is the only final state of
Adbp we get Akz1 ≡ c1 ∨ c2 ∨ c3 and Akz2 ≡ c2 ∨ c3. For our example formula
F ≡ FGp we obtain the following instances of the equivalences from Figure
5.3.

[F]11 ≡ [Gp]11 ∨ [Gp]21
[Gp]11 ≡ [p]11 ∧ [p]21

≡ p1 ∧ p2

[Gp]21 ≡ [p]21 ∧ [p]11
≡ p2 ∧ p1

233

[C]ji ↔ pjl if C = pl ∈ Σ

[C]ji ↔ ¬pjl if C = ¬pl with pl ∈ Σ

[C1 ∧ C2]ji ↔ [C1]ji ∧ [C2]ji
[C1 ∨ C2]ji ↔ [C1]ji ∨ [C2]ji
[GC]ji ↔ ∧

j≤l<k[C]li if j ≤ i

[GC]ji ↔ ∧
j≤l<k[C]li ∧

∧
i≤l<j[C]li if i < j

[FC]ji ↔ ∨
j≤l<k[C]li if j ≤ i

[FC]ji ↔ ∨
j≤l<k[C]li ∨

∨
i≤l<j[C]li if i < j

[C1 U C2]ji ↔
∨
j≤l<k([C2]li ∧

∧
j≤n<l[C1]ni) if j ≤ i

[C1 U C2]ji ↔
∨
j≤l<k([C2]li ∧

∧
j≤n<l[C1]ni)∨∨

i≤l<j([C2]li ∧
∧
j≤n<k[C1]ni ∧

∧
i≤n<l[C1]ni) if i < j

[C1 V C2]ji ↔ [C2]ji ∧
∧
i≤l<k([¬C2]li →

∨
i≤n<l[C1]ni) if j ≤ i

[C1 V C2]ji ↔ [C2]ji ∧
∧
j≤l<k([¬C2]li →

∨
j≤n<l[C1]ni)∧∧

i≤l<j([¬C2]li →
∨
i≤n<l[C1]ni ∨

∨
j≤n<k[C1]ni) if i < j

[X C]ji ↔ [C]j+1
i if j < (k − 1)

[X C]k−1
i ↔ [C]ii

Figure 5.3: Cyclic Semantics for LTL formulas

In total this amounts to [F]11 ↔ p1 ∧ p2

[F]12 ≡ [Gp]12 ∨ [Gp]22
[Gp]12 ≡ [p]12 ∧ [p]22

≡ p1 ∧ p2

[Gp]22 ≡ [p]22
≡ p2

This can be summarized to [F]12 ↔ p2.

The formulas Li for our example can now be computed as:

L1 ↔ (c1 ↔ c3) ∧ (c1 ∨ c2 ∨ c3) ∧ p1 ∧ p2

↔ (c1 ↔ c3) ∧ (c2 ∨ c3) ∧ p1 ∧ p2

L2 ↔ (c2 ↔ c3) ∧ (c2 ∨ c3) ∧ p2

↔ c2 ∧ c3 ∧ p2

The result of the computation i.e., M3 is presented in Figure 5.4. This
formula can be further simplified making use of the equation Init = ¬c1.

234

This leads to c2 → p1 which may in turn be used for further simplification.
This leads to the final result M3 ≡ ¬c1 ∧ c2 ∧ c3 ∧ p1 ∧ p2. This formula is
obviously satisfiable. By construction this tells us that there is a computation
sequence s in Adbp that satisfies FGp. We even know that this formula is
true for every computation sequence of Adbp.

¬c1∧
(¬c1 ∧ ¬c2) ∨ (¬c1 ∧ c2 ∧ p1) ∨ (c1 ∧ c2 ∧ p1)
∧
(¬c2 ∧ ¬c3) ∨ (¬c2 ∧ c3 ∧ p2) ∨ (c2 ∧ c3 ∧ p2)
∧ (
((c1 ↔ c3) ∧ (c2 ∨ c3) ∧ p1 ∧ p2)
∨
(c2 ∧ c3 ∧ p2)

)

Figure 5.4: M3 for the example automaton Adbp and F ≡ FGp

Theorem 125 There is an accepting computation sequence of a Büchi au-
tomaton A satisfying the LTL-formula F iff there exists k, such that the
propositional formula Mk(A, F) is satisfiable.

Proof Follows from Lemmata 124 and 122.

The bounded model checking procedure for a Büchi automatonA and an LTL
formula F now works as follows: Analyze satifiability of the setMk(A, F) first
for small values of k. This can be done by using powerful implementations of
propositional decision procedures, called SAT solver. If a solution is found
we have also positively solved the original LTL problem. If on the other
hand Mk(A, F) is found to be not satisfiable on can continue to analyze
satisfiability of Mk+1(A, F). In case there is no computation sequence of
A satisfying F this procedure will not terminate. But, it is not hard to
see that the proof of Lemma 122 also gives an upper bound for k. The
least upper bound such that Lemma 122 is true is called the (completeness
threshhold). If Mk(A, F) is not satisfiable for some k greater or equal to
the completeness threshhold then we know that no accepting computation
sequence of A satisfying F exists.

235

Bounded model checking does no reduce the computational complexity of
the problem to solve. This is still based on an NP-complete problem. Ex-
periments have shown however that the advantages of the automata based
approach to LTL model checking are in a sense orthogonal to the advantages
of bounded model checking, [Biere et al., 2003, Copty et al., 2001].

236

5.4 Computation Tree Logic

In this section we will present and study Computation Tree Logic abbreviated
as CTL as a typical representative of what are called branching time temporal
logics. Among other reference our account is based on [Clarke et al., 1986,
Emerson, 1992, Clarke et al., 2001] and [Huth & Ryan, 2000]. In particular
the example in the following subsection is taken from [Huth & Ryan, 2000].

Motivating Example

To convey a first idea of the kind of problems that can be formulated and
solved using Computation Tree Logic we reconsider an important and popular
topic in Computer Science: mutual exclusion. In this scenario a number of
actors compete for a common resource that can only be used by one party
at the time. You may think of several threads of a concurrent program to
read from and write to the same file. For the sake of simplicity we will in
this subsection only consider two actors. The principal issues can already
be observed in this simplest case. We use a rather abstract approach and
model the given scenario by a transition system. A more concrete treatment
can be found in [Lamport, 1974]. In our abstract model an agent can either
be not active, trying to obtain the critical resource or be in the critical
section. This will be modeled by the six boolean variables ni, ti and ci
for i ∈ {1, 2}. The transition system (S, s0, R, v) consists of a set S of
system states with an initial state s0, of a binary relation R stating which
transitions are possible among the states in S and an evaluation function
v : S × atoms → {true, false} that states which boolean atoms are true in
which states. Figure 5.5 shows a graphical representation of the transition
system A1 = (S1, s0, R1, v1) that we will consider first.

The node labeling t1n2 in state s1 e.g., means that in the global system state
s1 the first agent is in the trying phase while the second agent is not active.
Using the terminology from the transition system R1 this can be expressed
as v1(s1, t1) = true and v1(s1, n2) = true or more concise as (R1, s1) |= t1
and (R1, s1) |= n2. Since we are talking about a concurrent system it is not
determined what will be the next system state after s1. If agent 1 will be
served next we end up in state s2, if agent 2 will be served next we end up
in state s3. This is reflected in the non-deterministic transition system. In
some states there is no choice, e.g., in state s4 agent 2 has to wait till agent

237

1 leaves the critical section. What kind of properties do we want to assert
about R1. Here are five examples

n1n2s0

t1n2s1 n1t2 s5

c1n2s2 t1t2

s3

n1c2 s6

c1t2s4 t1c2s7

Figure 5.5: Mutual Exclusion (first attempt)

safety There is no state s reachable from S0 with s |= c1 ∧ c2.

liveness Whenever an agent wants to enter the critical section it will even-
tually enter it.

non-blocking An agent can always try to enter the critical section.

non-sequencing It is not the case that the agent who first tried will first
enter the critical section.

non-alternating It is not the case that the two agents take alternate turns
to the critical section.

238

The safety property is obvious. The state with c1c2 is not even included in
Figure 5.5 since it has no incoming edge. The non-blocking property can also
seen to be true. It may also be observed that there are no dead ends. An
example of the possible behaviour required by non-sequencing is the sequence
of states s0, s1, s3, s7. The sequence s0, s1, s2, s0 is an example of a behaviour
where the first agent enters the critical section two times in a row. We have
so far avoided to consider the liveness property, which in fact is not satisfied.
In the sequence s0, s1, s3, s7, s1, s3, s7, . . . agent 1 never reaches the critical
section. In the second attempt to model mutual exclusion R2 = (S2, R2, v2)
depicted in Figure 5.6 liveness is guaranteed. But now the non-sequencing

n1n2

s0

t1n2s1 n1t2 s5

c1n2s2 t1t2

s3

t1t2

s8

n1c2 s6

c1t2s4 t1c2s7

Figure 5.6: Mutual Exclusion (second attempt)

property is violated. In the next subsection we will present a formal language
that allows to express the five properties considered above, and many more.
In further subsections to follow we will learn methods that automate the
evaluation wether a given property is true in a given transition system.

Definition 138 (Transition System)
Let PVar be a set of propostional atoms.

A transition system T = (S, s0, R, v) consists of

239

• a finite set S of states with one distinguished initial state s0,

• a binary relation R and

• a function v : S × PVar→ {true, false}

such that for every s ∈ S there is s′ ∈ S with R(s, s′).
If necessary we call T a transition system over PVar or say that PVar are
the atoms for T .

From a technical point of view a transition system is just a Kripke structure,
see Definition 37 on page 75, whose accessability relation has no dead ends.
Also Kripke structures do not come equipped with an initial state. It will
turn out, that the initial state of a transition system usually does not play
a role and we will most of the time write (S,R, v) instead of (S, s0, R, v).
The similarity to Kripke structures is at least true for the simple version
of transition systems that we consider here. There are more complicated
versions e.g., labeled transitions systems that cannot, at least not directly,
be mimicked by Kripke structures. More important is the question where
transitions come from.

Syntax and Semantics of CTL

Like all temporal logics we consider in this text also CTL is a propositional
logic. There is thus a set PVar of propositional variables to start with.

Definition 139 (Syntax of CTL)

1. Any propositional variable p ∈ PVar is a CTL formula.

2. If F , G are CTL formulas then all propositional combinations are also
CTL formulas, e.g., ¬F , F ∨G, F ∧G, etc.

3. If F , G are CTL formulas then also

AXF,EXF,A(F U G) and E(F U G)

are CTL formulas.

240

If p, q are atoms in PVar then AX(p→ q), A(pU q) and A(E(pU q) UG¬q)
are CTL formulas, while p U q and Ap are not syntactically correct. The
operators always come in pairs. There can be no U or X without A or E
preceeding it and no A or E without an X or U following it. This may
seem a bit strange at the moment. After we have seen the temporal logic
CTL* in the next subsection the definition of CTL will look more natural.

The meaning of a CTL formula will be defined relative to a given transition
system (S,R, v). The crucial concept will be that of a path through (S,R, v).

Definition 140 (Path)
A path through a transition system T = (S,R, v) is an infinite sequence of
states t(0), t(1), . . . , t(n), t(n + 1), . . . such that t(0) is the initial state and
for all n the relation R(t(n), t(n+ 1)) is true.
If π denotes a path then π(n) is the state at position n and πn is the tail of
π starting at n, i.e.,

πn(k) = π(n+ k).

We do not insists that a path of T starts with the initial state.

For the transition system in Figure 5.6 the sequence s0, s1, s2, s0, s1, s2, . . . is
an example of a path. There is the possibility that the fact that the same
state may occur at different positions within a path may lead to confusion.
Experience with other texts shows that the possibility is rather slight. So we
will live with it. The alternative would have been to consider a path as a
sequence of abstract time points, as we did for LTL. For the moment this is
not a matter of high priority.

Definition 141 (Semantics of CTL) Let T = (S,R, v) be a transition
system. We will define when a CTL formula φ is true in a state s of T .
As usual this will be symbolically denoted by (T , s) |= φ. Here and in all
cases where no ambiguity can arise we will write s |= φ instead of (T , s) |= φ.

241

1 s |= p iff v(s, p) = 1 (in case p ∈ PVar)
2 s |= ¬φ iff s 6|= φ
3 s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2

4 s |= AXφ iff s1 |= φ is true for all s1 with R(s, s1)
5 s |= EXφ iff s1 |= φ is true for at least one s1 with R(s, s1)
6 s |= A(φ1 U φ2) iff for every path s0, s1, . . . with s0 = s

there exists i ≥ 0, such that
si |= φ2 and
sj |= φ1 for all j with 0 ≤ j < i,

7 s |= E(φ1 U φ2) iff there is a path s0, s1, . . . with s0 = s
and there is i ≥ 0, such that
si |= φ2 and
sj |= φ1 for all j satisfying 0 ≤ j < i,

Definition 142 (Defined CTL Operators)
Using the operators F and G from LTL (see Lemma 118 on page 223) four

new CTL operators can be defined:

ua(φ) ≡ AFφ ≡ A(true U φ) φ cannot be avoided
re(φ) ≡ EFφ ≡ E(true U φ) φ is reachable
ofa(φ) ≡ EGφ ≡ ¬A(true U ¬φ) once and for all φ
aw(φ) ≡ AGφ ≡ ¬E(true U ¬φ) always φ

To work with these defined temporal operators it will be helpful to state their
semantics in the style of Definition 141:

Lemma 126 (Semantics of Defined Operators)
8 s |= AFφ iff for every path s0, s1, . . . with s0 = s

there exists i ≥ 0, such that si |= φ
9 s |= EFφ iff there is a path s0, s1, . . . with s0 = s

and there exists i ≥ 0, such that si |= φ
10 s |= EGφ iff there is a path s0, s1, . . . with s0 = s

such that si |= φ for all i
11 s |= AGφ iff for every path s0, s1, . . . with s0 = s

and every i it is true that si |= φ

242

Proofs Easy consequences from Definitions 142 and 141.

Example 36 The five properties from Subsection 5.4 on page 238 can be
formaly expressed as CTL formulas. We still assume here that there are just
two participants.

safety s0 |= AG¬(c1 ∧ c2)

liveness s0 |= AG
∧
i∈{1,2}(ti → EFci)

non-blocking s0 |= AG
∧
i∈{1,2}(EFti)

non-sequencing EF(t1 ∧ EXE(¬c1 U c2)) ∧ EF(t2 ∧ EXE(¬c2 U c1))

non-alternating EF(c1 ∧ EXE(¬c2 U c1)))

Lemma 127 (CTL Tautologies)
The following formulas are CTL tautologies

1. AG φ↔ φ ∧AXAG φ

2. EG φ↔ φ ∧ EXEG φ

3. AF φ↔ φ ∨AXAF φ

4. EF φ↔ φ ∨ EXEF φ

5. A(φ U ψ)↔ ψ ∨ (φ ∧AXA(φ U ψ))

6. E(φ U ψ)↔ ψ ∨ (φ ∧ EXE(φ U ψ))

Proofs Let T = (S,R, v) be a transition system, g ∈ S.
(1) We need to show g |= AG φ iff g |= φ ∧AXAG φ

g |= AG φ iff for all path g0, g1, . . . with g0 = g and all i gi |= φ
iff g0 |= φ and

for all path h0, h1, . . . with h0 = g1 and all i hi |= φ
iff g |= φ and

for all h with R(g, h) h |= φ and
for all path h0, h1, . . . with h0 = h and all i hi |= φ

iff g |= φ ∧AXAG φ
The remaining parts are proved similarly.

243

Syntax and Semantics of CTL*

In the definition of CTL* formulas we distinguish between state formulas
and path formulas. A state formula F can be evaluated in every state s, in
contrast we need to know a whole path p to determine the truth or falsity of
a path formula.

Definition 143 (Syntax of CTL*)

1. any propositional variable is a state formula

2. if F , G are state formulas, so are ¬F , F ∨G, F ∧G, etc.,

3. if F is a path formula, then (AF), (EF) are state formulas,

4. every state formula also is a path formula,

5. if F , G are path formulas, so are ¬F , F ∨G, F ∧G,

6. if F , G are path formulas, so XF und F U G.

Definition 144 (Semantics of CTL*) Let T = (S,R, v) be a transition
system. For any state s ∈ S and path π of T we define for state formulas
F, Fi and path formulas P, Pi:

1 s |= a ⇔ v(s, a) = true if F = a
2 s |= F1 ∧ F2 ⇔ s |= F1 and s |= F2 . . .

as usual for all propositional connectives
3 s |= AP1 ⇔ π |= P1 for all paths π starting with s

s |= EP1 ⇔ π |= P1 for some path π starting with s
4 π |= F ⇔ π(0) |= F
5 π |= P1 ∧ P2 ⇔ π |= P1 and π |= P2 . . .

as usual for all propositional connectives
6 π |= XF ⇔ π1 |= F

π |= F U G ⇔ there exists an n ≥ 0 with πn |= G and
πm |= F for all m with 0 ≤ m < n

244

Remember that πn is the tail of π starting at n.
A CTL* state (path) formula φ is a tautology if φ is true in all states (all
paths) for all transition systems.

