

Formal Systems II: Applications

Functional Verification of Java Programs: Java Dynamic Logic

Bernhard Beckert · Mattias Ulbrich | SS 2017

- 1 Java Card DL
- 2 Sequent Calculus
- Rules for Programs: Symbolic Execution
- 4 A Calculus for 100% JAVA CARD
- 5 Loop Invariants

- 1 Java Card DL
- 2 Sequent Calculus
- 3 Rules for Programs: Symbolic Execution
- 4 A Calculus for 100% JAVA CARD
- 6 Loop Invariants

Syntax

- Basis: Typed first-order predicate logic
- Modal operators \(\rho \rangle \) and \([\rho] \) for each
 (JAVA CARD) program \(\rho \)
- Class definitions in background (not shown in formulas)

Semantics (Kripke)

- [p]F: If p terminates normally, then
 F holds in the final state ("partial correctness"

Syntax

- Basis: Typed first-order predicate logic
- Modal operators \(\rho \rangle \) and \([p] \) for each
 (JAVA CARD) program \(\rho \)
- Class definitions in background (not shown in formulas)

Semantics (Kripke)

Syntax

- Basis: Typed first-order predicate logic
- Modal operators \(\rho \rangle \) and \([\rho] \) for each
 (JAVA CARD) program \(\rho \)
- Class definitions in background (not shown in formulas)

Semantics (Kripke)

- [p]F: If p terminates normally, then
 F holds in the final state ("partial correctness")

Syntax

- Basis: Typed first-order predicate logic
- Modal operators \(\rho \rangle \) and \([\rho] \) for each
 (JAVA CARD) program \(\rho \)
- Class definitions in background (not shown in formulas)

Semantics (Kripke)

- [p]F: If p terminates normally, then
 F holds in the final state ("partial correctness")
- $\langle p \rangle F$: p terminates normally, and F holds in the final state ("total correctness")

- Transparency wrt target programming language
- Encompasses Hoare Logic
- More expressive and flexible than Hoare logic
- Symbolic execution is a natural interactive proof paradigm

- Programs are "first-class citizens"
- Real Java syntax

- Transparency wrt target programming language
- Encompasses Hoare Logic
- More expressive and flexible than Hoare logic
- Symbolic execution is a natural interactive proof paradigm

Hoare triple $\ \{\psi\}\ \alpha\ \{\phi\}$ equiv. to DL formula $\ \psi\ -\!\!\!>\ [\alpha]\phi$

- Transparency wrt target programming language
- Encompasses Hoare Logic
- More expressive and flexible than Hoare logic
- Symbolic execution is a natural interactive proof paradigm

Not merely partial/total correctness:

- can employ programs for specification (e.g., verifying program transformations)
- can express security properties (two runs are indistinguishable)
- extension-friendly (e.g., temporal modalities)

- Transparency wrt target programming language
- Encompasses Hoare Logic
- More expressive and flexible than Hoare logic
- Symbolic execution is a natural interactive proof paradigm


```
(balance >= c & amount > 0) -> (charge (amount); balance > c
```

```
\langle x = 1; \rangle ([while (true) {}] false)

Program formulas can appear nested
```

```
\label{eq:local_potential} \mbox{ ($\langle q \rangle x \doteq \textit{val}$) $<> ($\langle q \rangle x \doteq \textit{val}$)$}
```


(balance
$$>= c$$
 & amount > 0) $->$ (charge (amount); balance $> c$

$$\langle x = 1; \rangle$$
 ([while (true) {}] false)

Program formulas can appear nested

```
\forall int val; ((\langle p \rangle x \doteq val) \iff (\langle q \rangle x \doteq val))
```


(balance
$$>= c$$
 & amount > 0) $->$ (charge (amount); balance $> c$

$$\langle x = 1; \rangle ([while (true) {})] false)$$

Program formulas can appear nested

```
\forall int val; ((\langle p \rangle x \doteq val) \iff (\langle q \rangle x \doteq val))
```


(balance
$$>= c$$
 & amount > 0) $->$ (charge (amount); balance $> c$

$$\langle x = 1; \rangle ([while (true) {})] false)$$

Program formulas can appear nested

```
\forall int val; ((\langle p \rangle x \doteq val) \iff (\langle q \rangle x \doteq val))
```

lacktriangledown p, q equivalent relative to computation state restricted to x

(balance
$$>= c \& amount > 0) -> \\ \langle charge(amount); \rangle balance $> c$$$

$$\langle x = 1; \rangle ([while (true) {})] false)$$

Program formulas can appear nested

```
\forall int val; ((\langle p \rangle x \doteq val) \iff (\langle q \rangle x \doteq val))
```



```
a != null
->
    int max = 0;
    if (a.length > 0) max = a[0];
    int i = 1;
    while ( i < a.length ) {</pre>
      if (a[i] > max) max = a[i];
      ++i;
  > (
      \forall int j; (j >= 0 & j < a.length -> max >= a[j])
      δ
       (a.length > 0 \rightarrow
        \exists int j; (j \ge 0 \& j < a.length \& max = a[j]))
```

Variables

- Logical variables disjoint from program variables
 - No quantification over program variables
 - Programs do not contain logical variables
 - "Program variables" actually non-rigid functions

Validity

A JAVA CARD DL formula is valid iff it is true in all states.

We need a calculus for checking validity of formulas

Validity

A JAVA CARD DL formula is valid iff it is true in all states.

We need a calculus for checking validity of formulas

- 1 Java Card DL
- 2 Sequent Calculus
- 3 Rules for Programs: Symbolic Execution
- 4 A Calculus for 100% JAVA CARD
- 6 Loop Invariants

- 1 JAVA CARD DL
- 2 Sequent Calculus
- 3 Rules for Programs: Symbolic Execution
- 4 A Calculus for 100% JAVA CARD
- 6 Loop Invariants

Sequents and their Semantics

Syntax

$$\psi_1, \dots, \psi_m \implies \phi_1, \dots, \phi_n$$

Antecedent

Succedent

where the ϕ_i, ψ_i are formulae (without free variables)

Semantics

Same as the formula

$$(\psi_1 \& \cdots \& \psi_m) \longrightarrow (\phi_1 \mid \cdots \mid \phi_n)$$

Sequents and their Semantics

Syntax

$$\psi_1, \dots, \psi_m \implies \phi_1, \dots, \phi_n$$
Antecedent

Succedent

where the ϕ_i, ψ_i are formulae (without free variables)

Semantics

Same as the formula

$$(\psi_1 \& \cdots \& \psi_m) \longrightarrow (\phi_1 \mid \cdots \mid \phi_n)$$

General form

(r = 0 possible: closing rules)

Soundness

If all premisses are valid, then the conclusion is valid

Use in practice

General form

(r = 0 possible: closing rules)

Soundness

If all premisses are valid, then the conclusion is valid

Use in practice

General form

(r = 0 possible: closing rules)

Soundness

If all premisses are valid, then the conclusion is valid

Use in practice

General form

(r = 0 possible: closing rules)

Soundness

If all premisses are valid, then the conclusion is valid

Use in practice

$$\mathsf{not_left} \ \ \frac{\Gamma \Longrightarrow \textit{A}, \Delta}{\Gamma, ! \ \textit{A} \Longrightarrow \Delta}$$

imp_left
$$\frac{\Gamma \Rightarrow A, \Delta \qquad \Gamma, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta}$$

close_goal
$$\overline{\Gamma, A \Rightarrow A, \Delta}$$

close_by_true
$$\overline{\Gamma \Rightarrow \text{true}, \Delta}$$

all_left
$$\frac{\Gamma, \{forall\ t\ x; \phi,\ \{x/e\}\phi \Rightarrow \Delta\}}{\Gamma, \{forall\ t\ x; \phi \Rightarrow \Delta\}}$$

where *e* var-free term of type $t' \prec$

$$\mathsf{not_left} \ \ \frac{\Gamma \Longrightarrow \textit{A}, \Delta}{\Gamma, \, ! \, \textit{A} \Longrightarrow \Delta}$$

imp_left
$$\frac{\Gamma \Rightarrow A, \Delta \qquad \Gamma, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta}$$

close_goal
$$\overline{\Gamma, A \Rightarrow A, \Delta}$$

close_by_true
$$\overline{\Gamma \Rightarrow \text{true}, \Delta}$$

all_left
$$\frac{\Gamma, \backslash \text{forall } t \; x; \phi, \; \{x/e\}\phi \Rightarrow \Delta}{\Gamma, \backslash \text{forall } t \; x; \phi \Rightarrow \Delta}$$

$$\mathsf{not_left} \ \ \frac{\Gamma \Longrightarrow \textit{A}, \Delta}{\Gamma, \, ! \, \textit{A} \Longrightarrow \Delta}$$

imp_left
$$\frac{\Gamma \Longrightarrow A, \Delta \qquad \Gamma, B \Longrightarrow \Delta}{\Gamma, A \Longrightarrow B \Longrightarrow \Delta}$$

close_goal
$$T, A \Longrightarrow A, \Delta$$

close_by_true
$$\overline{\Gamma \Rightarrow \text{true}, \Delta}$$

all_left
$$\frac{\Gamma, \backslash \text{forall } t \, x; \phi, \, \{x/e\}\phi \Rightarrow \Delta}{\Gamma, \backslash \text{forall } t \, x; \phi \Rightarrow \Delta}$$