We use F and G as abbreviations for true U A and ¬(true U ¬A).

Lemma 128 (Simple CTL* Tautologies)
Let F be a state formula then the equivalences

AF ↔ F EF ↔ F

are tautologies.

Proofs: We fix an arbitrary transition system T = (S,R, v). References
are to clauses of Def. 144

s |= AF ⇔ π |= F for all path π with π(0) = s clause 3
⇔ π(0) |= F clause 4
⇔ π |= F for some path π with π(0) = s T has no dead ends
⇔ s |= EF clause 3

Corollary 129 Let P be a path formula then the following equivalences are
tautologies:

1. AEP ↔ EP

2. EEP ↔ EP

3. AAP ↔ AP

4. EAP ↔ AP

Proofs: All formulas are instances of the previous Lemma 128.

245

Definition 145 A transition system T = (S,R, v) is called deterministic if
R is a function, i.e. R(s, s1) ∧R(s, s2) implies s1 = s2.
As a consequence for every state s in a deterministic transition system there
is a unique infinite path πs with πs(0) = s.
Deterministic transition systems are sometimes also called single-path or
linear systems.

Lemma 130 Let F be a CTL* formula. By F d we denote the formula that
arises from F by simply dropping all quantifiers. Thus e.g., (AFAGp)d =
FGp.
Let T = (S,R, v) be a deterministic transition system. Then for all states s
and all paths π:

(T , s) |= F ⇔ (T , πs) |= F d if F is a state formula
and πs the unique path with πs(0) = s

(T , π) |= F ⇔ (T , π) |= F d if F is a path formula

Proof: We proceed by induction on the complexity of F . If F is a propo-
sitional atom p, then F d ≡ F and the claim is obvious. Let us now assume
the equivalence claimed by the lemma for all subformulas of F . For the cases
F ≡ F1 ∧ F2, F ≡ F1 ∨ F2, and F ≡ ¬F1 we observe (F1 ∧ F2)d ≡ F d

1 ∧ F d
2 ,

(F1∨F2)d ≡ F d
1 ∨F d

2 , and (¬F)d ≡ ¬F d
1 . The inductive steps are now trivial.

We consider the two case F ≡ AF1 and F1 U F2 and leave the remaining
(two) cases to the reader.

(T , s) |= AF1 ⇔ (T , πs) |= F single path property
⇔ (T , πs) |= F d induction hypothesis

(T , π) |= F1 U F2 ⇔ there is n ≥ 0 with (T , πn) |= F2

and
(T , πm) |= F1 for all 0 ≤ m < n

⇔ there is n ≥ 0 with (T , πn) |= F d
2

and
(T , πm) |= F d

1 for all 0 ≤ m < n
⇔ (T , π) |= F d

1 U F d
2

⇔ (T , π) |= (F1 U F2)d

246

We will next take up the task of comparing the expressive power of the
various temporal logics: LTL, CTL, CTL*. A principle obstacle at first
are the different semantics domains: LTL formulas are evaluated in omega
structures, Definition 132, while CTL and CTL* formulas are evaluated in
transition structures, Definitions 141 and 144. To overcome this problem we
extend the semantics of LTL formulas and define an LTL formula φ to be
true in a state s of a transition structure T = (S,R, v) if φ is true for every
path π of T starting in s. Since any path π may be easily considered as an
omega structure, this stipulation makes sense. An LTL formula φ is thus
said to be equivalent to a CTL* state formula ψ if Aφ ↔ ψ is true in all
states of all transition systems. Also φ is said to be equivalent to a CTL*
path formula ψ if φ↔ ψ is true in all paths of all transition systems.

As observed above paths in a transition structure can easily be viewed as
omega structures and we agreed to interpret LTL formulas directly for path
π. Lemma 122 states an important property of LTL formulas in terms of
Büchi automaton. The following lemma gives a formulation of the same fact
in terms of transition structures.

Lemma 131 Let T = (S, s0, R, v) be a transition structure, π a path in T
and φ an LTL formula.
If π |= φ then there is a cyclic path of the form xyω in T that also satisfies
xyω |= φ.

Proof Let PVar be the set of propositional atoms used in π. Our plan
is to define a Büchi automaton B = (S, V, s0, δ, F), with V = PP(PVar)
such that Lω(B) conincides with the set of paths in T . If that succeeds we
can simply appeal to Lemma 122 and are finished. The set of states S of
B is the same as for T and every state is also a final state S = F and also
the initial states coincide. For s ∈ S let ws = {p | v(s, p) = true} ∈ V .
δ(s, w) = {s′ | w = ws and R(s, s′)}. The automaton B thus defined serves
the purpose.

A simple line of attack to find out if a CTL* state formula ψ is equivalent to
an LTL formula would be to form ψd first (see Lemma 130), which obviously
is an LTL formula, and then check wether ψ is equivalent to ψd. The next
Lemma tells us that this simplistic approach is indeed the best we have; if ψ
is at all equivalent to an LTL formula, then it is already equivalent to ψd.

247

Lemma 132 (CTL* vs LTL)
Let F be a CTL* state formula.

Then F is expressible in LTL iff F is equivalent to A(F d).

Proof Adapted from [Clarke & Draghicescu, 1988].
Since F d is an LTL formula the implication from right to left is obvious.
Now, we assume that F is equivalent to A(F1) for an LTL formula F1. Let
T = (S,R, v) be an arbitrary transition system and s an arbitrary state
s ∈ S. In the end we want to have (T , s) |= F ⇔ (T , s) |= A(F d) Let us
first give an overview of the whole argument and then come back to fill in
the missing definitions and explanations.

1 (T , s) |= F iff (T , π) |= F1 for all paths π in T starting in s
2 iff (T , xyω) |= F1 for all paths xyω in T starting in s
3 iff (T (xyω), xyω) |= F1 for all paths xyω in T starting in s
4 iff (T (xyω), s) |= F for all paths xyω in T starting in s
5 iff (T (xyω), xyω) |= F d for all paths xyω in T starting in s
6 iff (T , xyω) |= F d for all paths xyω in T starting in s
7 iff (T , π) |= F d for all paths π in T starting in s
8 iff (T , s) |= A(F d)

line 1 is the semantics definition of the A quantifier.
line 2 follows by Lemma 131
line 3 This needs some preparation. First, we need to define the transition
structure T (xyω) = (S1, R1, v1). If x = s0 = s, . . . , si−1 and y = si, . . . sk
then S1 = {0, . . . , k} ⊂ N. Further, for j ∈ S, p ∈ PVar we set v1(j, p) =
true⇔ v(sj, p) = true. Finally for j1, j2 ∈ S let R(j1, j2) iff j2 = j1 + 1. By
construction xyω is the only path in T (xyω), and that is of course the whole
point of it. From the equivalence in line 2 that in line 3 follows trivially since
the evaluation of the LTL formula F1 only depends on the path xyω.
line 4 This follows from the previous line since xyω is the only path of
T (xyω).
line 5 TLemma 130 applied to the deterministic transition structure T (xyω).
line 6 Follows from the previous equivalence since the evaluation of the LTL
formula F d only depend on the path xyω. This is the same argument as for
the step from line 2 to 3.
line 7 Lemma 131
line 8 semantics of A.

248

p ¬p
s0

p
s1

s3

Figure 5.7: Transition system for AFAGp

As an application of Lemma 132 we look at the formula φ = AFAGp. Then
φd = FGp. Thus φ would be expresible in LTL iff AFAGp ↔ AFGp.
For the transition system in Figure 5.7 the set of all paths starting in s0 is
{sn0s1s

ω
3 | n ≥ 1}∪{sω0 }. For each path, either s1 does not occur, or eventuall

s3 is reached. Thus we have s0 |= AFGp. But, for the path π = sω0 we have
π 6|= FAGp thus s0 6|= AFAGp.

249

5.5 CTL Model Checking

Fixed Points

The theory of fixed points can be presented on different levels of abstraction.
The most abstract version would deal with functions on a complete lattice.
We will restrict our attention to establishing the terminology needed for CTL
model checking. Thus it suffices to consider functions f : P(G) → P(G)
that take as arguments a subset of a set G and return again a subset of G.
Typically G will also be finite.

Definition 146 (Monotone Functions)
Let G be an arbitrary set, let P(G) denote the power set of G, i.e., the set

of all subsets of G.
A function f : P(G)→ P(G) is called monotone if for all X, Y ⊆ G

X ⊆ Y ⇒ f(X) ⊆ f(Y)

Definition 147 (Fixed Points)
Let f : P(G)→ P(G) be a set valued function and Z a subset of G.

1. Z is called a fixed point of f if f(Z) = Z .

2. Z is called the least fixed point of f is Z is a fixed point and for all
other fixed points U of f the relation Z ⊆ U is true.

3. Z is called the greatest fixed point of f is Z is a fixed point and for all
other fixed points U of f the relation U ⊆ Z is true.

By fn(M) we denote as usual the n-fold iteration of f , i.e.,. f 1(M) = f(M),
fn+1(M) = f(fn(M)).

Lemma 133
Let f : P(G)→ P(G) be a monotone function on a finite set G.

1. There is a least and a greatest fixed point of f .

2.
⋃
n≥1 f

n(∅) is the least fixed point of f .

3.
⋂
n≥1 f

n(G) is the greatest fixed point of f .

250

Proofs It obviously suffices to prove 2. and 3.
(2) Monotonicity of f yields

∅ ⊆ f(∅) ⊆ f 2(∅) ⊆ . . . ⊆ fn(∅) ⊆ . . .

Since G is finite there must be an i such that f i(∅) = f i+1(∅).
Then Z =

⋃
n≥1 f

n(∅) = f i(∅) is a fixed point of f :

f(Z) = f(f i(∅)) = f i+1(∅) = f i(∅) = Z

Let U be another fixed point of f . From ∅ ⊆ U we infer by monotonicity of
f at first f(∅) ⊆ f(U) = U . By induction on n we conclude fn(∅) ⊆ U for
all n. Thus also Z = f i(∅) ⊆ U .
(3) Is proved analogously.

The following material in this subsection is not relevant for model checking
applications. But, it is of theoretical interest, if Lemma 133 in its present
form or after some adaptations is also true for infinite sets G.

Definition 148 (Continuity)
A function f : P(G)→ P(G) is called

1. ∪-continuous (upward continuous), if for every ascending sequence
M1 ⊆M2 ⊆ . . . ⊆Mn ⊆ . . .

f(
⋃
n≥1

Mn) =
⋃
n≥1

f(Mn)

2. ∩-continuous (downward continuous) , if for every descending se-
quence M1 ⊇M2 ⊇ . . . ⊇Mn ⊇ . . .

f(
⋂
n≥1

Mn) =
⋂
n≥1

f(Mn)

Every upward continuous or downward continuous function f is also mono-
tonic. This can be easily seen by considering the sequence M = M1 und
N = Mn for all n > 1. The reverse implication need not be true for infinite
domains: there are monotonic functions that are not continuous.

For continuous functions Lemma 133 is true even in the infinite case.

251

Lemma 134
Let f : P(G) → P(G) be an upward continuous functions and g : P(G) →
P(G) a downward continuous function.

The for all M,N ∈ P(G) such that M ⊆ f(M) and g(N) ⊆ N the following
is true.

1.
⋃
n≥1 f

n(M) is the least fixed point of f containing M ,

2.
⋂
n≥1 g

n(N) is the greatest fixed point of g contained in N .

Proof
ad 1: By monotonicity we first obtain

M ⊆ f(M) ⊆ f 2(M) ⊆ . . . ⊆ fn(M) ⊆ . . .

Let P =
⋃
n≥1 f

n(M). This immediately gives M ⊆ P . Furthermore

f(P) = f(
⋃
n≥1 f

n(M))
=

⋃
n≥1 f

n+1(M) by continuity
=

⋃
n≥1 f

n(M) since f(M) ⊆ f 2(M)
= P

Assume now that Q is another fixed point of f satisfying M ⊆ Q. By Mono-
tonicity and the fixed point property f(M) ⊆ f(Q) = Q and furthermore for
every n ≥ 1 also fn(M) ⊆ Q. Thus we obtain P =

⋃
n≥1 f

n(M) ⊆ Q

ad 2: analogously.

Even monotone functions on infinite sets do have fixed points. This is the
result of the following much quoted Knaster-Tarski-Theorem:

Theorem 135 (Knaster-Tarski-Fixed-Points Theorem)
Let f : P(G)→ P(G) be a monotone function.
f has a least and a greatest fixed point.

252

Proof Let L = {S ⊆ G | f(S) ⊆ S}. Thus, e.g., G ∈ L. Let U =
⋂
L.

We want to show f(U) = U . For all S ∈ L we have by the definition of
the intersection

⋂
that U ⊆ S. By monotonicity and definition of L we

obtain f(U) ⊆ f(S) ⊆ S. Thus f(U) ⊆ U =
⋂
L and we have already

established half of our claim. By monotonicity we get from f(U) ⊆ U also
f(f(U)) ⊆ f(U) which yields f(U) ∈ L and futhermore U ⊆ f(U). We
thus have indeed U = f(U). Now assume W is another fixed point of f ,i.e.,
f(W) = W . This yields W ∈ L and U ⊆ W . Thus U is the least fixed point
of f .
Following the same line of argument one can show that

⋃{S ⊆ G | S ⊆ f(S)}
is the greatest fixed point of f .

Alternative Proof of Theorem 135 using ordinals (see Section 2.5).
We reserve the symbol λ to denote limit ordinals (Def. 20 on page 33).
We define by ordinal recursion.

L0 = ∅
Lα+1 = f(Lα)
Lλ =

⋃
α<λ Lα

We prove as a first step

∀β(Lβ ⊆ Lβ+1) (5.2)

If β = 0 we easily get L0 = ∅ ⊆ L1.
If β is itself a successor ordinal β = β0 + 1. The induction hypothesis is
Lβ0 ⊆ Lβ0+1 and monotonicity yield Lβ = f(Lβ0) ⊆ f(Lβ0+1) = Lβ+1.
It remains the case the β is a limit ordinal. From Lγ ⊆

⋃
γ<β Lγ = Lβ

we obtain by monotonicity Lγ+1 = f(Lγ) ⊆ f(Lβ) = Lβ+1 and thus Lβ =⋃
γ<β Lγ ⊆

⋃
γ<β Lγ+1 ⊆ Lβ+1 .

We are ready now to show

∀α∀β(α ≤ β → Lα ⊆ Lβ) (5.3)

The proof is by transfinite induction on β. For β = 0 we only have to consider
the absolutely trivial case α = β.

If β = β0 +1 and α ≤ β then we either have the trivial case α = β or α ≤ β0.
Then Lα ⊆ Lβ0 by induction hypothesis and Lβ0 ⊆ Lβ0+1 = Lβ by (5.2).

253

If β is a limit ordinal and α < β we get directly form the definition Lα ⊆⋃
γ<β Lγ = Lβ.

If ∀α(α < β → Lα ⊂ Lα+1) then Lβ % β. (5.4)

For the definition of a % b (b is a smaller set than a) see Definition 24 on
page 41. We define an injective function g : β → Lβ by g(α) is an arbitrary
element in Lα+1 \ Lα. Since β = {α | α < β} this suffices. Since Lβ ⊆ G
(5.4) implies If ∀α(α < β → Lα ⊂ Lα+1) then G % β. But, there are ordinal
β with β � G. Thus there must be some α with Lα = Lα+1. Now, Lα is a
fixed point f(Lα) = Lα+1 = Lα.

Example 37 Let r be a binary relation on a set D. We may view r as a
subset of the cartesian products D2 = D ×D, i.e., r ⊆ S2.
The transitive, symmetric closure is usually defined as the smallest relation
rtc such that rtc(d, d) for all d ∈ D and whenever rtc(a, b) and r(b, c) then
also rtc(a, c).
To relate this definition to fixed point theory we define the operator TCr on
subsets of D2 by

TCr(X) = {(d, d) | d ∈ D} ∪
{(a, c) | there exists b ∈ D with (a, b) ∈ X and r(b, c)}

It can be easily seen that rtc is the least fixed point of r.

Example 38 Consider a deterministic finite automaton A = (S, s0, F,Σ, δ)
with finite set of states S, initial state s0 ∈ S, set of final states F ⊆ S,
alphabet Σ and transition function δ : S × Σ → S. As usual we extend the
transition function to δ : S × Σ∗ → S by

δ(s, ε) = s
δ(s, aw) = δ(δ(s, a), w)

with w ∈ Σ∗, a ∈ Σ

The following binary relation ≡min on S is of particular interest:

s1 ≡min s2 ⇔ for all w ∈ Σ∗

δ(s1, w) ∈ F iff δ(s2, w) ∈ F

254

The quotient automaton A/ ≡min is the minimal automaton equivalent to A.
But, how can we compute ≡min? Its definition involves the infinite set Σ∗.
This where fixed points come in.

Consider the following function F : P(S × S)→ P(S × S)

H(R) = {(s1, s2) | s1 ∈ F ⇔ s2 ∈ F and
for all a ∈ Σ((δ(s1, a), δ(s2, a)) ∈ R)}

Obviously, H is monotone, i.e. R1 ⊆ R2 implies H(R1) ⊆ H(R2).