$$\mathsf{not_left} \ \ \frac{\Gamma \Longrightarrow \textit{A}, \Delta}{\Gamma, \, ! \, \textit{A} \Longrightarrow \Delta}$$

imp_left
$$\frac{\Gamma \Rightarrow A, \Delta \qquad \Gamma, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta}$$

close_goal
$$\overline{\Gamma, A \Rightarrow A, \Delta}$$

$$close_by_true \ \ \overline{ \ \Gamma \Longrightarrow true, \Delta }$$

all left
$$\frac{\Gamma, \text{forall } t \, x; \phi, \, \{x/e\}\phi \Rightarrow \Delta}{\Gamma, \text{forall } t \, x; \phi \Rightarrow \Delta}$$

$$\mathsf{not_left} \ \ \frac{\Gamma \Longrightarrow \textit{A}, \Delta}{\Gamma, \, ! \, \textit{A} \Longrightarrow \Delta}$$

imp_left
$$\frac{\Gamma \Rightarrow A, \Delta \qquad \Gamma, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta}$$

close_goal
$$T, A \Rightarrow A, \Delta$$

$$close_by_true \ \ \overline{ \ \Gamma \Longrightarrow true, \Delta }$$

all_left
$$\frac{\Gamma, \{\text{forall } t \; x; \phi, \; \{x/e\}\phi \Rightarrow \Delta}{\Gamma, \{\text{forall } t \; x; \phi \Rightarrow \Delta}$$

where *e* var-free term of type $t' \prec t$

Sequent Calculus Proofs

Proof tree

- Proof is tree structure with goal sequent as root
- Rules are applied from conclusion (old goal) to premisses (new goals)
- Rule with no premiss closes proof branch
- Proof is finished when all goals are closed

Sequent Calculus Proofs

Proof tree

- Proof is tree structure with goal sequent as root
- Rules are applied from conclusion (old goal) to premisses (new goals)
- Rule with no premiss closes proof branch
- Proof is finished when all goals are closed

Sequent Calculus Proofs

Proof tree

- Proof is tree structure with goal sequent as root
- Rules are applied from conclusion (old goal) to premisses (new goals)
- Rule with no premiss closes proof branch
- Proof is finished when all goals are closed

Sequent Calculus Proofs

Proof tree

- Proof is tree structure with goal sequent as root
- Rules are applied from conclusion (old goal) to premisses (new goals)
- Rule with no premiss closes proof branch
- Proof is finished when all goals are closed

- 1 JAVA CARD DL
- 2 Sequent Calculus
- 3 Rules for Programs: Symbolic Execution
- 4 A Calculus for 100% JAVA CARD
- 5 Loop Invariants

- 1 JAVA CARD DL
- 2 Sequent Calculus
- Rules for Programs: Symbolic Execution
- 4 A Calculus for 100% JAVA CARD
- 5 Loop Invariants

- Sequent rules for program formulas?
- What corresponds to top-level connective in a program?

The Active Statement in a Program

- Sequent rules for program formulas?
- What corresponds to top-level connective in a program?

The Active Statement in a Program

```
l:{try{ i=0; j=0; } finally{ k=0; }}
```


- Sequent rules for program formulas?
- What corresponds to top-level connective in a program?

The Active Statement in a Program

```
l:{try{ i=0; j=0; } finally{ k=0; }}
```


- Sequent rules for program formulas?
- What corresponds to top-level connective in a program?

The Active Statement in a Program

```
\underbrace{1:\{\text{try}\{}_{\pi} \text{ i=0; } j=0; \} \text{ finally}\{ k=0; \} \}
```

```
\begin{array}{ll} \mbox{passive prefix} & \pi \\ \mbox{active statement} & \mbox{i=0;} \\ \mbox{rest} & \omega \end{array}
```


- Sequent rules for program formulas?
- What corresponds to top-level connective in a program?

The Active Statement in a Program

$$\underbrace{1:\{\text{try}\{}_{\pi} \text{ i=0; } \underline{j=0; } \text{ finally}\{ \text{ k=0; } \} \}$$

```
\begin{array}{ll} \mbox{passive prefix} & \pi \\ \mbox{active statement} & \mbox{i=0;} \\ \mbox{rest} & \omega \end{array}
```

Rules for Symbolic Program Execution

If-then-else rule

$$\frac{\Gamma, B = \textit{true} \Longrightarrow \langle p \ \omega \rangle \phi, \Delta}{\Gamma \Longrightarrow \langle \textit{if} \ (B) \ \{ \ p \ \} \ \textit{else} \ \{ \ q \ \} \ \omega \rangle \phi, \Delta}$$

Complicated statements/expressions are simplified first, e.g.

$$\Gamma \Longrightarrow \langle v=y; y=y+1; x=v; \omega \rangle \phi, \Delta$$

$$\Gamma \Longrightarrow \langle x=y++; \omega \rangle \phi, \Delta$$

Simple assignment rule

$$\Gamma \Longrightarrow \{loc := val\} \langle \omega \rangle \phi, \Delta$$
$$\Gamma \Longrightarrow \langle loc = val; \ \omega \rangle \phi, \Delta$$

Rules for Symbolic Program Execution

If-then-else rule

Complicated statements/expressions are simplified first, e.g.

$$\Gamma \Longrightarrow \langle v=y; y=y+1; x=v; \omega \rangle \phi, \Delta$$

$$\Gamma \Longrightarrow \langle x=y++; \omega \rangle \phi, \Delta$$

Simple assignment rule

$$\Gamma \Longrightarrow \{loc := val\} \langle \omega \rangle \phi, \Delta$$
$$\Gamma \Longrightarrow \langle loc = val; \ \omega \rangle \phi, \Delta$$

Rules for Symbolic Program Execution

If-then-else rule

Complicated statements/expressions are simplified first, e.g.

$$\frac{\Gamma \Longrightarrow \langle v=y; y=y+1; x=v; \omega \rangle \phi, \Delta}{\Gamma \Longrightarrow \langle x=y++; \omega \rangle \phi, \Delta}$$

Simple assignment rule

$$\Gamma \Longrightarrow \{loc := val\} \langle \omega \rangle \phi, \Delta$$
$$\Gamma \Longrightarrow \langle loc = val; \ \omega \rangle \phi, \Delta$$

Treating Assignment with "Updates"

Updates

syntactic elements in the logic – (explicit substitutions)

Elementary Updates

$$\{ loc := val \} \phi$$

where

- loc is a program variable
- val is an expression type-compatible with loc

Parallel Updates

$$\{loc_1 := t_1 \mid | \cdots | | loc_n := t_n\} \phi$$

no dependency between the *n* components (but 'last wins' semantics)

Treating Assignment with "Updates"

Updates

syntactic elements in the logic – (explicit substitutions)

Elementary Updates

$$\{loc := val\} \phi$$

where

- loc is a program variable
- val is an expression type-compatible with loc

Parallel Updates

$$\{loc_1 := t_1 \mid | \cdots | | loc_n := t_n\} \phi$$

no dependency between the *n* components (but 'last wins' semantics)

Treating Assignment with "Updates"

Updates

syntactic elements in the logic – (explicit substitutions)

Elementary Updates

$$\{loc := val\} \phi$$

where

- loc is a program variable
- val is an expression type-compatible with loc

Parallel Updates

$$\{loc_1 := t_1 \mid | \cdots | | loc_n := t_n\} \phi$$

no dependency between the *n* components (but 'last wins' semantics)

Why Updates?

Updates are

- aggregations of state change
- eagerly parallelised + simplified
- lazily applied (i.e., substituted into postcondition)

Advantages

- no renaming required (compared to another forward proof techniques strongest-postcondition calculus)
- delayed/minimised proof branching efficient aliasing treatment)

Why Updates?

Updates are

- aggregations of state change
- eagerly parallelised + simplified
- lazily applied (i.e., substituted into postcondition)

Advantages

- no renaming required (compared to another forward proof technique: strongest-postcondition calculus)
- delayed/minimised proof branching efficient aliasing treatment)

$$x < y \implies x < y$$

$$\vdots$$

$$x < y \implies \{x :=y \mid \mid y :=x \} \langle \rangle \text{ } y < x$$

$$\vdots$$

$$x < y \implies \{t :=x \mid \mid x :=y \mid \mid y :=x \} \langle \rangle \text{ } y < x$$

$$\vdots$$

$$x < y \implies \{t :=x \mid \mid x :=y \} \{y :=t \} \langle \rangle \text{ } y < x$$

$$\vdots$$

$$x < y \implies \{t :=x \} \{x :=y \} \langle y =t; \rangle \text{ } y < x$$

$$\vdots$$

$$x < y \implies \{t :=x \} \langle x =y; y =t; \rangle \text{ } y < x$$

$$\vdots$$

$$\Rightarrow x < y \implies \{t :=x \} \langle x =y; y =t; \rangle \text{ } y < x$$

$$\vdots$$

$$\Rightarrow x < y \implies \langle \text{int } t =x; x =y; y =t; \rangle \text{ } y < x$$