By Lemma 133 there is a greatest fixed point ≡0 for H, i.e., H(≡0) = ≡0.

We set out to show ≡min = ≡0.
First ≡min ⊆ ≡0 is proved by showing that ≡min is a fixed point for H and
using the fact that ≡0 is the greatest fixed point of H.

s1 ≡min s2 ⇔ for all w ∈ Σ∗(δ(s1, w) ∈ F iff δ(s2, w) ∈ F)
(this is the definition of ≡min)

⇔ s1 ∈ F iff s2 ∈ F and
for all a ∈ Σ for all w ∈ Σ∗(δ(s1, aw) ∈ F iff δ(s2, aw) ∈ F)
(separate the case w = ε from w 6= ε)

⇔ s1 ∈ F iff s2 ∈ F and for all a ∈ Σ(δ(s1, a) ≡min δ(s2, a))
(this makes use of δ(si, aw) = δ(δ(si, a), w))

⇔ s1 ≡H(≡min) s2

Second ≡0 ⊆ ≡min is proved. Since ≡0 is a fixed point of H we have

for all s1, s2 ∈ S (s1 ≡0 s2)
implies
(s1 ∈ F iff s2 ∈ F) and for all a ∈ Σ(δ(s1, a) ≡0 δ(s2, a))

(5.5)

We will proceed by induction on n to show

for all n ∈ N
for all s1, s2 ∈ S (s1 ≡0 s2)
implies
for all w ∈ Σ∗ with len(w) = n (δ(s1, w) ∈ F ⇔ δ(s2, w) ∈ F)

(5.6)

In the initial case n = 0, we have to consider words w with len(w) = 0. Only
the empty word w = ε satisfies this constraint and the claim follows directly
from 5.5, since δ(si, ε) = si. For the induction step assume that 5.6 is true

255

for n and aim to show that it for n + 1. So we fix s1, s2 ∈ S with s1 ≡0 s2.
Any word w′ with len(w′) = n+1 can be written as w′ = aw with len(w) = n.
From 5.5 we obtain δ(s1, a) ≡0 δ(s2, a). Using the induction hypothesis for
δ(s1, a), δ(s2, a) in place of s1, s2 we obtain

δ(δ(s1, a), w) ∈ F ⇔ δ(δ(s2, a), w) ∈ F

which yields
δ(s1, w

′) ∈ F ⇔ δ(s2, w
′) ∈ F

as desired. All together we have shown ≡min = ≡0 and we may use the
algorithm used in the proof of Lemma 133 to compute the fixed point ≡0 to
compute ≡min.

Example 39 This example is a variation of Example 38 and is also taken
from the theory of regular languages. Let Σ be a finite alphabet and L an ar-
bitrary language, i.e., a set of words L ⊆ Σ∗. The following relation between
words

w1 ≡L w2 ⇔ for all u ∈ Σ∗ (w1u ∈ L iff w2u ∈ L)

plays an important role, since L is regular exactly when ≡L has finite index.

We propose to consider the function GL : P(Σ∗ ×Σ∗)→ P(Σ∗ ×Σ∗) defined
by

GL(R) = {(w1, w2) | (w1 ∈ L iff w2 ∈ L) and
for all a ∈ Σ ((w1a, w2a) ∈ R)}

It can be easily seen that GL(R) is monotone, i.e., R1 ⊆ R2 implies GL(R1) ⊆
GL(R2). By theorem 135 there exists a greatest fixed point EL of GL.

The following variation of the argument from Example shows that ≡L equals
the EL.

w1 ≡L w2 ⇔ for all u ∈ Σ∗ (w1u ∈ L iff w2u ∈ L)
(this is the definition)

⇔ (w1 ∈ L iff w2 ∈ L) and
for all a ∈ Σ and all u ∈ Σ∗ (w1au ∈ L iff w1au ∈ L)
(distinguishing the cases u = ε and u 6= ε)

⇔ (w1 ∈ L iff w2 ∈ L) and for all a ∈ Σ(w1a ≡L w2a)
definition of ≡L again

⇔ (w1, w2) ∈ GL(≡L)
(definition of GL)

256

Thus GL(≡L) = ≡L and therefore ≡L ⊆ EL.

It remains to show EL ⊆ ≡L. To this end we will prove by induction on
n ∈ N

for all n ∈ N for all w1, w2 ∈ Σ∗((w1, w2) ∈ EL
=⇒
for all u ∈ Σ∗ with len(u) = n (w1u ∈ L iff w2u ∈ L))

The case n = 0 we have to derive w1 ∈ L iff w1 ∈ L from (w1, w2) ∈ EL.
By the fixed point property of EL we also have (w1, w2) ∈ GL(EL). Now the
claim follows directly from the definition of GL.

So let us assume that the claim is true for n. To prove that the claim is also
true for n+1 we fix w1, w2 with (w1, w2) ∈ EL and u ∈ Σ∗ with len(u) = n+1.
We need to arrive at (w1u ∈ L iff w2u ∈ L). We may write u = au′ for
appropriate a ∈ Σ and u′ ∈ Σ∗. Since GL(EL) = EL we get from (w1, w2) ∈
EL also (w1a, w2a) ∈ EL. Induction hypothesis applied for wia in place of wi
yields (w1a)u′ ∈ L iff (w2a)u′ ∈ L. Associativity of word composition yields
w1(au′) ∈ L iff w2(au′) ∈ L as desired.

In total we now have indeed shown ≡L = EL.

to be completed

The CTL Model Checking Algorithm

The task to be solved by a model checking algorithm takes as input a tran-
sition system T = (S,R, v) and a CTL formula F . The output is the set
τ(F) ⊆ S of states satisfying F : τ(F) = {s ∈ S | s |= F}. For Boolean
connectives this is easy. E.g., τ(F1 ∧ F2) = τ(F1) ∩ τ(F2) and it is not so
hard to find an algorithm that computes the intersection of two finite sets.
More difficult are the cases where F starts with a top-level temporal oper-
ator. This problem will be solved by defining for every CTL formula F a
set-valued function fF : P(S)→ P(S) such that

τ(F) = {s ∈ S | s |= F} = the least fixed point of fF
or
the greatest fixed point of fF

The choice whether the least or greatest fixed point is to be used depends
on the top-level operator of F . We have already used in the previous text

257

without much ado the symbol τ(F). This notation will frequently recur in
the following. So, we turn it into an official definition and give it a name.

Definition 149 (Characteristic Region)
Let T = (S,R, v) be a transition system and F an CTL formula. The set

τ(F) = {s ∈ S | s |= F}

is called the characteristic region of F in T .

Already at this early stage of explanation of the algorithm its bottleneck is
apparent. The algorithm needs to work on the set of all states. It does not
start with looking at one state and explore others as needed. If the state space
exceeds available memory model checking is out of luck. Unfortunately, this
situation arises frequently and has been dubbed the state explosion problem.
A lot of research went into methods to alleviate the state explosion problem.

We return to the explanation of the model checking algorithm. The set-
valued function fF will, of course, be computed inductively following the
structure of the formula F . If F1, F2 are the immediate subformulas of F
then fF will depend on τ(F1) and τ(F2) and in addition on the two functions
fAX and fEX that depend on the transition relation R.

Definition 150 (Next Step Functions)
Let T = (S,R, v) be a given transition system.

The universal and existential next step functions fAX , fEX : P(S) → P(S)
are defined by

fAX(Z) = {s ∈ G | for all t with sRt we get t ∈ Z}
fEX(Z) = {s ∈ G | there exists a t with sRt and t ∈ Z}

Thus fAX(Z) is the set of all states with all next states in Z, while fEX(Z)
is the set of all states with one next state in Z.

We are now ready to present the model checking algorithm.

Definition 151 (CTL Model Checking Algorithm)
Let T = (S,R, v) be a transition system and F an CTL formula. The

characteristic region τ(F) is computed by the following high-level recursive

258

algorithm:

1 τ(p) = {s ∈ S | v(s, p) = true}
2 τ(F1 ∧ F2) = τ(F1) ∩ τ(F2)
3 τ(F1 ∨ F2) = τ(F1) ∪ τ(F2)
4 τ(¬F1) = S \ τ(F1)
5 τ(A(F1 U F2)) = lfp[τ(F2) ∪ (τ(F1) ∩ fAX(Z))]
6 τ(E(F1 U F2)) = lfp[τ(F2) ∪ (τ(F1) ∩ fEX(Z))]
7 τ(AFF1) = lfp[τ(F1) ∪ fAX(Z)]
8 τ(EFF1) = lfp[τ(F1) ∪ fEX(Z)]
9 τ(EGF1) = gfp[τ(F1) ∩ fEX(Z)]

10 τ(AGF1) = gfp[τ(F1) ∩ fAX(Z)]

Theorem 136 (Correctness of CTL Model Checking)
The algorithm from Definition 151 is correct.

Proof Let us start from the bottom of the definition.

Case 10 AG F1 From the definition of the characteristic region of AG F1

we easily obtain:

τ(AG F1) = {s ∈ S | s ∈ τ(F1) and h ∈ τ(AG F1) for all h with sRh}

Using the notion from Definition 151 this can be written as

τ(AG F1) = τ(F1) ∩ fAX(τ(AG F1))

So, τ(AG F1) is a fixed point of the function τ(F1)∩fAX(Z). It remains to see
that it is the greatest fixed point. Let H be another fixed point, i.e., a subset
of S satisfying H = τ(F1) ∩ fAX(H). We want to show H ⊆ τ(AG F1)).

To this end we consider some g0 ∈ H with the aim of showing that for all
n ≥ 0 and all gi satisfying gi−1Rgi for all 1 ≤ i ≤ n we obtain gn ∈ τ(F1).
By definition that is to say g0 ∈ τ(AGF1). We first observe

H ⊆ τ(F1) which follows readily from H = τ(F1) ∩ fAX(H) ⊆ τ(F1).

Thus it suffices to show for all n ≥ 0 that gn ∈ H. For n = 0 that is
true by assumptions. For the induction step we assume gn−1 ∈ H. From

259

the fixed point property of H we infer gn−1 ∈ H ⊆ fAX(H) = {g |
for all h with gRh we have h ∈ H}. Thus gn ∈ H.

Case 6 E(F1 U F2) From the definition of the characteristic region of
AG F1 we easily obtain:

τ(E(F1 U F2)) = {s ∈ S | s |= F2 or s |= F1 and
there exists h with sRh and h ∈ τ(E(F1 U F2))}

Using the notion from Definition 151 this can be written as

τ(E(F1 U F2)) = τ(F2) ∪ (τ(F1) ∩ fEX(τ(E(F1 U F2)))

That is to say τ(E(F1 U F2)) is a fixed point of the function τ(F2)∪ (τ(F1)∩
fEX(Z)) where Z is the parameter of the functions.

It remains to show that it is the least one. Consider thus another subset
H ⊆ S with H = τ(F2) ∪ (τ(F1) ∩ fEX(H)). We need to convince ourselves
that τ(E(F1 U F2)) ⊆ H is true. To this end let g0 ∈ τ(E(F1 U F2) and try
to arrive at g0 ∈ H. By the semantics of E(F1 U F2) there is an n ∈ N and
there are gi for 1 ≤ i ≤ n satisfying

1. giRgi+1 for all 0 ≤ i < n.

2. gn ∈ τ(F2).

3. gi ∈ τ(F1) for all 0 ≤ i < n.

We set out to prove gn ∈ H by induction on n.

n = 0 By the fixed point property of H

H = τ(F2) ∪ (τ(F1) ∩ fEX(H)) ⊇ τ(F2)

and we are through since g0 = gn ∈ τ(F2).

n− 1 ; n By induction hypothesis we have g1 ∈ H (since we get from g1

to gn in n − 1 steps). Since g0 ∈ τ(F1) and g0Rg1 we obtain g0 ∈ (τ(F1) ∩
fEX(H)) ⊆ H and thus also g0 ∈ H.

There are no suprises in the proofs of the remaining cases, some of which
may be found in in [Clarke et al., 1993, Clarke et al., 2001] .

260

The CTL Model Checking: An Example

We want to illustrate the working of the model checking algorithm from
Definition 151 by a small, yet non-trivial example. We will use the transition
system Tme2 from Figure 5.6, which we repeat for the readers convenience in
Figure 5.8 The example will involve the propositional atoms N1, N2, T1, T2,

n1n2

s0

t1n2s1 n1t2 s5

c1n2s2 t1t2

s3

t1t2

s8

n1c2 s6

c1t2s4 t1c2s7

Figure 5.8: Mutual Exclusion (repeated from Figure 5.6)

C1, and C2. The interpretation of these atoms in the transition system is
given by the following table.

0 1 2 3 4 5 6 7 8

N1 1 0 0 0 0 1 1 0 0
N2 1 1 1 0 0 0 0 0 0
T1 0 1 0 1 0 0 0 1 1
T2 0 0 0 1 1 1 0 0 1
C1 0 0 1 0 1 0 0 0 0
C2 0 0 0 0 0 0 1 1 0

261

We want to check whether the formula

F = T1 → AFC1 ≡ ¬T1 ∨AFC1

is true in state 1. Here and in the following we will write state i instead of
state si. The recursive algorithm will successively compute the characterisitc
region of the following formulas:

F,¬T1, T1,AFC1, and C1

We will present the computations starting with the innermost subformulas
first, i.e., in the order τ(T1), τ(C1), τ(¬T1), τ(AFC1), and τ(F). This will
make it much easier to follow the algorithm, since when a recursice call is
started, we know already its result. In the end we check 1 ∈ τ(F).

The characteristic regions of T1 and C1 can be read of from the transition
system Tme2

τ(T1) = {1, 3, 7} (5.7)

τ(C1) = {2, 4} (5.8)

From which we get easily

τ(¬T1) = {0, 2, 4, 5, 6} (5.9)

The next step is to compute τ(AFC1) which according to Definition 151
amounts to the computation of the least fixed point of the set function
f(Z) = τ(C1) ∪ fAX(Z) = fAX(Z) ∪ {2, 4}. Following Lemma 133 we com-
pute successively f(∅), f 2(∅), . . . fn(∅) till we reach a stationary value, i.e.
fn(∅) = fn+1(∅).

f 1(∅) = {2, 4}
f 2(∅) = {2, 3, 4}
f 3(∅) = {1, 2, 3, 4}
f 4(∅) = {1, 2, 3, 4, 7}
f 5(∅) = {1, 2, 3, 4, 7, 8}
f 6(∅) = {1, 2, 3, 4, 7, 8}

Thus

τ(AFC1) = {1, 2, 3, 4, 7, 8} (5.10)

262

and finally

τ(F) = τ(¬T1) ∪ τ(AFC1) = {0, 1, 2, 3, 4, 5, 6, 7, 8} = S (5.11)

Since 1 ∈ τ(F) we conclude

s1 |= F (5.12)

263

5.6 Exercises

Exercise 5.6.1
Let ΣV be the vocabulary defined in Definition 125.

In Lemma 113 it was shown that the order relation < on N can be defined
in the theory FOW of second order monadic logic. The question arises what
else can be defined in this theory. Is it possible to define addition? More
precisely, is there a formula φ(x, y, z) of second order monadic logic in the
vocabulary ΣV with free first-order variables x, y, z, such that for any model
W of FOW and elements n,m, k in the universe of W

W |= φ[n,m, k]⇔ n+m = k.

Remember that the universe of W consists exactly of the elements
0W , (s(0))W , . . . (sn(0))W , . . . and that we agreed to identify (sn(0))W with
n.

Exercise 5.6.2
Show that the following LTL formulas are tautologies

1. (F1 ∧ F2) U G↔ (F1 U G) ∧ (F2 U G)

2. F U (G1 ∨G2)↔ (F U G1) ∨ (F U G2)

Exercise 5.6.3
Formalize the following properties in LTL

1. Every p is followed by a q, or more precisely:
for every time point t at which p is true there is a time point s, s ≥ t
such that q is true at s.

2. Every p is followe by a q but at least 3 time points later, or more
precisely:
or every time point t at which p is true there is a time point s, s−t ≥ 3
such that q is true at s.

Exercise 5.6.4
Consider the following property:

264

p occurs infinitely often. Every p is followed by a q. At the first occurence of
p also q is immediately true. For every following occurence of p the time till
q occurs is at least on time step longer than on the previous occurence of p.
Try to formalize this property in LTL or show that this is not possible.

Exercise 5.6.5
Formalize the five properties from Example 36 on page 243 by CTL formulas

assuming that there are n participants in the protocol instead of two.

Exercise 5.6.6
Show that the subset Kp,q ⊆ V ω

p,q defined by

Kp,q = {w ∈ V ω
p,q | for all 1 ≤ i ≤ p there is exactly one k such that the

i-th position in the letter w(k) equals 1}

is an omega-regular language.

Exercise 5.6.7
Prove Lemma 117, that every homomorphic image of an omega-regular set

is again omega-regular.

Exercise 5.6.8 Compute the formulas L1, L2 and M3 for the example au-
tomaton is in Lemma 124 for the formula F ≡ GF¬p.