$$x < y \implies x < y$$

$$\vdots$$

$$x < y \implies \{x :=y \mid \mid y :=x \} \langle \rangle \text{ } y < x$$

$$\vdots$$

$$x < y \implies \{t :=x \mid \mid x :=y \mid \mid y :=x \} \langle \rangle \text{ } y < x$$

$$\vdots$$

$$x < y \implies \{t :=x \mid \mid x :=y \} \{y :=t \} \langle \rangle \text{ } y < x$$

$$\vdots$$

$$x < y \implies \{t :=x \} \{x :=y \} \langle y =t; \rangle \text{ } y < x$$

$$\vdots$$

$$x < y \implies \{t :=x \} \{x :=y; y =t; \rangle \text{ } y < x$$

$$\vdots$$

$$\Rightarrow x < y \implies \{t :=x; x =y; y =t; \rangle \text{ } y < x$$

$$x < y \implies x < y$$

$$\vdots$$

$$x < y \implies \{x :=y \mid \mid y :=x \} \langle \rangle \text{ } y < x$$

$$\vdots$$

$$x < y \implies \{t :=x \mid \mid x :=y \mid \mid y :=x \} \langle \rangle \text{ } y < x$$

$$\vdots$$

$$x < y \implies \{t :=x \mid \mid x :=y \} \{y :=t \} \langle \rangle \text{ } y < x$$

$$\vdots$$

$$x < y \implies \{t :=x \} \{x :=y \} \langle y =t; \rangle \text{ } y < x$$

$$\vdots$$

$$x < y \implies \{t :=x \} \langle x =y; \text{ } y =t; \rangle \text{ } y < x$$

$$\vdots$$

$$\Rightarrow x < y \implies \{\text{int } t =x; \text{ } x =y; \text{ } y =t; \rangle \text{ } y < x$$

$$x < y \implies x < y$$

$$\vdots$$

$$x < y \implies \{x :=y \mid \mid y :=x \} \langle \rangle \text{ } y < x$$

$$\vdots$$

$$x < y \implies \{t :=x \mid \mid x :=y \mid \mid y :=x \} \langle \rangle \text{ } y < x$$

$$\vdots$$

$$x < y \implies \{t :=x \mid \mid x :=y \} \{y :=t \} \langle \rangle \text{ } y < x$$

$$\vdots$$

$$x < y \implies \{t :=x \} \{x :=y \} \langle y =t; \rangle \text{ } y < x$$

$$\vdots$$

$$x < y \implies \{t :=x \} \langle x =y; \text{ } y =t; \rangle \text{ } y < x$$

$$\vdots$$

$$\Rightarrow x < y \implies \{t :=x \} \langle x =y; \text{ } y =t; \rangle \text{ } y < x$$

$$\vdots$$

$$\Rightarrow x < y \implies \langle \text{int } t =x; \text{ } x =y; \text{ } y =t; \rangle \text{ } y < x$$

$$x < y \implies x < y$$

$$\vdots$$

$$x < y \implies \{x :=y \mid \mid y :=x \} \langle \rangle \text{ } y < x$$

$$\vdots$$

$$x < y \implies \{t :=x \mid \mid x :=y \mid \mid y :=x \} \langle \rangle \text{ } y < x$$

$$\vdots$$

$$x < y \implies \{t :=x \mid \mid x :=y \} \{y :=t \} \langle \rangle \text{ } y < x$$

$$\vdots$$

$$x < y \implies \{t :=x \} \{x :=y \} \langle y =t; \rangle \text{ } y < x$$

$$\vdots$$

$$x < y \implies \{t :=x \} \langle x =y; \text{ } y =t; \rangle \text{ } y < x$$

$$\vdots$$

$$\Rightarrow x < y \implies \{t :=x \} \langle x =y; \text{ } y =t; \rangle \text{ } y < x$$

$$\vdots$$

$$\Rightarrow x < y \implies \langle \text{int } t =x; \text{ } x =y; \text{ } y =t; \rangle \text{ } y < x$$


```
x < y \implies \{x :=y \mid | y :=x \} \langle \rangle y < x
  x < y \implies \{t := x \mid | x := y \mid | y := x \} \langle y < x \rangle
  x < y \implies \{t := x \mid | x := y\} \{y := t\} \langle y < x \rangle
    x < y \implies \{t := x\} \{x := y\} \langle y = t; \rangle y < x
     x < y \implies \{t := x\} \langle x = y; y = t; \rangle y < x
\Rightarrow x < y -> (int t=x; x=y; y=t;) y < x
```



```
x < y \implies x < y
         x < y \implies \{x := y \mid | y := x\} \langle \rangle \ y < x
  x < y \implies \{t := x \mid | x := y \mid | y := x \} \langle y < x \rangle
  x < y \implies \{t := x \mid | x := y\} \{y := t\} \langle y < x \rangle
    x < y \implies \{t := x\} \{x := y\} \langle y = t; \rangle y < x
     x < y \implies \{t := x\} \langle x = y; y = t; \rangle y < x
\Rightarrow x < y -> \(\(\)\)int t=x; x=y; y=t;\(\)\(\)\(\)y < x
```


An abstract datatype $Array(\mathbb{I}, \mathbb{V})$

Types: Indices I, Values V

Function symbols:

- select : $Array(\mathbb{I}, \mathbb{V}) \times \mathbb{I} \to \mathbb{V}$
- store : $Array(\mathbb{I}, \mathbb{V}) \times \mathbb{I} \times \mathbb{V} \to Array(\mathbb{I}, \mathbb{V})$

Axioms

$$\forall a, i, v.$$
 $select(store(a, i, v), i) = v$
 $\forall a, i, j, v. \ i \neq j \rightarrow select(store(a, i, v), j) = select(a, j)$

Intuition

 $\mathcal{D}(\mathit{Array}(\mathbb{I},\mathbb{V}))$ represents the set of functions $\mathcal{D}(\mathbb{I}) o \mathcal{D}(\mathbb{V})$

An abstract datatype $Array(\mathbb{I}, \mathbb{V})$

Types: Indices \mathbb{I} , Values \mathbb{V}

Function symbols:

- select : Array $(\mathbb{I}, \mathbb{V}) \times \mathbb{I} \to \mathbb{V}$
- store : $Array(\mathbb{I}, \mathbb{V}) \times \mathbb{I} \times \mathbb{V} \to Array(\mathbb{I}, \mathbb{V})$

Axioms

$$\forall a, i, v.$$
 $select(store(a, i, v), i) = v$
 $\forall a, i, j, v. \ i \neq j \rightarrow select(store(a, i, v), j) = select(a, j)$

Intuition

 $\mathcal{D}(\textit{Array}(\mathbb{I},\mathbb{V}))$ represents the set of functions $\mathcal{D}(\mathbb{I}) o \mathcal{D}(\mathbb{V})$

An abstract datatype $Array(\mathbb{I}, \mathbb{V})$

Types: Indices I, Values V

Function symbols:

- select : $Array(\mathbb{I}, \mathbb{V}) \times \mathbb{I} \to \mathbb{V}$
- store : $Array(\mathbb{I}, \mathbb{V}) \times \mathbb{I} \times \mathbb{V} \to Array(\mathbb{I}, \mathbb{V})$

Axioms

$$\forall a, i, v.$$
 $select(store(a, i, v), i) = v$
 $\forall a, i, j, v. \ i \neq j \rightarrow select(store(a, i, v), j) = select(a, j)$

Intuition

 $\mathcal{D}(\textit{Array}(\mathbb{I},\mathbb{V}))$ represents the set of functions $\mathcal{D}(\mathbb{I}) o \mathcal{D}(\mathbb{V})$

An abstract data

Types: Indices I,

Function symbo

select : Array

store : Array(

Photo by "null0" (www.flickr.com/photos/null0/272015955)

Axioms

 $\forall a, i, v$.

John McCarthy (1927–2011): Theory of arrays, is, decidable

 $\forall a, i, j, v. \ i \neq j \rightarrow select(store(a, i, v), j) = select(a, j)$

Intuition

 $\mathcal{D}(\textit{Array}(\mathbb{I},\mathbb{V}))$ represents the set of functions $\mathcal{D}(\mathbb{I}) o \mathcal{D}(\mathbb{V})$

Program State Representation

Local program variables

Modeled as non-rigid constants

Heap

Modeled with theory of arrays: $\mathbb{I} = Object \times Field$, $\mathbb{V} = Any$

heap: Heap (the heap in the current state)

select: Heap imes Object imes Field o Any

store: Heap imes Object imes Field imes Any o Heap

Some special program variables

self the current receiver object (this in Java)

exc the currently active exception (null if none thrown

result the result of the method invocation

Program State Representation

Local program variables

Modeled as non-rigid constants

Heap

Modeled with theory of arrays: $\mathbb{I} = \textit{Object} \times \textit{Field}$, $\mathbb{V} = \textit{Any}$

heap: Heap (the heap in the current state)

 $select: Heap \times Object \times Field \rightarrow Any$

store: $Heap \times Object \times Field \times Any \rightarrow Heap$

Some special program variables

self the current receiver object (this in Java)

exc the currently active exception (null if none thrown

result the result of the method invocation

Program State Representation

Local program variables

Modeled as non-rigid constants

Heap

Modeled with theory of arrays: $\mathbb{I} = \textit{Object} \times \textit{Field}$, $\mathbb{V} = \textit{Any}$

heap: Heap (the heap in the current state)