Exercise 5.6.9 Prove the following generalization of Theorem 135:
Let f : P(G) → P(G) be a monotone function on an arbitrary, possibly
infinite, set G. Let U0 ⊆ G such that U0 ⊆ f(U0).
Then there exists a fixed point U of f with

1. U0 ⊆ U and

2. For every fixed point W with U0 ⊆ W we have U ⊆ W

i.e., W is the least fixed point above U0.

Exercise 5.6.10 This is a follow-up on Exercise 5.6.9.
What would be the requirement for a set U0 such that there exists a greatest
fixed point below U0?

265

Exercise 5.6.11 Show that the formula AGEFp is not expressible in LTL.
Hint: Obviously Lemma 132 has to be used.

Exercise 5.6.12 Let F be a monotone operator on subset of the set D.
Define G(X) = D \ F (D \X). Show

1. G is monotone.

2. The least fixed point lfp(G) of G is D \ gfp(F).

3. The greatest fixed point gfp(G) of G is D \ lfp(F).

Exercise 5.6.13 Let B = (S, Vp,q, s0, δ, F) be a Büchi automaton with edge
vocabulary Vp,q, see Definition 126 on page 217 such that

Lω(B) = {w ∈ Kp,q | w |= φ[x1, . . . , xp, X1, . . . , Xq]}

for some monadic second-order formula φ.

Construct a Büchi automaton Bex such that

Lω(Bex) = {w ∈ Kp,q | w |= ∃xpφ[x1, . . . , xp−1, X1, . . . , Xq]}

This is a constructive version of part of the argument in the proof of Theorem
114.

266

Chapter 6

Solutions to Exercises

267

Solutions to Chapter 1

Exercise 1.2.1 Let {ci | i ∈ N} be new constant symbols. By assumption
the set

Γ = {ci 6= cj | i, j ∈ N with i 6= j} ∪ {¬F}
is inconsistent. By the compactness theorem of first-order logic there is a
finite subset Γ0 ⊂ Γ that is also inconsistent. Let k be such that Γ0 ⊆ {ci 6=
cj | i, j ≤ k with i 6= j}∪{¬F}. As a superset of an inconsistent set this set is
also inconsistent. Furthermore, since the part {ci 6= cj | i, j ≤ k with i 6= j}
is satisfiable in any structure M with k or more elements, we must have
M |= F .

Exercise 1.2.2 Assume F is Σ1-tautology. Let M be an arbitrary Σ1-
structure. Let M1 be as in Definition 2. By construction we know M1 |=
F ⇔ M |= F2. Since F was assumed to be a tautology we have M1 |= F
and thus M |= F2, as desired
Now assume conversely that F2 is a Σ2-tautology. Let N be an arbitrary
Σ1-structure. We aim for N |= F . By Definition 2 there is a Σ2-structure
M with N ' M1. By assumption on F2 we have M |= F2 and thus by
construction M1 |= F . By isomorphy N |= F .

Exercise 1.2.3 If validity of Σ2-formulas were decidable. We could get a
procedure for deciding Σ1-formulas as follows: For a Σ1-formula F construct
F2. If F2 is a valid Σ2-formula then F is a valid Σ1-formula by Exercise 1.2.2.

Exercise 1.2.4 Let Σ2 = Σr
2 ∪ Σf

2 be a given signature containing only
binary relation symbols R ∈ Σr

2 and constant symbols c ∈ Σf
2 .

Let Σ3 = {rel(, ,)} ∪ Σf
2 ∪ {cR | R ∈ Σr

2}.
For any Σ2 formula F let the Σ3 formula F 3 be obtained by replacing every
atomic subformula R(t1, t2) in F , where ti are either constants from Σf

2 or
variables by rel(cR, t1, t2).

For a Σ3-structure M we obtain the Σ2-structure M2 by

1. the universe M of M2 is the same as the universe of M

268

2. the interpretation of the constants c ∈ Σf
2 remains unchanged

3. for all e1, e2 ∈M (e1, e2) ∈ RM2 ⇔ (cMR , e1, e2) ∈ relM

An easy induction on the complexity of F shows M2 |= F ⇔M |= F 3.

For the second part of the exercise conisder a Σ2-structure N . We assume in
addition that card(N) ≥ card(Σr

2), i.e. there are at least as many element
in N as there are (binary) relation symbols in the signature Σ2. We define
the Σ3-structure M by

1. the universe N of M is the universe of N .

2. the interpretation of the constants in Σf
2 remains unchanged.

3. the constants cR for R ∈ Σr
2 are interpreted arbitrarily subject only

to the condition that different constants are interpreted by different
elements. This is why we need the cardinality requirement on N .

4. (e1, e2, e3) ∈ relM ⇔ there is R ∈ Σr
2 with cMR = e1 and

(e2, e3) ∈ RN

If M2 is the Σ2-structure obtained from M by the construction described
above it can readily be seen that M2 = N .

It remains to discuss wether the restriction on the size of N affects the trans-
fer of undecidability. Assume that the tautology property of Σ3-formulas
could be decided. Then we could also decide which Σ3-formulas are true in
all structures with more than k elements. (Let Fk be a formula that is exactly
true in structures with more than k elements. Fk uses only the equality rela-
tion. Then F is true in all structures with more than k elements iff Fk → F
is true in all structures.) The above argument shows that we can then de-
cide which Σ2-formulas are true in all structures with more than k elements.
But then we can also decide which Σ2-formulas are true in all structures by
checking in addition all finitely many structures with less than k elements.

Exercise 1.2.5 Let Σ1 be an arbitrary (unrestricted) relational vocabu-
lary. The signature Σ2 contains

1. All constant symbols from Σ1

269

2. For every relation symbol R ∈ Σ1 of arity 6= 2 a new constant symbols
cR

3. A binary relation symbol rel

4. Binary relation symbols relni for every i, 1 ≤ i ≤ n and 1 ≤ n ≤ k,
where k is the maximal arity of a relation symbol in Σ1 or k = ∞ if
there is no bound on the arity of relation symbol in Σ1.

For a Σ1-formula F1 its translation into a Σ2-formula F2 is obtained by re-
placing every atomic subformula R(t1, . . . , tn) with n 6= 2 by

∃z(rel(cR, z) ∧
n∧
i=1

relni (z, ti))

Note, that ti is either a constant symbol or a variable and of course z is
chosen to be different from all ti.

Consider an infinite Σ2-structure M. The Σ1-structure M1 is obtained as
follows

1. The universe M of M1 is the same as that of M

2. For n 6= 2 and R an n-ary relation symbol,n 6= 2, in Σ1

RM1 = {(a1, . . . , an) ∈Mn | relM(cMR , a) ∧
n∧
i=1

relMi (a, ai) for some a}

It is fairly obvious that for any variable assignment β

(M1, β) |= R(t1, . . . , tn)⇔ (M, β) |= ∃z(rel(cR, z) ∧
n∧
i=1

reli(z, ti))

and thus
M1 |= F1 ⇔M |= F2

It remains to show that also the second part of Definition 2 is true. To this
end consider a Σ1-structure N . To construct the required Σ2-structure M
we need some auxiliary functions. Since N , the universe of N , is infinite
there are for every n injective functions fn : Nn → N . Now M is given by

270

1. The universe of M is N

2. The interpretations cMR are chosen arbitrarily subject only to the con-
dition that for different relation symbols R and S the interpretations
are different, i.e., cMR 6= cMS .

3. (a, b) ∈ relM if there is R ∈ Σ1 such that cMR = a and there is an
n-tuple (b1, . . . , bn) ∈ Nn, n = the arity of R, with fn(b1, . . . , bn) = b
and (b1, . . . , bn) ∈ RN .

4. (b, c) ∈ (relni)M if there is an n-tuple (b1, . . . , bn) ∈ Nn with
fn(b1, . . . , bn) = b and bi = c.

It is not hard to see that

{(b1, . . . , bn) ∈Mn | relM(cMR , a) ∧
n∧
i=1

relMi (b, bi) for some b}

coincides with RN and thus N 'M1.

Solutions to Chapter 2

Exercise 2.11.1 This is a simple reformulation of the Foundation Axiom
making use of the appreviations ∅ and ∩.

Exercise 2.11.2 (1) The initial case m = 0 is trivial, since n ∈ 0 is never
true. Assume n ∈ m→ n+ ∈ m ∨ n+ = m
Show n ∈ m+ → n+ ∈ m+ ∨ n+ = m+

There are two cases for n ∈ m+ ot be true.
case 1 n = m.
This yields immediately n+ = m+ and we are finished.
case 2 n ∈ m.
By induction hypothesis we have n+ ∈ m or n+ = m. Both cases immediately
entail n+ ∈ m+ = m ∪ {m}.
(2) The base case, n = 0, follows from Lemma 7.

Assume (n ∈ m ∨ n = mm ∈ n)
Show n+ ∈ m ∨ n+ = m ∨m ∈ n+)
case 1 n ∈ m.

271

By part 1 of this exercise we get n+ ∈ m or n+ = m. As needed. case 2
n = m ∨m ∈ n)
Immediately implies m ∈ n+ = n ∪ {n}.

Exercise 2.11.3
Let a = {s1, . . . , sk} with k > 0. By assumption

⋃
a = a. We fix an

arbitrary element si0 ∈ a. By definition of union there must be an index i1
such that si0 ∈ si1 . Again there must be an index i2 such that si1 ∈ si2 .
Iterating this argument we obtain in total k+ 1 indices i0, i1, . . . ik such that
si0 ∈ si1 ∈ si2 ∈ . . . ∈ sik . Since there are only k elements there must be
0 ≤ u < v ≤ k with siu = siv . But now, siu ∈ si+11 ∈ . . . ∈ siv = siu
contradicts the axiom of foundation.

Exercise 2.11.4
(1) It can be easily checked that the set {0, 1, 2, {1}, {2}} is transitive, but
its elements {1} and {2} are neither equal nor is one an element of the other.
(2) Assume that n is a transitive set satisfying ∀x∀y(x ∈ a ∧ y ∈ a → (x ∈
y ∨ y ∈ x ∨ x = y).
The same proof as for Lemma 8(1) shows that n+ is also transitive. It
remains to show the additional property for n+. For this we fix elements
x, y ∈ n+ = n ∪ {n}. If x, y ∈ n then we get from the induction hypothesis
(x ∈ y∨y ∈ x∨x = y), as desired. If x = y = n we are immediately finished.
So, it remains to investigate the case x ∈ n ∧ y = n (and the symmetric one
y ∈ n∧x = n). The first case immediatly yields x ∈ y and the second y ∈ x.

Exercise 2.11.5

1 This is the classical Russell paradox.
Assume that there is a set c with c = {x | x 6∈ x}. Then the formula
c ∈ {x | x 6∈ x} is be the rules for eliminating class terms logically equivalent
to c 6∈ c. Thus c ∈ c↔ c 6∈ c, an outright contradiction.

272

2 Since {x | x = x} is the class term denoting all sets, this exercise asks to
show that the collection of all sets is not a set.
Assume, that it is, i.e., that there is a set c with c = {x | x = x}. Since c = c
is true, we obtain c ∈ c which contradicts the foundation axiom.

3 Assume for the sake of a contradiction that there is a set r satisfying r =
{x | rel(x)}. The singleton set {〈r, r〉} satisfies rel({〈r, r〉}), thus {〈r, r〉} ∈ r.
Since 〈r, r〉 = {{r}} this leads to r ∈ {r} ∈ {{r}} ∈ {{{r}}} ∈ r which again
contradicts the foundation axiom.

Exercise 2.11.6 Observe that

z1, z2 ∈ a ∪ b
{z1}, {z1, z2} ∈ P(a ∪ b)
{{z1}, {z1, z2}} ∈ P(P(a ∪ b))
〈z1, z2〉 ∈ P(P(a ∪ b))

Thus
a× b = {x ∈ P2 | ∃z1∃z2(x = 〈z1, z2〉 ∧ z1 ∈ a ∧ z2 ∈ b)}

Now it is easy to see that the previously proved existence of the union of two
sets, the powerset and subset axioms allow to deduce the existence of the
Cartesian product.

Exercise 2.11.7 Assume that Ord is a set, then by Lemma 24(4) α =⋃
Ord is also an ordinal, i.e., α ∈ Ord. Thus also α + 1 ∈ Ord. From

α ∈ (α + 1) ∈ Ord we obtain the contradiction to the foundation axiom
α ∈ ⋃Ord = α.

Exercise 2.11.8 Let α =
⋃
x.

For β ∈ x we get by definition of
⋃

that β ⊆ α. Now consider an ordinal γ
with β ≤ γ for all β ∈ x, i.e. β ⊆ γ for all β ∈ x. The definition of

⋃
yields

immediately α =
⋃
β∈x β ⊆ γ.

273

Exercise 2.11.9 Assume that there is a set a such that a× a = P(a). By
the foundation axiom A2 there is b ∈ P(a) such that b ∩ P(a) = ∅. Since
b ∈ a × a there are elements x, y ∈ a with b =< x, y >= {{x}, {x, y}}. By
choice of b we have {x} 6∈ P(a). Thus x 6∈ a contrary to the choice of x.

Exercise 2.11.10 The answer is no! Remembering the definition 〈a, b〉 =
{{a}, {a, b}} we obtain

s ∈ {q, s} ∈ 〈q, s〉 ∈ r ∈ {p, r} ∈ 〈p, r〉 ∈ s

This contradicts the foundation axioms.

Exercise 2.11.11 An immediate application of the axiom of foundation
does not yield the desired contradiction. We need an additional application
of the subset axiom. This axiom yields the existence of a set a0 with a0 =
{z ∈ a | z = a} = {a}. By the foundation axiom there should be an element
b ∈ a0 with a0 ∩ b = ∅. Since a is the only element of a0, this is a0 ∩ a = ∅.
But, this contradicts a ∈ a0 ∩ a.

Exercise 2.11.12 Assume there are sets a1, . . . an with a1 ∈ a2 ∈ . . . ∈
an−1 ∈ an ∈ a1. Let c = {a1, . . . an}. By the foundation axiom A2 there is
an element b ∈ c with

∀z(z ∈ c→ z 6∈ b)
Now, b = ai+1 for 1 ≤ i ≤ n − 1 is not possible since we have ai ∈ c and
ai ∈ ai+1. But, also b = a1 is not possible since an ∈ c and an ∈ a1.

Exercise 2.11.13 Assume that H = Ord \X 6= ∅.
We will first show that

⋂
H is again an ordinal. By Lemma 2(3) we know

that
⋂
H is a set. The rest of the argument is an easy extension of the

proof of Lemma 24(2). To prove transitivity of
⋂
H consider x ∈ H. Since

274

all elements of H are in particular transitive set we get for all α ∈ H that
α ⊆ α. Thus also α ⊆ ⋂

H. To check the second defining property of
ordinals consider α, β ∈ ⋂H. By our assumptions H is not empty, so there
is γ ∈ H and of course also α, β ∈ γ. By the ordinal property of γ we obtain
α ∈ β or β ∈ α or β = α. So we have established that

⋂
H = δ is an ordinal.

For all α ∈ δ =
⋂

(Ord \ X) we get ∀β(β 6∈ X → α ∈ β). This implies
α ∈ X, since α 6∈ X would lead to the contradiction α ∈ α. By the inductive
property of X we get δ ∈ X. From δ =

⋂
(Ord \ X) we also infer for all

β 6∈ X the relation δ ⊆ β. Since we know already δ ∈ X we must even have
∀β(β 6∈ X → δ ⊂ β). By Lemma 24(1) this implies ∀β(β 6∈ X → δ ∈ β).
This leads to the contradiction δ ∈ ⋂beta6∈X β = δ. Thus we must indeed
have Ord = X.

Exercise 2.11.14 The answer is no since

. . . Ok+1 < 0k1 < . . . 001 < 01

Exercise 2.11.15 We apply Lemma 22 with

WO(x, y) ≡ ord(x) ∧ ord(y) ∧ x ∈ y
φ(u) ≡ ∀v((u, ε) ∼= (v, ε)→ u = v)

Requirement (1) of Lemma 22 follows from the foundation axioms. To satisfy
requirement (2) we start with an arbitrary set x and need to find a superset
x ⊆ u closed under the predecessors of WO. We claim that u = x ∪⋃{w ∈
x | w is an ordinal} does the job. Assume z ∈ x and WO(v, z) then v ∈ z
and z is an ordinal and thus v ∈ z ⊆ u. If z ∈ w for an ordinal w ∈ x and
WO(v, z) then v ∈ z and v and z are ordinals. Since the ordinal w is in
particular a transitive set we get v ∈ z ⊆ wand there for z ∈ w ⊆ u. Thus
we know that Lemma 22 is applicable with the given instantiations of WO.
It remains to proof the argument for the induction step for α an arbitrary
ordinal:

If ∀β(β ∈ α→ ∀γ((β, ε) ∼= (γ, ε)→ β = γ))
then ∀γ((α, ε) ∼= (γ, ε)→ α = γ))

275

So we consider an isomorphism f : (α, ε) → (γ, ε). For every β ∈ α the
restriction f ′ of f to β ⊆ α is an isomorphism f ′ : (β, ε) → (f(β), ε). By
assumption we get β = f(β). This immediately yields α = γ.

Exercise 2.11.16 Assume, for the sake of a contradiction, that a = {x |
ord(x)} for a set a. By Lemma 24(4)

⋃
a = β is an ordinal. Thus also

β+ ∈ a. By the property of the sum operation we know y ⊆ ⋃ a for every
y ∈ a. This yields the contradiction β ∈ β+ ⊆ β.

Exercise 2.11.17 (1) Intuitively, this is obvious. The task here is to show
that s is finite by Definition 21. By assumption there are natural numbers
n1, n2 and bijections f1, f2 satisfying func(f1, n1, s1) and func(f2, n2, s2).
We define

f = f1 ∪ {〈n1 +m, y〉 | 〈m, y〉 ∈ f2}
It can be easily seen that f is a bijection and func(f, n1 +n2, s1∪s2) is true.
(2) This is the contraposition of part (1).
(3) Let g be a bijection with func(g, k, a) and fi bijections with
func(fi, ni, g(i)) for i < k. We define

f =
⋃
i<k

{〈Σj<inj +m, y〉 | 〈m, y〉 ∈ fi}

Less formal we could write:

f = {〈m, y〉 | 〈m, y〉 ∈ f0} ∪
{〈n0 +m, y〉 | 〈m, y〉 ∈ f1} ∪
{〈n0 + n1 +m, y〉 | 〈m, y〉 ∈ f2} ∪
. . . ∪
{〈Σj<k−1nj +m, y〉 | 〈m, y〉 ∈ fk−1}

It can be easily seen that f is a bijection and func(f,Σj<knj,
⋃
a) is true.

(4) This is again the contraposition of part (3).

276

Solutions to Chapter 3

Solution to Exercise 3.9.1 The statement of the lemma is rather obvi-
ous and one is easily persuaded to believe it. Let us nevertheless present a
detailed proof if only for the purpose to see what such a detailed proof would
look like.

We show by structural induction on the complexity of a formula F ∈
PModFml

for all g ∈ G2

(G1, R1, v1, g) |= F iff (G2, R2, v2, g) |= F.

In the initial case the formula F consists of a propositional variable p and we
need to prove v1(g, p) = v2(g, p). This is immediate from the definition of a
subframe.

The proof of the induction step is organized in various cases depending on
the leading logical operator of F . The propositional operators are straight
forward. We will present the case 2F . The case 3F is absolutely parallel.
To save notational overhead we use the abbreviation Ki for (Gi, Ri, vi).

Let us first assume (K1, g) |= 2F . Thus (K1, h) |= F is true for all h ∈ G1

with R1(g, h). We need to show (K2, g) |= 2F . To this end we consider
an arbitrary h ∈ G2 with R2(g, h). By the subframe property we also have
R1(g, h) and by what we just said we know (K1, h) |= F . By induction
hypothesis this implies (K2, h) |= F , as desired.

Now assume for the reverse implication (K2, g) |= 2F . Thus (K2, h) |= F is
true for all h ∈ G2 with R2(g, h). We aim to show (K1, g) |= 2F . Thus we
consider an arbitrary element h ∈ G1 satisfying R1(g, h) and need to show
(K1, h) |= F . Since G2 is a closed subframe of G1 we get h ∈ G2 and also
R2(g, h). By the assumption for this part of the proof we obtain (K2, h) |= F .
The induction hypothesis now yields (K2, h) |= F .

Solution to Exercise 3.9.2

1. We need to exhibit a Kripke structure K and a world g1 in K such that
g1 |= (2P → 2Q) and g1 6|= 2(P → Q). See Figure 6.1.

277

g1

g2

g3

p,¬q

¬p,¬q

Figure 6.1: Counterexample to (2P → 2Q)→ 2(P → Q)

g1

g2

g3

p,¬q

¬p,q

Figure 6.2: Counterexample to 2(P ∨Q)→ (2P ∨2Q)

2. We need to exhibit a Kripke structure K and a world g1 in K such that
g1 |= 2(P ∨Q) and g1 6|= (2P ∨2Q). See Figure 6.2.

Solution to Exercise 3.9.3

1. 32p↔ 2p
Let K = (G,R, v) be a Kripke structure with R an equivalence relation
and assume that for an arbitrary g ∈ G we have g |= 32p. Thus there
is h1 with R(g, h1) such that for all h with R(h1, h) we know h |= p. The
description that there is some h1 such that R(g, h1) and R(h1, h) says
nothing more than that g and h belong to the same equivalence class
of R. More formaly ∃h1(R(g, h1) ∧ R(h1, h)) ↔ R(g, h). In particular
this shows g |= 2p.

2. 23p↔ 3p

278

Follows from 1 by the usual trick of replacing p by ¬p and some obvious
equivalence transformations.

Solution to Exercise 3.9.4

Proof of 2 Let K = (G,R, v) be a Kripke structure with (G,R) a symmetric
frame and g ∈ G. We want to show (K, g) |= p→ 23p. So assume (K, g) |= p
and try to prove (K, g) |= 23p. For any g1 satisfying R(g, g1) we need to
find g2 with R(g1, g2) and (K, g2) |= p. Symmetry allows us to use g2 = g.

For the proof of the second part of the characterization property consider a
frame (G,R) that is not symmetric. There are thus g1, g2 with R(g1, g2) and
¬R(g2, g1). We define a valutation function v as follows:

v(h, p) =

{
0 if R(g2, h).
1 otherwise

This definition was specifically taylored to yield ((G,R, v), g1) |= p and
((G,R, v), g2) |= ¬3p. The last formula also yields ((G,R, v), g1) |= ¬23p.
Altogether we arrive at ((G,R, v), g1) |= ¬(p→ 23p).

Proof of 3 Let K = (G,R, v) be a Kripke structure with (G,R) a serial frame
and g ∈ G. We want to show (K, g) |= 2p → 3p. So assume (K, g) |= 2p
and try to prove (K, g) |= 3p. Since R is serial there is a world g1 satisfying
R(g, g1). By the assumption (K, g) |= 2p we obtain (K, g1) |= p and thus
(K, g) |= 3p.

For the proof of the second part of the characterization property consider a
frame (G,R) that is not serial. There is thus g0 ∈ G such that no g1 exists
satisfying R(g0, g1). We define a valutation function v with v(h, p) = 0 for
all h ∈ G. This yields first of all ((G,R, v), g0) |= ¬3p. By the semantics of
the Box operator we also have ((G,R, v), g0) |= 2p. Thus ((G,R, v), g0) 6|=
2p→ 3p, as desired.

Proof of 5 Let K = (G,R, v) be a Kripke structure with (G,R) a Euclidian
frame and g ∈ G. We want to show (K, g) |= 3p → 23p. So assume
(K, g) |= 3p and try to prove (K, g) |= 23p. By assumption there exists
g1 ∈ G with R(g, g1) and (K, g1) |= p. For any g2 with R(g, g2) we need to
find g3 with R(g2, g3) and (K, g3) |= p. By the Euclidean property we have
R(g2, g1), and thus g3 = g1 does the job.

For the proof of the second part of the characterization property consider
a frame (G,R) that is not Euclidean. There are g1, g2, g3 with R(g1, g2),

279

R(g1, g3) and ¬R(g2, g3). We define a valutation function v as follows:

v(h, p) =

{
0 if R(g2, h).
1 otherwise

Immediate consequences of this definition are ((G,R, v), g3) |= p and
((G,R, v), g2) |= ¬3p. Because of R(g1, g3) we also get ((G,R, v), g1) |= 3p.
Because of R(g1, g2) we also get ((G,R, v), g1) |= ¬23p. Together this shows
((G,R, v), g1) 6|= 3p→ 23p.

Proof of 6 Let K = (G,R, v) be a Kripke structure with (G,R) a weakly
functional frame and g ∈ G. We want to show (K, g) |= 3p→ 2p. So assume
(K, g) |= 3p and try to prove (K, g) |= 2p. By assumption there is g1 ∈ G
with R(g, g1) and (K, g1) |= p. Consider an arbitrary g2 ∈ G with R(g, g2)
we need to prove (K, g2) |= p. Since weak functionality requires g1 = g2 this
is obvious.

For the proof of the second part of the characterization property consider a
frame (G,R) that is not weakly functional. There are thus g, g1, g2 satisfying
R(g, g1), R(g, g2) and g1 6= g2. We define a valutation function v as follows:

v(h, p) =

{
1 if h = g1

0 otherwise

Obviously, thus entails ((G,R, v), g1) |= p and ((G,R, v), g2) |= ¬p
and further ((G,R, v), g) |= 3p and ((G,R, v), g) |= ¬2p. Altogether
((G,R, v), g) 6|= 3p→ 2p and we are done.

Proof of 7 Follows immediately from parts 3 and 6.

Proof of 8 Let K = (G,R, v) be a Kripke structure with (G,R) a dense
frame and g ∈ G. We want to show (K, g) |= 22p → 2p. So assume
(K, g) |= 22p and try to prove (K, g) |= 2p. We thus consider g2 ∈ G sat-
isfying R(g, g2) and aim to show (K, g2) |= p. Since R is dense we are sure
to find g1 with R(g, g1) and R(g1, g2). But, now we can use (K, g) |= 22p to
conclude (K, g2) |= p.

For the proof of the second part of the characterization property consider a
frame (G,R) that is not dense. This means that there exist g0, g1 in G, such
that there is no g ∈ G between them i.e., there is no g ∈ G with R(g0, g) and
R(g, g1). We define a valutation function v as follows:

v(h, p) =

{
1 if g ∈ G exists with R(g0, g) and R(g, h).
0 sonst

280

Obviously ((G,R, v), g0) |= 22p and ((G,R, v), g1) |= ¬p. Thus also
((G,R, v), g0) |= ¬2p . This shows that ((G,R, v), g0) |= 22p → 2p is
not true and we are done.

Proof of 9 Let K = (G,R, v) be a Kripke structure with (G,R) a weakly
connective frame and g ∈ G. We want to show (K, g) |= 2((p ∧ 2p) →
q) ∨ 2((q ∧ 2q) → p). We assume that the first part of the disjunction
is not true, i.e., that there is g1 ∈ G with R(g, g1), (K, g1) |= p ∧ 2p and
(K, g1) |= ¬q., and we will show that the second disjunct has to be true. To
this end consider an arbitrary g2 with R(g, g2) and (K, g2) |= (q∧2q) and try
to show (K, g2) |= p. By weak connectivity there are three possibilities: (a)
g1 = g2 (b) R(g2, g1) and (c) R(g1, g2). Alternative (a) yields a contradiction
since we have (K, g2) |= q and (K, g1) |= ¬q. Also alternative (b) is contra-
dictory since we have (K, g2) |= 2q and (K, g1) |= ¬q. Thus alternative (c)
has to be the case. But now (K, g1) |= 2p yields (K, g2) |= p as desired.

For the proof of the second part of the characterization property consider a
frame (G,R) that is not weakly connective. Thus there are s, s1, t1 ∈ G with
R(s, s1) and R(s, t1) but

¬R(s1, t1) and ¬R(t1, s1) and t1 6= s1

We define a interpretation v by:

v(h, p) =

{
1 if h = s1 or R(s1, h)
0 otherwise

v(h, q) =

{
1 if h = t1 or R(t1, h)
0 otherwise

This stipulation yields in particular v(t1, p) = 0 and v(s1, q) = 0. It is
furthermore easy to see that s1 |= p∧2p holds true. Combined these obser-
vations yield s1 6|= (p ∧ 2p) → q and also s 6|= 2(p ∧ 2p) → q. Analogously
s 6|= 2(q ∧2q)→ p can be seen to be true. Altogether we arrive at

((G,R, v), s) 6|= 2((p ∧2p)→ q) ∨2((q ∧2q)→ p)

and are done.

Proof of 10 Let K = (G,R, v) be a Kripke structure with (G,R) a weakly
oriented frame and g ∈ G. We want to show (K, g) |= 32p → 23p. So
assume (K, g) |= 32p and try to prove (K, g) |= 23p. There is thus g1

281

with R(g, g1) and (K, g1) |= 2p. To meet our proof obligation we consider an
arbitrary g2 with R(g, g2) and need to find g3 with R(g2, g3) and (K, g3) |= p.
Since R is weakly oriented we find h ∈ G with R(g1, h) and R(g2, h). From
(K, g1) |= 2p we get (K, h) |= p. This shows that we can use g3 = h.

For the proof of the second part of the characterization property consider a
frame (G,R) that is not weakly oriented. Thus we find g, g1, g2 in G with
R(g, g1) andR(g, g2) such that there is no h satisfying simultaneouslyR(g1, h)
and R(g2, h). We define a interpretation v by:

v(h, p) =

{
1 if R(g1, h)
0 otherwise

This definition gives immediately ((G,R, v), g1) |= 2p and ((G,R, v), g) |=
32p. The definition was furthermore taylored to yield ((G,R, v), g2) |= ¬3p.
Thus entails ((G,R, v), g) |= ¬23p. In summa ((G,R, v), g) 6|= 32p →
23p.

Proof of 11 Let K = (G,R, v) be a Kripke structure with (G,R) a confluent
frame and g ∈ G. We want to show (K, g) |= 32p → 3p. So assume
(K, g) |= 32p and try to prove (K, g) |= 3p. By this assumption there
exists g1 with R(g, g1) and (K, g1) |= 2p. We want to find g2 with R(g, g2)
and (K, g2) |= p. By the confluence property there is h with R(g, h) and
R(g1, h). Thus (K, g1) |= 2p implies (K, h) |= p which shows that g2 = h is
possible.

For the proof of the second part of the characterization property consider a
frame (G,R) that is not confluent. There are thus elements g1, g2 in G with
R(g1, g2) and there is no h satisfying both R(g1, h) and R(g2, h). We define
a interpretation v by:

v(h, p) =

{
1 if R(g2, h)
0 otherwise

The definition immediately implies ((G,R, v), g2) |= 2p and thus also
((G,R, v), g1) |= 32p. On the other hand ((G,R, v), g1) |= 3p cannot be
true, since this would entail the existence of a world h with R(g1, h) and
((G,R, v), h) |= p. By definition of v the last claim would imply R(g2, h)
which is excluded by our assumptions. Thus we arrive at ((G,R, v), g1) 6|=
32p→ 3p.

Solution to Exercise 3.9.5

282

1. By definition C(0, 1, 2, 0) stands for

∀w1∀w2∀w3((w1 = w2 ∧R2(w1, w3))→ ∃w4(R(w2, w4) ∧ w3 = w4))

We may replace w2 everywhere by w1 and w4 everywhere by w3 to
obtain the following logically equivalent formula

∀w1∀w3(R2(w1, w3)→ R(w1, w3)),

If we expand R2(w1, w3) to its definition we are looking at the familiar
definition for transitivity of R.

2. Unravelling the definition for C(0, 1, 0, 0) we get

∀w1∀w2∀w3((w1 = w2 ∧ w1 = w3)→ ∃w4(R(w2, w4) ∧ w3 = w4))

Replacing both w2 and w3 everywhere by w1 we arrive after some trivial
transformations at

∀w1∃w4(R(w1, w4) ∧ w1 = w4)

We can omit existential quantification by replacing w4 by w1 and obtain
after omitting the trivially true conjunct w1 = w1

∀w1R(w1, w1)

3. Replacing C(1, 1, 0, 0) by its definition we obtain

∀w1∀w2∀w3((R(w1, w2) ∧ w1 = w3)→ ∃w4(R(w2, w4) ∧ w3 = w4))

Replacing both w3 and w4 by w1 which is an operation preserving logical
equivalence we get after some trivial transformations

∀w1∀w2(R(w1, w2)→ R(w2, w1))

4. Unfolding the definition of C(1, 0, 1, 0) yields

∀w1∀w2∀w3(R(w1, w2) ∧R(w1, w3))→ ∃w4(w2 = w4 ∧ w3 = w4))

Here it suffices to replace w4 by w3 ain the desired result

∀w1∀w2∀w3(R(w1, w2) ∧R(w1, w3)→ w2 = w3)

See also [Sterling, 1992, page 493].

283

Solution to Exercise 3.9.6 Both equivalences are proved by induction
on n. We will only present the proof of the first statement, the second proof
proceeds analogously.

For n = 0 the claim is reduced to

(K, g) |= F iff for all h ∈ G with R0(g, h) we have (K, h) |= F.

Since R0(g, h) = g
.
= h this is further equivalent to

(K, g) |= F iff (K, g) |= F.

Proof of the induction step from n to n+ 1:

(K, g) |= 2n+1F iff (K, h1) |= 2nF for all h1 with R(g, h1) Def. of 2n+1

iff (K, h) |= F for all h, h1 with
R(g, h1) and Rn(h1, h) Ind.Hyp.

iff (K, h) |= F for all h with Rn+1(g, h) Def. of Rn+1

Solution to Exercise 3.9.7 Assume by way of contradiction that there
is a formula F ∈ PModFml characterizing the class {(G,R) | (G,R) |=
∃x∃yR(x, y)}. We consider two frames (G1, R1) and (G2, R2) with G1 =
{g1, g2, g3} and G2 = {g1}. Furthermore R1(x, y) ⇔ x = g2 and y = g3 and
finally R2 the empty relation. By our assumptions on F there is a valuation
v2 with ((G2, R2, v2), g1) |= ¬F and ((G1, R1, v), gi) |= F for all v and all
i ∈ {1, 2, 3}. We choose some v1 such that v2 is the restriction of v1 to G2.
Obviously (G2, R2) is a closed subframe of (G1, R1). Thus by the result from
Exercise 3.9.1 ((G1, R1, v1), g1) |= F implies ((G2, R2, v2), g1) |= F .
This contradiction completes the proof.