 $select: Heap \times Object \times Field \rightarrow Any$

store: $Heap \times Object \times Field \times Any \rightarrow Heap$

Some special program variables

self the current receiver object (this in Java)

exc the currently active exception (null if none thrown)

result the result of the method invocation

- 1 JAVA CARD DL
- 2 Sequent Calculus
- Rules for Programs: Symbolic Execution
- 4 A Calculus for 100% JAVA CARD
- 5 Loop Invariants

- 1 JAVA CARD DL
- 2 Sequent Calculus
- 3 Rules for Programs: Symbolic Execution
- 4 A Calculus for 100% JAVA CARD
- 5 Loop Invariants

Supported Java Features

- method invocation with polymorphism/dynamic binding
- object creation and initialisation
- arrays
- abrupt termination
- throwing of NullPointerExceptions, etc.
- bounded integer data types
- transactions

All JAVA CARD language features are fully addressed in KeY

Supported Java Features

- method invocation with polymorphism/dynamic binding
- object creation and initialisation
- arrays
- abrupt termination
- throwing of NullPointerExceptions, etc.
- bounded integer data types
- transactions

All JAVA CARD language features are fully addressed in KeY

Java—A Language of Many Features

Ways to deal with Java features

- Program transformation, up-front
- Local program transformation, done by a rule on-the-fly
- Modeling with first-order formulas
- Special-purpose extensions of program logic

Pro: Feature needs not be handled in calculus

Contra: Modified source code

Example in KeY: Very rare: treating inner classes

Java—A Language of Many Features

Ways to deal with Java features

- Program transformation, up-front
- Local program transformation, done by a rule on-the-fly
- Modeling with first-order formulas
- Special-purpose extensions of program logic

Pro: Flexible, easy to implement, usable

Contra: Not expressive enough for all features

Example in KeY: Complex expression eval, method inlining, etc., etc.

Java—A Language of Many Features

Ways to deal with Java features

- Program transformation, up-front
- Local program transformation, done by a rule on-the-fly
- Modeling with first-order formulas
- Special-purpose extensions of program logic

Pro: No logic extensions required, enough to express most features

Contra: Creates difficult first-order POs, unreadable

antecedents

Example in KeY: Dynamic types and branch predicates

Java—A Language of Many Features

Ways to deal with Java features

- Program transformation, up-front
- Local program transformation, done by a rule on-the-fly
- Modeling with first-order formulas
- Special-purpose extensions of program logic

Pro: Arbitrarily expressive extensions possible Contra: Increases complexity of all rules Example in KeY: Method frames, updates

- Non-program rules
 - first-order rules
 - rules for data-types
 - first-order modal rules
 - induction rules
- Rules for reducing/simplifying the program (symbolic execution)
 Replace the program by
 - case distinctions (proof branches) andsequences of updates
- 3 Rules for handling loops
 - using loop invariants
 using induction
- Rules for replacing a method invocations by the method's contract
- Update simplification

Beckert, Ulbrich - Formal Systems II: Applications

- Non-program rules
 - first-order rules
 - rules for data-types
 - first-order modal rules
 - induction rules
- 2 Rules for reducing/simplifying the program (symbolic execution)
 - Replace the program by
 - case distinctions (proof branches) and
 - sequences of updates
- Rules for handling loopsusing loop invariants
- using induction
- Rules for replacing a method invocations by the method's contract
- Update simplification

Beckert, Ulbrich - Formal Systems II: Applications

- Non-program rules
 - first-order rules
 - rules for data-types
 - first-order modal rules
 - induction rules
- 2 Rules for reducing/simplifying the program (symbolic execution)

Replace the program by

- case distinctions (proof branches) and
- sequences of updates
- 3 Rules for handling loops
 - using loop invariants
 - using induction
- A Rules for replacing a method invocations by the method's contract
- Update simplification

Beckert, Ulbrich - Formal Systems II: Applications

- Non-program rules
 - first-order rules
 - rules for data-types
 - first-order modal rules
 - induction rules
- 2 Rules for reducing/simplifying the program (symbolic execution)

Replace the program by

- case distinctions (proof branches) and
- sequences of updates
- Rules for handling loops
 - using loop invariants
 - using induction
- A Rules for replacing a method invocations by the method's contract

- Non-program rules
 - first-order rules
 - rules for data-types
 - first-order modal rules
 - induction rules
- 2 Rules for reducing/simplifying the program (symbolic execution)

Replace the program by

- case distinctions (proof branches) and
- sequences of updates
- Rules for handling loops
 - using loop invariants
 - using induction
- A Rules for replacing a method invocations by the method's contract
- 5 Update simplification
 Beckert, Ulbrich Formal Systems II: Applications

Symbolic execution of loops: unwind

$$\text{unwindLoop} \ \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \, \text{if (b)} \quad \{ \quad \text{p; while (b) p} \} \ \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \, \text{while (b) p} \ \omega] \phi, \Delta}$$

How to handle a loop with...