Solution to Exercise 3.9.8 Let K = (G,R, v) be the disjoint sum of the
Kripke structures K1 = (G1, R1, v1) and K2 = (G2, R2, v2). For simplicity we
assume that G1 ∩G2 = ∅.
We set out ot show K |= F iff K1 |= F and K2 |= F

To this end we show by induction on the complexity of F and every world
g ∈ G

(K, g) |= F iff (K1, g) |= F or (K2, g) |= F

Since G = G1]G2 it suffices to prove

284

1. for every g ∈ G1: (K, g) |= F iff (K1, g) |= F

2. for every g ∈ G2: (K, g) |= F iff (K2, g) |= F

In the base case of the induction F is a propositional variable and the claims
follow immediately from the definition of v.

We will present the induction step for the case F = 2F0. The remaining
cases are either simple of analogous.

We observe that the definition of R yields for all g ∈ Gi and h ∈ G
R(g, h) ⇔ h ∈ Gi ∧ Ri(g, h). This observation an the induction hypothesis
immediately lead to

1. for every g ∈ G1: (K, g) |= 2F0 iff (K1, g) |= 2F0

2. for every g ∈ G2: (K, g) |= 2F0 iff (K2, g) |= 2F0

as required.

Solution to Exercise 3.9.9 Consider the two frames (G1, R1), (G2, R2)
with G1 = {g1}, G2 = {g2}, g1 6= g2 and Ri(gi, gi) for i = 1, 2. Assume
that F characterizes the class of all universal frames. Thus for arbitrary
interpretations wi we have (Gi, Ri, wi) |= F . By choice of F we also know
that there is a interpretation v such that (G,R, v) |= ¬F for the disjoint sum
(G,R) = (G1, R1)](G2, R2). Let v1, v2 be such that (G,R, v) = (G1, R1, v1)]
(G2, R2, v2). Note, that v1, v2 can easily be found sinceG1 andG2 are disjoint.
From (Gi, Ri, vi) |= F we conclude by Exercise 3.9.8 also (G,R, v) |= F .
Contradiction.

Solution to Exercise 3.9.10

1 Ftrans ∀X(∀u(R(z, u)→ X(u))→ ∀w∀v(R(z, w) ∧R(w, v)→ X(v)))
2 ¬Ftrans ∃X(∀u(R(z, u)→ X(u)) ∧ ∃w∃v(R(z, w) ∧R(w, v) ∧ ¬X(v)))
Apply lemma with
G ≡ R(z, u)
H ≡ ∃w∃v(R(z, w) ∧R(w, v) ∧ ¬X(v)) negative in X

3 ¬Ftrans ∃w∃v(R(z, w) ∧R(w, v) ∧ ¬R(z, v))
4 Ftrans ∀w∀v(R(z, w) ∧R(w, v)→ R(z, v))

285

Solution to Exercise 3.9.11

1 Fser ∀X(∀x(R(z, x)→ X(x))→ ∃u(R(z, u) ∧X(u)))
2 ¬Fser ∃X(∀x(R(z, x)→ X(x)) ∧ ∀u(R(z, u)→ ¬X(u)))
Apply lemma with
G ≡ R(z, x)
H ≡ ∀u(R(z, u)→ ¬X(u)) negative in X

3 ¬Fser ∀u(R(z, u)→ ¬R(z, u))
4 ¬Fser ∀u(¬R(z, u))
5 Fser ∃uR(z, u)
6 ∀zFser ∀z∃uR(z, u)

Solution to Exercise 3.9.12

The characterizing formula is 2false.
For a Kripke structure K = (G,R, v) with R = ∅ and arbitrary g ∈ G the
claim g |= 2false is true of for all h ∈ G with R(g, h) we have h |= false. This
is vacuously true since there is no h with R(g, h). Also the reverse implication
is simple. If, for the sake of a contradiction, there would be g, h ∈ G with
R(g, h) then g |= 2false could not be true for arbitrary interpretation v.

Solution to Exercise 3.9.13

Fix n. The proof proceed by induction on n − k, or reverse induction on k
from k = n to k = 0
If n − k = 0, i.e. k = n, then F is a purely propositional formula without
modal operators. So, (K, g1) |= F only depends on v(g1, p) for p ∈ PVar.
But, v(g1, p) = vng (g1, p) for any n and any g with g1 ∈ Gn

g .
In the inductive step from k+1 to k we assume that for any F ′ with md(F ′) ≤
n− k − 1 and g′ ∈ Gk+1

g we have

(K, g′) |= F ′ ⇔ (Kng , g′) |= F ′

and we try to establish that for any F with md(F) ≤ n− k and any g1 ∈ Gk
g

(K, g1) |= F ⇔ (Kng , g1) |= F

This inductive step is proved by structural induction on F . The case that
F is a propositional variable has already be dealt with. If F = F1 ∧ F2 then
also md(Fi) ≤ n − k. By the semantics definition (K, g1) |= F is equivalent

286

to (K, g1) |= F1 and (K, g1) |= F1 . By the induction hypothesis of the
structural induction this is equivalent to (Kng , g1) |= F1 and (Kng , g1) |= F1

which again by the semantics definition is equivalent to (Kng , g1) |= F . The
other propositional cases F = F1 ∨ F2 and F = ¬F1 follow analogously.

So let us look at F = 2F1 with md(F) ≤ n− k. Thus md(F1) ≤ n− k − 1.

Assume (K, g1) |= 2F1 with the aim to arrive at (Kng , g1) |= F . To achieve
this aim we have to prove for any g2 ∈ Gn

g with Rn
g (g1, g2) that (Kng , g2) |= F1.

We first point out that under the present assumptions Rn
g (g1, g2) is equivalent

to R(g1, g2). This gives us (K, g2) |= F1. Since g1 ∈ Gk
g implies g2 ∈ Gk+1

g the
outer induction hypothesis is applicable and yields (Kng , g2) |= F1 as desired.

Now assume (Kng , g1) |= F with the aim to arrive at (K, g1) |= 2F1. To
achieve this aim we have to prove for any g2 ∈ Gn

g with R(g1, g2) that
(K, g2) |= F1. Again R(g1, g2) is equivalent to Rn

g (g1, g2) which gives us
(Kng , g2) |= F1. Since g1 ∈ Gk

g implies g2 ∈ Gk+1
g the outer induction hypoth-

esis is applicable and yields (K, g2) |= F1 as desired.

The case F = 3F1 follows analogously.

Solution to Exercise 3.9.14

We start with the easy implication. Assume ` (F1∧2F1∧. . .2nF1)→ F2 and
try to prove F1 `G F2. So we look at a Kripke structure K = (G,R, v) with
(K, g) |= F1 for all g ∈ G and want to arrive at (K, g1) |= F2 for any g1 ∈ G.
Since (K, g) |= F1 is true for all g ∈ G we have (K, g1) |= F1∧2F1∧ . . .2nF1.
Thus by assumption (K, g1) |= F2, as desired.

For the reverse implication we assume F1 `G F2 and for an arbitrary Kripke
structure K = (G,R, V) we assume (K, g1) |= F1 ∧ 2F1 ∧ . . .2nF1 for an
arbitrary g1 ∈ G with the aim to show (K, g1) |= F2. Let Kn

g1
= (Gn

g1
, Rn

g1
, vng1

)
be the Kripke structure defined in Exercise 3.9.13. From the definition of Gn

g1

we see that (K, g1) |= F1∧2F1∧ . . .2nF1 implies (K, g) |= F1 for all g ∈ Gn
g1

.
Since md(F1 ≤ n we get from Excercise 3.9.13 also (Kng1

, g) |= F1 for all
g ∈ Gn

g1
. The assumption F1 `G F2 now yields (Kng1

, g) |= F2 for all g ∈ Gn
g1

,
in particular (Kng1

, g1) |= F2. Since md(F1 ≤ n another appeal to Excercise
3.9.13 yields (K, g1) |= F2 and we have finished.

Solution to Exercise 3.9.15

287

ad 1 From the description logic vocabulary V = C∪R we construct a first-
order vocabulary Σ that contains a unary predicate symbol C(x) for each
C ∈ C and a binary relation symbol R(x, y) for each R ∈ R. We use the
same symbols to denote the concept and likewise the unary relation, and
the role and the binary relation in the hope that this will not cause any
confusion.
For an expression C we define its first-order translation C∗ inductively as
follows:

concept expression C C∗ comment
C C(x) if C ∈ C
¬c ¬C∗
C1 u C2 C∗1 ∧ C∗2
C1 t C2 C∗1 ∨ C∗2
∀R.C ∀y(R(x, y)→ C∗(y/x))
∃R.C ∃y(R(x, y) ∧ C∗(y/x))

We arrange this translation in a way that C∗ contains x as the only free
variable. C∗(y/x) denotes that formula obtained by replacing all occurences
of the free variable x by y.
ad 2 needs to be done

Solution to Exercise 3.9.16

We need to show for any interpretation I that (¬∀R.C)I equals
(∃R.¬C)I . By the semantics definition (∀R.C)I is the set {d ∈ ∆ |
for all b with R(d, b) we have b ∈ CI}. So its complement is {d ∈ ∆ |
there exists b with R(d, b) and b ∈ (¬C)I}.

Solution to Exercise 3.9.17

That is easy. Transitivity of r says ∀x∀y∀z(r(x, y) ∧ r(y, z) → r(x, z)) and
transitivity of r− says ∀x∀y∀z(r−(x, y) ∧ r−(y, z)→ r−(x, z)). By definition
of r− this is equivalent to ∀x∀y∀z(r(y, x) ∧ r(z, y)→ r(z, x)) which is just a
simple permutation of the definition of transitivity for r.

Solution to Exercise 3.9.18

The answer is No. The formulas in H written as first-order formulas are

288

all univeral Horn clauses, i.e. formulas of the form ∀x̄(lhs → rhs). These
formulas can trivially be satisfied by an interpretation I with RI = ∆ for all
R ∈ R.
By the way I satisfies R1 v R−2 and R2 v R1 iff RI1 = RI2 and RI1 is
symmetric.

Solution to Exercise 3.9.19

Let C ∈ Cn and C = C1 the defining equation for C in the T-Box T . We
built a tree T whose nodes will be labeled by name concepts. The root is
labeled with C. In general if a node in the tree is labeled by D from Cn

then there are successor nodes one for each Di from Cn that is directly used
by D. Since T is noncyclic T is a finite tree. Now perform the following
construction: replace every name symbol in C1 by its definition to obtain
C2. If C2 does not contain any name symbol we stop. Otherwise we again
replace all name symbols in C2 by their definition to obtain C3. And so on
to obtain Ck. Any name symbol C ′ occuring in Ck is on a branch of the
tree T . Thus the described replacement process stops after finitely many
iterations and we obtain an equation C = Ck, where Ck only contains base
symbols. Obviously, the original T-Box T and the one, call it T ′, obtained
by replacing C = C1 by C = Ck are equivalent, i.e., are satisfied by the same
interpretations. But in T ′ C is uniquely defined by base concepts.

Solution to Exercise 3.9.20

The claim K, g∗ |= F ⇔ K∗, g∗ |= F is proved by structural induction
on F .

Solution to Exercise 3.9.21

Let us first look at the easy direction. Assume {2nA | n ≥ 0} |=L F and try
to prove A |=G F . We consider a Kripke structure K = (G,R, v) with g |= A
for all g ∈ G. We want to prove h |= F for all h ∈ G. From the assumption
we get h |= 2nA for all n ≥ 0. Which by case assumption yields h |= F .
Now assume A |=G F and consider a Kripke structure K = (G,R, v) with
g ∈ G with K, g |= 2nA for all n ≥ 0. We want to arrive at K, g |= F .
Let K∗ = (G∗, R∗, v∗) be the Kripke structure from Exercise 3.9.20. Then
we have also have K∗, g |= 2nA for all n ≥ 0. Since all worlds in K∗ are

289

reachable from g we obtain K∗, h |= A for all h ∈ G∗. By A |=G F this
implies K∗, h |= F for all h ∈ G∗. In particular K∗, g |= F . By Exercise
3.9.20 this implies K, g |= F .

Solution to Exercise 3.9.22

to be done

Solution to Exercise 3.9.23

〈z1, line of, 1982953 〉 〈z2, line of, 1982953 〉 〈z3, line of, 1982953 〉
〈z1, item, Fleece〉 〈z1, Id, 313169M6〉 〈z1, color, orange〉

〈z1, size, M〉 〈z1, qu, 2〉
〈z2, item, Shirt〉 〈z2, Id, 1911409M6〉 〈z2, color, smaragd〉

〈z2, size, L〉 〈z2, qu, 1〉
〈z3, item, Top〉 〈z3, Id, 249708M6〉 〈z3, color, navy dotted〉

〈z3, size, S〉 〈z3, qu, 1〉

Solution to Exercise 3.9.24

1. ∀r−1.(C u ¬∃s.D) ⇔ ∀y(r−1(x, y)→ (C(y) ∧ ¬∃z(s(y, z) ∧D(z)))
⇔ ∀y(r(y, x)→ (C(y) ∧ ¬∃z(s(y, z) ∧D(z)))
⇔ ∀y(r(y, x)→ (C(y) ∧ ∀z(s(y, z)→ ¬D(z)))

2. to be done

3. to be done

Solution to Exercise 3.9.25

In the proof of the correctness theorem, Theorem 69, the statement that
the initial tableau is satisfiable is used. This involves a mapping I of one
prefix σ into the set of possible worlds of an arbitrary Kripke structure with
reflexive accessability relation such that R(I(σ), I(σ)) if σ is T-accessible
from σ. Since σ is T-accessible from σ it is crucial that R is indeed reflexive.

290

Furthermore the correctness theorem builds on the validity of the correctness
lemma. So, let us look at the proof of Lemma 70. The case of the ν-rule (box
rule) is valid regardless of the accessibility of prefixes, since the mapping I
is not changed. But, the argument concerning the µ-rule (diamond rule) in
generel needs reconsideration. But, in the special case of T-accessible the
text as it stand remains a valid proof.

The critical part of the completeness theorem is the construction of the coun-
termodel (G,R, v) with G the set of prefixes occuring on the open branch and
R the accessibility relation. We have to convince ourselves that T-accessible
entails reflexivity of R. But this is obvious.

Solution to Exercise 3.9.26

Given I(Tr) define

ext(d) = {(d1, d2) | (d1, d, d2) ∈ I(Tr)}

Given ext define

I(Tr) = {(d1, d, d2) | (d1, d2) ∈ ext(d)}

Solution to Exercise 3.9.27

Both inclusions are not universally valid. Here are minimal counterexamples
I1 and I2 with the common universe ∆ = {e, d} and RI1 = RI2 = {(e, d)}
and
1 CI11 = {e}, CI12 = {d}
Thus (C1 u ∃R.C2)I1 = {e} and (∃R.(C1 u C2))I1 = ∅.
2 CI11 = CI12 = {d}
Thus (∃R.(C1 u C2))I1 = {e} and (C1 u ∃R.C2)I1 = ∅.

Consider the translation C1(x)∧∃y(R(x, y)∧C2(y)) of C1u∃R.C2 into first-
order logic. This formula is equivalent to its prenex normal form ∃y(C1(x)∧
R(x, y)∧C2(y)). This is possible since quantified object are explicitely named.
In description logic there is no prenex normal form.

291

Solutions to Chapter 4

Solution to Exercise 4.7.1

The proof proceeds, of course, by induction on the structural complexity of
F .

If F = p for a propositional variable p ∈ PVar the claim reduces to:

g |= p ⇔ v(g, p) = 1

which is true by definition of v. Since the propositional induction steps are
trivial it remains by the restrictions placed on F to consider F = [a]F1

(respectively F = 〈a〉F1).

(K, g) |= [a]F1 ⇔ (K, g′) |= F1 for all (g, g′) ∈ ρ(a) semantics
⇔ (Ka, g′) |= F a

1 for all (g, g′) ∈ ρ(a) ind.hyp.
⇔ (Ka, g′) |= F a

1 for all R(g, g′) def.of R
⇔ (Ka, g) |= 2F a

1 semantics
⇔ (Ka, g) |= F a def.of F a

The case F = 〈a〉F1 follows analogously.

Solution to Exercise 4.7.2

(u,w) ∈ ρ(α; (¬A?;α)∗;A?)
iff there exist v ∈ S such that (u, v) ∈ ρ(α) and (v, w) ∈ ρ((¬A?;α)∗;A?)
iff there exist n ∈ N and u1, . . . , un ∈ S with u1 = v, un = w

(u, v) ∈ ρ(α) and
ui |= ¬A and (ui, ui+1) ∈ ρ(α) for all 1 ≤ i < n and
w |= A

iff repeat α until A

Solution to Exercise 4.7.3

Set A? ≡ if A then αskip elseαnt where αskip is a program that always
terminates without state change and αnt is non-terminating progam. More
precisely for any Kripke structure (S, ρ, |=) we have

ρ(αskip) = {(s, s) | s ∈ S}
ρ(αnt) = ∅

292

Then

ρ(if A then αskip elseαnt) = {(s1, s2) | (s1, s2) ∈ ρ(αskip) if s1 |= A
(s1, s2) ∈ ρ(αnt) if s1 |= ¬A}

= {(s1, s2) | (s1, s2) ∈ ρ(αskip) if s1 |= A}
= {(s1, s1) | if s1 |= A}

= ρ(A?)

Solution to Exercise 4.7.4

Let K be a Kripke structure and s one of its states.
Proof of (1). We need to show s |= ¬〈p〉F ↔ [p]¬F)

s |= ¬〈π〉F iff there is no t with (s, t) ∈ ρ(π) and t |= F
iff for all t satisfying (s, t) ∈ ρ(π) we have t |= ¬F
iff s |= [p]¬F

Proof of (2). We need to show s |= ¬[π]F ↔ 〈π〉¬F)

s |= ¬[π]F iff it is not true that for all (s, t) ∈ ρ(π) we have t |= F
iff there is at least one t with (s, t) ∈ ρ(π) and t |= ¬F
iff s |= 〈π〉¬F

Proof of (3). We need to show s |= [π](F → G)→ (([π]F)→ [π]G)

s |= [π](F → G) iff for all t with (s, t) ∈ ρ(π) we have t |= (F → G)

Now, assume s |= [π]F , i.e., for all t such that (s, t) ∈ ρ(π) we get t |= F .
Since also t |= (F → G) is true we conclude t |= G. This gives for all t with
(s, t) ∈ ρ(π) the statement t |= G, i.e., s |= [π]G. Altogether s |= (([π]F)→
([π]G)).

Solution to Exercise 4.7.5

Assume s1 |= ¬〈π〉F implies s2 |= ¬F and s1 |= [π]¬F . We want to show
s2 |= ¬F . From s1 |= [π]¬F we get by duality of the modal operators
s1 |= ¬〈π〉F . This immediately yields s2 |= ¬F .

Solution to Exercise 4.7.6

If ` G → F then obviously G ` F . This is the easy implication that would

293

also be true for the global inference relation. Assume now G ` F is true and
consider an arbitrary state s in an arbitrary Kripke structure K = (S, |=, ρ).
If s 6|= G then trivially s |= G → F . If s |= G then by G ` F also s |= F .
Again we get s |= G→ F .

Solution to Exercise 4.7.7

ad (1) The proof proceeds by induction on the complexity of π.
Let π = a for a ∈ A and (s, s′) ∈ ρ(a).
From s ∈ SAs0 we derive the existence of some n with s ∈ Sns0 . By definition
s′ ∈ Sn+1

s0
. This finishes the initial case of the induction since Sn+1

s0
⊆ SAs0 .

Let π = π1; π2 and (s, s′) ∈ ρ(π).
By the semantics definition there is s′′ ∈ S such that (s, s′′) ∈ ρ(π1) and
(s′′, s′) ∈ ρ(π2). By the induction hypothesis for π1 we get s′′ ∈ SAs0 from
s ∈ SAs0 . Starting from this the induction hypothesis for π2 yields s′ ∈ SAs0 .
Let π = π1 ∪ π2 and (s, s′) ∈ ρ(π).
By the semantics definition either (s, s′) ∈ ρ(π1) or (s, s′) ∈ ρ(π2). Then the
induction hypothesis for either π1 or π2 yields s′ ∈ SAs0 .
Let π = π∗1 ∈ Π and (s, s′) ∈ ρ(π).
By the semantics definition there is some n, 0 ≤ n and there are t0, . . . tn
with t0 = s, (ti, ti+1) ∈ ρ(π1) for all 0 ≤ i < n and tn = s′. By repeated
application of the induction hypothesis on π1 we show t0 ∈ SAs0 ,. . . ti ∈ SAs0 ,
. . . tn ∈ SAs0
Let π = con? for some formula con and (s, s′) ∈ ρ(π).
By the semantics definition this implies s = s′ and nothing needs to be
proved.

ad (2) The proof proceeds by induction on the complexity of F .
Let F = p for a proposition variable p then
(K, s) |= p ⇔ (s, p) ∈`

⇔ (s.p) ∈` ∩(SAs0 × PVar)
⇔ (s.p) ∈`As0
⇔ (KAs0 , s) |= p

The induction step for the propositinal connectives follwos easily. So we
consider next F = [π]F1.

294

(K, s) |= F ⇔ (K, s′) |= F1 for all s′ with (s, s′) ∈ ρ(π) semantics
⇔ (KAs0 , s′) |= F1 for all s′ with (s, s′) ∈ ρ(π) Ind.Hyp and

Part 1
⇔ (KAs0 , s′) |= F1 for all s′ with (s, s′) ∈ ρAs0(π) Part 1
⇔ (KAs0 , s′) |= F semantics

The case F = 〈π〉F1 follows analogously.

Solution to Exercise 4.7.8

We start with the easier implication. So assume ` [(a1 ∪ . . . ∪ an)∗]F1 → F2

and for some PDL Kripke structure K = (S,`, ρ) assume (K, s) |= F1 for all
s ∈ S with the aim to show (K, s) |= F2 for all s ∈ S. For any s′ ∈ S we
know (K, s′) |= [(a1 ∪ . . . ∪ an)∗]F1 → F2. Since (K, s) |= F1 is true for all
s ∈ S we obtain (K, s′) |= [(a1 ∪ . . . ∪ an)∗]F1 and thus (K, s′) |= F2.
For the reverse implication assume F1 `G F2 and for an arbitrary PDL Kripke
structure K = (S,`, ρ), s0 ∈ S assume (K, s0) |= [(a1 ∪ . . .∪ an)∗]F1 with the
goal to show (K, s0) |= F2.
We observe first that {s′ ∈ S | (s0, s

′) ∈ ρ((a1 ∪ . . . ∪ an)∗)} equals SAs0 as
defined in Exercise 4.7.7. Thus we know (K, s′) |= F1 for all s′ ∈ SAs0 . Exercise
4.7.7 entails (KAs0 , s′) |= F1 for all s′ ∈ SAs0 . The assumption, F1 `G F2,
now implies (KAs0 , s′) |= F2 for all s′ ∈ SAs0 . Another appeal to 4.7.7 gives
(K, s0) |= F2 as desired.

Solution to Exercise 4.7.9

Let F ∈ PModFml be a modal propositional formula as defined in Definition
34 and a ∈ AP an atomic program. To decide wether F is satisfiable we built
a formula F ∗ ∈ PFml such that (F ∗)a = F , where (F ∗)a is as defined in
Exercise 4.7.1. This exercise guarantees

F is satisfiable in modal logic K iff F ∗ is satisfiable in PDL

Since we know that satisfiability of PDL is decidable we are then finished.
The construction of the transformed formula F ∗ ∈ PFml is simple, e.g.
(F1 ∧ F2)∗ = F ∗1 ∧ F ∗2 .
The only non-trivial cases are

(2F)∗ = [a]F ∗

(3F)∗ = 〈a〉P ∗

295

Solution to Exercise 4.7.10

Use the same set-up as in the solution to Exercise 4.7.9 but with the following
translation:

(2A)∗ = [a∗]A∗

(3A)∗ = 〈a∗〉A∗
Again the desired property, equivalence of satisfiability, is not hard to see.

Solution to Exercise 4.7.11

This is easy. To decide F1 `G F2 let n = max{md(F1,md(F2)} and find out
whether (1∧2F1 . . .2

nF1)→ F2 is satisfiable. If and only if that is the case
F1 `G F2 is true. This is the statement proved in Exercise 3.9.14.

Solution to Exercise 4.7.12

This is again easy. To decide F1 `G F2 let A = {a1, . . . , an} be all atomic
programs occuring in F1 or F2. By Exercise 4.7.8 it sufices to find out whether
[(a1 ∪ . . . ∪ an)∗]F1 → F2 is universally valid in PDL. This can be done, as
Theorem 103 assures us.

296

Solutions to Chapter 5

Solution to Exercise 5.6.1 The answer will be no. We will even show
that the binary relation y = 2 ∗ x is not definable in the theory in question.
The proof proceeds by contradiction. So we assume that y = 2 ∗ x is in fact
definable.

Let V be the vocabulary with two letters a and b, V = {a, b}. By La2a ⊂ V ω

we denote the set of omega words defined by FOW ∧∃x∃y(y = 2∗x∧a(x)∧
a(y)∧∀z(z 6= x∧z 6= y → b(y). By Theorem 114 there is a Büchi automaton
B2a2 with Lω(B2a2) = La2a. By wn we denote the word with

wn(i) =

{
a if i = n or i = 2 ∗ n
b otherwise

Using this notation we may write La2a = {wn | n ≥ 0}. We may write

La2a =
i=k⋃
i=0

KiL
ω
i (6.1)

where Ki, Li ⊆ V ∗ are regular languages. See e.g. [Thomas, 1990, formula
(1.1)] or [Schmitt, 2012, Satz 10.25].

There will be i0, 0 ≤ i0 ≤ k such that wn ∈ Ki0L
ω
i0

for infinitely many n, say
Ki0L

ω
i0

= {wn | n ∈ N} for an infinite subset N ⊆ N.

If a word in Li0 contains the letter a then there would be words in Lωi0
containing infinitely many occurences of a. Since any word in La2a has exactly
two occurences of a all words in Li0 contain only the letter b. Thus Ki0 has
the following two properties

1. For all n ∈ N there is w ∈ Ki0 of length ≥ 2 ∗ n + 1 with w(n) = a,
w(2 ∗ n) = a, and w(m) = b otherwise

2. For all w ∈ Ki0 there is n ∈ N with w(n) = a, w(2 ∗ n) = a, and
w(m) = b otherwise

We may now use the pumping lemma for regular languages to show that this
is impossible. Thus arriving at the desired contradiction.

297

Solution to Exercise 5.6.2 Let T = (N, <, ξ) be an arbitrary omega
structure.

1 If ξ |= (F1 U G) ∧ (F2 U G) then there are n1 and n2 such that

ξn1 |= G and ξn2 |= G
ξm |= F1 for all m with 0 ≤ m < n1

ξm |= F2 for all m with 0 ≤ m < n2

For n = min(n1, n2) we get ξn |= G and ξm |= F1 ∧ F2 for all m with
0 ≤ m < n. The reverse impication is obvious.

2 ξ |= F U (G1 ∨G2) iff

there is n such that ξn |= (G1 ∨G2) and ξm |= F for all m with 0 ≤ m < n.

This is trivially equivalent to

there is n such that ξn |= G1 or ξn |= G2 and ξm |= F for all m with 0 ≤ m < n.

This is exactly the definition of ξ |= (F U G1) ∨ (F U G2)

Solution to Exercise 5.6.3

1. 2(p→ 3q)

2. 2(p→ (¬q ∧X¬q ∧XX¬q ∧3q))

Solution to Exercise 5.6.4 Assume there is an LTL formula G that
expresses the stated property. Let AG be the Büchi automaton associated
with G as guaranteed by Theorem 120. Obviously, there is at least one
accepting computation sequence t satisfying t |= G. By Lemma 122 there
is also a finite, cyclic accepting computation sequence se satisfying se |= G.
Let se = s1

e, s
2
e, . . . , s

n
e , Let ni be all positions in increasing order such

that sni
e |= p. We know there are infinitely many. Let mi be the least index

mi ≥ ni such that smi
e |= q. By the property encoded by G we should have

(mi+1 − ni+1) > (mi − ni). This is not possible for the cyclic sequence se.

Solution to Exercise 5.6.5

safety s0 |= AG
∧

1≤i<j≤n ¬(ci ∧ cj)

298

liveness s0 |= AG
∧
i∈{1,...,n}(ti → EFci)

non-blocking s0 |= AG
∧
i∈{1,...,n}(EFti)

non-sequencing EF
∧

1≤i≤n(ti ∧
∨

1≤j≤n&i 6=j EXE(¬ci U cj))

non-alternating EF
∧

1≤i≤n(ci ∧ EXE((
∧

1≤j≤n&i 6=j ¬cj) U ci)))

Solution to Exercise 5.6.6

For 1 ≤ i ≤ p let Kp,q,i be the set of all words w ∈ V ω
p,q such that there is

exactly one position n such that the i-th position in the letter w(n) equals
1. Obviously

Kp,q =
⋂

1≤i≤p

Kp,q,i

Let Bi ⊆ Vp,q be the set of all letters whose i-th position is 0 and Ci its
complement Ci = Vp,q \ Bi. Then Kp,q,i = B∗iCiB

ω
i which shows that Kp,q,i

is omega-regular. Since omega-regular sets are closed under intersection also
Kp,q is omega-regular. If you prefer a Büchi automaton over omega-regular
expressions here it is:

Solution to Exercise 5.6.7

Let B = (S, V1, s0, δ, F) be a Büchi automaton such that Lω(B) = L. We will
produce a Büchi automaton Bµ = (S, V2, s0, δµ, F) such that Lω(Bµ) = µ(L).
The only difference is in the definition of δµ:

δµ(s, c) =
⋃
{δ(s, d) | µ(d) = c}

w ∈ Lω(B) iff there is a sequence (sn)0≤n of states such that
for all n : sn+1 ∈ δ(sn, w(n))

⇒ there is a sequence (sn)0≤n of states such that
for all n : sn+1 ∈ δµ(sn, µ(w(n)))

iff µ(w) ∈ Lω(Bµ)

299

0

Bi

1
Ci

Bi

2
Bi

Vp,q

Figure 6.3: A Büchi automaton accepting Kp,q

300

w′ ∈ Lω(Bµ) iff there is a sequence (sn)0≤n of states such that
for all n : sn+1 ∈ δµ(sn, w

′(n))
⇒ there is a sequence (sn)0≤n of states such that

for all n : sn+1 ∈ δ(sn, w(n))
for an appropriate w

iff w ∈ Lω(B)

The appropriate w is obtained as follows. From sn+1 ∈ δµ(sn, w
′(n)) we get

by definition of δµ some d ∈ V1 with µ(d) = w′(n) and sn+1 ∈ δ(sn, d). We
set w(n) = d. By construction we see µ(w) = w′.
In total we have shown µ(Lω(B)) = Lω(Bµ).

Solution to Exercise 5.6.9

Let L = {S ⊆ G | f(S) ⊆ S and U0 ⊆ S}. As in the proof of Theorem 135
we can prove for U =

⋂
L that f(U) ⊆ U . Thus by monotonicity of f we also

obtain f(f(U)) ⊆ f(U). Since all sets in L are supersets of U0 we also have
U0 ⊆ U . By monotonicity we get f(U0) ⊆ f(U) and by the assumption of
the theorem also U0 ⊆ f(U). This yields f(U) ∈ L and therefore U ⊆ f(U).
Alltogether U = f(U).
Let now W be a fixed point above U0, i.e., f(W) = W and U0 ⊆ W . We get
W ∈ L by definition and thus U ⊆ W .

Solution to Exercise 5.6.10

You need to require f(U0) ⊆ U0. The proof is the dual of the proof of Exercise
5.6.9.

Solution to Exercise 5.6.11

By Lemma 132 AGEFp is only expresible in LTL if AGEFp ↔ AGFp is
true. It can be seen that for the transition system in Figure 6.4 we have
s0 |= AGEFp but s0 6|= AGFp.

301

¬p p
s0

¬p
s1

s3

Figure 6.4: Transition system for AGEFp

Solution to Exercise 5.6.12

ad 1 We argue as follows

X ⊆ Y ⇒ (D \ Y) ⊆ (D \X)
⇒ F (D \ Y) ⊆ F (D \X)
⇒ D \ F (D \X) ⊆ D \ F (D \ Y)
⇒ G(X) ⊆ G(Y)

ad 2 We make us of the characteristion of the least fixed point of G obtained
in the proof of Theorem 135 as the intersection of all X ⊆ D with G(X) ⊆ X,
i.e.,

lfp(G) =
⋂
{X | X ⊆ D and G(X) ⊆ X}

By definition of G we have G(X) ⊆ X if and only if (D \X) ⊆ F (D \X).
We may thus equivalently rewrite the definition of lfp(G as

lfp(G) =
⋂{D \ Y | Y ⊆ D and Y ⊆ F (Y)}

= D \⋃{D \ Y | Y ⊆ D and Y ⊆ F (Y)}
= D \ gfp(F)

ad 3 analogous to part 2.

Solution to Exercise 5.6.13

Let B = (S, Vp,q, s0, δ, F) be the given Büchi automaton with edge vocabulary
Vp,q and

Lω(B) = {w ∈ Kp,q | w0 |= φ[sw,1, . . . , sw,p, Sw,1, . . . , Sw,q]}

302

for the given monadic second-order formula φ.

The Büchi automaton Bex to be constructed works over the alphabet Vp−1,q

so we need some notation to relate letters from the two different alphabets.
For a ∈ Vp−1,q we denote by a ↓ x the letter in Vp,q with x inserted at the
position 1 + p. Formally

(a ↓ x)[i] =


a[i] if 0 ≤ i ≤ p
x if i = 1 + p
a[i+ 1] if p+ 1 < i ≤ p+ q + 1

Of course, only x ∈ {0, 1} make sense in the present context. Dually we done
for a ∈ Vp,q by a ↑ the letter in Vp−1,q obtained from a by dropping its p+ 1
component. Formally

(a ↑)[i] =

{
a[i] if 0 ≤ i < p
a[i+ 1] if p ≤ i ≤ p+ q

We set

Sex = S
sex0 = s0

Fex = F
δex(s, a) = {s′ | s′ ∈ δ(s, a ↓ 0)} ∪ {s′ | s′ ∈ δ(s, a ↓ 1)}

Consider now w ∈ Lω(Bex). By definition of acceptance there is a run
s0, . . . , sn . . . of Bex such that a final state q ∈ S occurs infinitely often among
the sn and for all n we have sn+1 ∈ δex(sn, w(n)). By definition of δex there
are xn ∈ {0, 1} such that sn+1 ∈ δ(sn, w(n) ↓ xn). If we define w′ ∈ Vp,q by
w′(n) = w(n) ↓ xn we obtain w′ ∈ Lω(B). By assumption this entails

(w′)0 |= φ[sw′,1, . . . , sw′,p, Sw′,1, . . . , Sw′,q]

and thus also

(w′)0 |= ∃xpφ[sw′,1, . . . , xw′,p−1, Sw′,1, . . . , Xw′,q]

Since (w′)0 = w0, sw′,i = sw,i for 1 ≤ i < p and Sw′,j = Sw,j for 1 ≤ j ≤ q we
also have

w0 |= ∃xpφ[sw,1, . . . , sw,p−1, Sw,1, . . . , Sw,q]

This already shows

Lω(Bex) ⊆ {w ∈ Kp−1,q | w0 |= ∃xpφ[sw,1, . . . , sw,p−1, Sw,1, . . . , Sw,q]}

303

Now, consider w ∈ V ω
p−1.q such that w0 |= ∃xpφ[sw,1, . . . , sw,p−1, Sw,1, . . . , Sw,q]

Thus for some n w0 |= φ[sw,1, . . . , sw,p−1, n, Sw,1, . . . , Sw,q]. We can easily
find w+ ∈ V ω

p.q with (w+(i)) ↑= w(i) for all i ∈ N and sw+,p = n. Thus
(w+)0 |= φ[sw+,1, . . . , sw+,p−1, sw+,p, Sw+,1, . . . , Sw+,q]. By assumption w+ ∈
Lω(B). Thus there is a run s0, . . . , sk, . . . of B with sk+1 ∈ δ(sk, w∗(k)) for
all k and a state q ∈ F occuring infinitely often among the sk. By definition
of δex we also have sk+1 ∈ δex(sk, w(k)) for all k, i.e. w ∈ Lω(Bex).

304

Bibliography

[Abate et al., 2007] Pietro Abate, Rajeev Goré, & Florian Widmann.
An on-the-fly tableau-based decision procedure for PDL-satisfiability.
CoRR, Computing Research Repository of Cornell University Library,
abs/0711.1016, 2007.

[Ackermann, 1935] Wilhelm Ackermann. Untersuchungen über das Elim-
inationsproblem der mathematischen Logik. Mathematische Annalen,
110:390–413, 1935.

[Allemang & Hendler, 2008] Dean Allemang & Jim Hendler. Semantics Web
for the Working Ontologist. Morgan Kaufmann, 2008.

[Baader et al., 2003] Franz Baader, Diego Calvanese, Deborah McGuinness,
Daniele Nardi, & Peter Patel-Schneider, editors. The Description Logic
Handbook. Cambridge University Press, 2003.

[Barnett et al., 2005] Michael Barnett, Bor-Yuh Evan Chang, Robert De-
Line, Bart Jacobs 0002, & K. Rustan M. Leino. Boogie: A modu-
lar reusable verifier for object-oriented programs. In Frank S. de Boer,
Marcello M. Bonsangue, Susanne Graf, & Willem P. de Roever, editors,
FMCO, volume 4111 of Lecture Notes in Computer Science, pages 364–387.
Springer, 2005.

[Barwise, 1977] Jon Barwise, editor. Handbook of Mathematical Logic, vol-
ume 90 of Studies in Logic and the Foundations of Mathematics. North-
Holland Publishing Co, 1977.

[Beckert et al., 2007] Bernhard Beckert, Reiner Hähnle, & Peter H. Schmitt,
editors. Verification of Object-Oriented Software: The KeY Approach.
LNCS 4334. Springer-Verlag, 2007.

305

[Biere et al., 1999] A. Biere, A. Cimatti, E. Clarke, & Y. Zhu. Symbolic
model checking without bdds. In Proc. of the Workshop on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’99),
LNCS. Springer-Verlag, 1999.

[Biere et al., 2003] A. Biere, A. Cimatti, E. Clarke, O. Strichman, & Y. Zhu.
Bounded model checking. Advances in Computers,, 58, 2003.

[Bull & Segerberg, 1984] Robert A. Bull & Krister Segerberg. Basic modal
logic. In Handbook of Philosophical Logic, volume II Extensions of Classical
Logic, pages 1 – 88. D.Reidel, 1984.

[Börger et al., 1982] Egon Börger, Erich Grädel, & Yuri Gurevich. The Clas-
sical Decision Problem. Perspectives in Mathematical Logic. ”spv”, 1982.

[Clarke & Draghicescu, 1988] Edmund M. Clarke & I. A. Draghicescu. Ex-
pressibility results for linear-time and branching-time logics. In J. W.
de Bakker, Willem P. de Roever, & Grzegorz Rozenberg, editors, REX
Workshop, volume 354 of Lecture Notes in Computer Science, pages 428–
437. Springer, 1988.

[Clarke et al., 1986] E.M. Clarke, E.A. Emerson, & A.P. Sistla. Automatic
verification of finite-state concurrent systems using temporal logic spec-
ifications. ACM Transactions on Programming Languages and Systems,
8(2):244–263, 1986.

[Clarke et al., 1993] E. M. Clarke, O. Grumberg, & D. Long. Verification
tools for finite state concurrent systems. In de Bakker et al. [de Bakker et
al., 1993], pages 124 – 175.

[Clarke et al., 2001] Edmund M. Clarke, Rna Grumberg, & Doron A. Peled.
Model Checking. The MIT Press, 2001.

[Conradie et al., 2006a] Willem Conradie, Valentin Goranko, & Dimiter
Vakarelov. Algorithmic correspondence and completeness in modal logic.
i. the core algorithm sqema. CoRR, abs/cs/0602024, 2006.

[Conradie et al., 2006b] Willem Conradie, Valentin Goranko, & Dimiter
Vakarelov. Algorithmic correspondence and completeness in modal logic.
ii. polyadic and hybrid extensions of the algorithm sqema. J. Log. Comput.,
16(5):579–612, 2006.

306

[Conradie et al., 2009] Willem Conradie, Valentin Goranko, & Dimiter
Vakarelov. Algorithmic correspondence and completeness in modal logic.
iii. extensions of the algorithm sqema with substitutions. Fundam. Inform.,
92(4):307–343, 2009.

[Copty et al., 2001] F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi,
A. Tacchella, & M.Y. Vardi. Benefits of bounded model checking at an
industrial setting. In Proc. 12th Intl. Conference on Computer Aided Ver-
ification (CAV’01), LNCS, pages 436–453. Springer, 2001.

[de Bakker et al., 1993] J.W. de Bakker, W.P. de Roever, & G. Rozenberg,
editors. A Decade of Concurrency - Reflections and Perspectives, volume
803 of Lecture Notes in Computer Science. Springer-Verlag, June 1993.

[Doherty et al., 1997] P. Doherty, W. Lukasiewicz, & A. Sza las. Computing
circumscirption revisited. J.of automated reasoning, 18(3):297–335, 1997.

[Emerson, 1992] E. Allen Emerson. Temporal and modal logic. In Jan van
Leeuwen, editor, Handbook of Theoretical Computer Science. Volume B.
Formal Models and Semantics, pages 996–1072. Elevesier, 1992.

[Fitting, 1983] Melvin Fitting. Proof Methods for Modal and Intuitionistic
Logic. D. Reidel, 1983.

[Fitting, 1990] Melvin C. Fitting. First-Order Logic and Automated Theorem
Proving. Springer, 1990.

[Fitting, 1993] Melvin Fitting. Basic modal logic. In Handbook of Logic
in Artificial Intelligence and Logic Programming, volume Vol. 1 Logical
Foundations, pages 368 – 448. Clarendon Press, 1993.

[Garson, 1984] James W. Garson. Quantification in modal logic. In Handbook
of Philosophical Logic, volume II Extensions of Classical Logic, pages 249
– 308. D.Reidel, 1984.

[Glimm et al., 2008] B. Glimm, I.Horrocks, C. Lutz, & U.Sattler. Conjunc-
tive query answering for the description logic SHIQ. J. of Artificial Intel-
ligence Research, 31:151–198, 2008.

[Goldblatt, 1982] Robert Goldblatt. Axiomatising the logic of computer pro-
gramming, volume 130 of LNCS. Springer-Verlag, 1982.

307

[Goldblatt, 1987] Robert Goldblatt. Logics of Time and Computation. Num-
ber 7 in CSLI Lecture Notes. CSLI, 1987.

[Grädel, 1999] Erich Grädel. On the restraining power of guards. J. Symb.
Log., 64(4):1719–1742, 1999.

[Gustafsson, 1996] J. Gustafsson. An implementation and optimization of
an algorithm for reducing formulas of second-order logic. Tech.Report
LiTH-MAT-R-96-04, University of Linköping, Sweden, 1996.

[Halmos, 1974] Paul Richard Halmos. Naive Set Theory. Springer-Verlag
Telos, 1974.

[Halmos, 1994] Paul Richard Halmos. Naive Mengenlehre. Vandenhoeck &
Ruprecht, 1994.

[H.Andréka et al., 1998] H.Andréka, J.van Benthem, & I.Németi. Modal lan-
guages and bounded fragments of predicate logic. Journal of Philosophical
Logic, 27, 1998.

[Harel et al., 2000] David Harel, Dexter Kozen, & Jerzy Tiuryn. Dynamic
Logic. The MIT Press, 2000.

[Harel, 1979] David Harel. First-Order Dynamic Logic, volume 68 of Lecture
Notes in Computer Science. Springer-Verlag, 1979.

[Harel, 1984] David Harel. Dynamic logic. In Handbook of Philosophical
Logic, volume II Extensions of Classical Logic, pages 497 – 604. D.Reidel,
1984.

[Hayes, 2004] Patrick Hayes. Rdf semantics. Technical report, W3C, 2004.

[Hitzler et al., 2009] Pascal Hitzler, Markus Krötzsch, & Sebastian Rudolph.
Foundations of Semantic Web Technologies. Chapman & Hall/CRC, 2009.

[Horrocks et al., 2000] I. Horrocks, U. Sattler, & S. Tobies. Practical rea-
soning for very expressive description logics. Logic Journal of the IGPL,
8(3):239–263, 2000.

[Hughes & Cresswell, 1972] G. E. Hughes & M.J. Cresswell. An Introduction
to Modal Logic. Methuen and Co Ltd, London, second edition, 1972.

308

[Hughes & Cresswell, 1984] G. E. Hughes & M.J. Cresswell. A Companion
to Modal Logic. Methuen and Co Ltd, London, 1984.

[Huth & Ryan, 2000] Michael Huth & Mark Ryan. Logic in Computer Sci-
ence. Modelling and reasoning about systems. Cambridge University Press,
2000.

[Kunen, 1977] Kenneth Kunen. Combinatorics, chapter B.3, pages 371–401.
Volume 90 of Barwise [Barwise, 1977], 1977.

[Lamport, 1974] L. Lamport. A new solution of Dijkstra’s concurrent pro-
gramming. Communications of the ACM, 17(8):453–455, august 1974.

[Leino, 2008] K. Rustan M. Leino. This is Boogie 2. Working draft of the
Boogie 2 language reference manual, 2008. http://research.microsoft.
com/en-us/um/people/leino/papers.krml178.pdf.

[Lewis, 1918] C. I. Lewis. A survey of symbolic logic. University of California,
Berkeley, 1918.

[Marx & Venema, 1997] Maarten Marx & Yde Venema. Multi-Dimensional
Modal Logic, volume 4 of Applied Logic Series. Kluwer Academic Publish-
ers, Dordrecht,Boston, London, 1997.

[M.Gabbay et al., 2008] Dov. M.Gabbay, Renate A.Schmidt, & Andrzei
Sza las. Second-Order Quantifier Elimination. Foundations, Computational
Aspects and Applications, volume 12 of Studies in Logic. College Publica-
tion, 2008.

[Monk, 1976] J. Donald Monk. Mathematical Logic. Springer-Verlag, 1976.

[Mortimer, 1975] M. Mortimer. On languages with two variables. Zeitschrift
für mathematische Logik und Grundlagen, 21:135–140, 1975.

[R.Drake, 1974] Frank R.Drake. Set Theory. An Introduction to Large Car-
dinals, volume 76 of Studies in Logic and the Foundations of Mathematics.
North-Holland, 1974.

[Rubin, 1967] Jean E. Rubin. Set Theory for the Mathematician. Holden-
Day, 1967.

309

http://research.microsoft.com/en-us/um/people/leino/papers.krml178.pdf
http://research.microsoft.com/en-us/um/people/leino/papers.krml178.pdf

[Sahlqvist, 1975] H. Sahlqvist. Completeness and correspondance in first and
second order semantics for modal logic. In S. Kanger, editor, Proceedings of
the Third Scandinavian Logic Colloquium, pages 110–143. North Holland,
1975.

[Schild, 1991] Klaus Schild. A correspondence theory for terminological log-
ics: preliminary report. In Proc.of the 12.Int.Joint Conf. on Artifical In-
telligence (IJCAI’91), pages 466–471, 1991.

[Schild, 1993] Klaus Schild. Combining terminological logics with tense
logic. In Proc. 6th Portuguese Conference on Artificial Intelligence, EPIA-
93, volume 727 of Lecture Notes in Computer Science, pages 105–120.
Springer, 1993.

[Schmitt, 2008] Peter H. Schmitt. Formale Systeme. Lecture Notes, 2008.
In German.

[Schmitt, 2012] Peter H. Schmitt. Formale Systeme. Lecture Notes, 2012.
In German.

[Steinacker, 1990] Peter Steinacker. Nichtklassische Logik, chapter 3, pages
86 – 159. Akademie-Verlag, Berlin, 1990.

[Sterling, 1992] Colin Sterling. Modal and temporal logics. In Dov. M. Gab-
bay S. Abramsky & T.S.E. Maibaum, editors, Handbook of Logic in Com-
puter Science, volume Vol. 2 Background: Computational Structures,
pages 478 – 563. Clarendon Press, 1992.

[Surányi, 1943] J. Surányi. Zur reduktion des entscheidungsproblems des lo-
gischen funktionenkalküls. Mathematikai és Fizikai Lapok, 50:51–74, 1943.

[Takeuti & Zaring, 1971] Gaisi Takeuti & Wilson M. Zaring. Introduction to
Axiomatic Set Theory. Graduate Texts in Mathematics. Springer, 1971.

[Thomas, 1990] Wolfgang Thomas. Automata on infinite objects. In Hand-
book of Theoretical Computer Science, volume B, Formal Models and Se-
mantics, pages 135–191. Elsevier, 1990.

[van Benthem, 1984] Johan van Benthem. Correspondence theory. In Hand-
book of Philosophical Logic, volume II Extensions of Classical Logic, pages
167 – 248. D.Reidel, 1984.

310

[V.R.Pratt, 1976] V.R.Pratt. Semantical considerations on Floyd-Hoare
logic. In Proceedings of the 17 th IEEE Symp. Foundations of Computer
Science, pages 109 – 121. IEEE, 1976.

311

	Contents
	List of Figures
	Introduction
	Prerequisites
	Exercises

	Axiomatic Set Theory
	Basics
	The Natural Numbers
	Recursion
	Integers
	Ordinals
	König's Lemma (Optional)
	Cardinals (Optional)
	Ramsey Theory(Optional)
	Infinite Ramsey Theory
	Finite Ramsey Theory

	Peano Arithmetic with Finite Sets (Optional)
	Comments
	Exercises

	Modal Logic
	Syntax and Semantics
	Correspondence Theory
	The Tree-Property
	Second Order Logic
	A Tableau Calculus
	Description Logic
	Knowledge Representation in the Semantic Web
	Translation into First-Order Logic
	Decidable Fragments of First-Order Logic

	Exercises

	Dynamic Logic
	Motivating Example
	Syntax and Semantics of Regular Dynamic Logic
	Boogie PL

	Propositional Dynamic Logic
	Decidability of Propositional Dynamic Logic
	Alternatives in PDL
	Axiomatizations of Dynamic Logic
	Exercises

	Temporal Logics
	Büchi Automata
	Linear Temporal Logic
	Expressiveness of Linear Temporal Logic

	Bounded Model Checking (Optional)
	Computation Tree Logic
	CTL Model Checking
	Exercises

	Solutions to Exercises
	References
	Index