- 0 iterations? Unwind 1×
- 10 iterations? Unwind 11×
- 10000 iterations? Unwind 10001× (and don't make any plans for the rest of the day)
- an unknown number of iterations?

Symbolic execution of loops: unwind

$$\text{unwindLoop} \ \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \, \text{if (b)} \quad \{ \ \ \text{p; while (b) p} \} \ \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \, \text{while (b) p} \ \omega] \phi, \Delta}$$

How to handle a loop with...

- 0 iterations? Unwind 1×
- 10 iterations? Unwind 11×
- 10000 iterations? Unwind 10001× (and don't make any plans for the rest of the day)
- an *unknown* number of iterations?

Symbolic execution of loops: unwind

$$\text{unwindLoop} \ \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \, \text{if (b)} \quad \{ \quad \text{p; while (b) p} \} \ \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \, \text{while (b) p} \ \omega] \phi, \Delta}$$

How to handle a loop with...

- 0 iterations? Unwind 1×
- 10 iterations? Unwind 11×
- 10000 iterations? Unwind 10001× (and don't make any plans for the rest of the day)
- an unknown number of iterations?

Symbolic execution of loops: unwind

$$\text{unwindLoop} \ \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \, \text{if (b)} \quad \{ \quad \text{p; while (b) p} \} \ \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \, \text{while (b) p} \ \omega] \phi, \Delta}$$

How to handle a loop with...

- 0 iterations? Unwind 1×
- 10 iterations? Unwind 11×
- 10000 iterations? Unwind 10001×
 (and don't make any plans for the rest of the day)
- an unknown number of iterations?

Symbolic execution of loops: unwind

$$\text{unwindLoop} \ \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \, \text{if (b)} \quad \{ \quad \text{p; while (b) p} \} \ \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \, \text{while (b) p} \ \omega] \phi, \Delta}$$

How to handle a loop with...

- 0 iterations? Unwind 1×
- 10 iterations? Unwind 11×
- 10000 iterations? Unwind 10001× (and don't make any plans for the rest of the day)
- an unknown number of iterations?

Symbolic execution of loops: unwind

$$\text{unwindLoop} \ \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \, \text{if (b)} \quad \{ \quad \text{p; while (b) p} \} \ \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \, \text{while (b) p} \ \omega] \phi, \Delta}$$

How to handle a loop with...

- 0 iterations? Unwind 1×
- 10 iterations? Unwind 11×
- 10000 iterations? Unwind 10001 × (and don't make any plans for the rest of the day)
- an unknown number of iterations?

Symbolic execution of loops: unwind

How to handle a loop with...

- 0 iterations? Unwind 1×
- 10 iterations? Unwind 11×
- 10000 iterations? Unwind 10001×
 (and don't make any plans for the rest of the day)
- an unknown number of iterations?

Symbolic execution of loops: unwind

$$\text{unwindLoop} \ \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \, \text{if (b)} \quad \{ \quad \text{p; while (b) p} \} \ \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \, \text{while (b) p} \ \omega] \phi, \Delta}$$

How to handle a loop with...

- 0 iterations? Unwind 1×
- 10 iterations? Unwind 11×
- 10000 iterations? Unwind $10001 \times$ (and don't make any plans for the rest of the day)
- an unknown number of iterations?

Symbolic execution of loops: unwind

How to handle a loop with...

- 0 iterations? Unwind 1×
- 10 iterations? Unwind 11×
- 10000 iterations? Unwind $10001 \times$ (and don't make any plans for the rest of the day)
- an unknown number of iterations?

Idea behind loop invariants

- A formula *Inv* whose validity is *preserved* by loop guard and body
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- If the loop terminates at all, then lnv holds afterwards
- Encode the desired postcondition after loop into Inv

Basic Invariant Rule

 $\begin{array}{c} \Gamma \Rightarrow \mathcal{U} \textit{Inv}, \Delta \\ \textit{Inv}, \, b \doteq \text{TRUE} \Rightarrow [\texttt{p}] \textit{Inv} \\ \hline \textit{loopInvariant} & \frac{\textit{Inv}, \, b \doteq \text{FALSE} \Rightarrow [\pi \, \omega] \phi}{\Gamma \Rightarrow \mathcal{U} [\pi \, \text{while} \, (\texttt{b}) \, \, \texttt{p} \, \omega] \phi, \Delta } \end{array}$

(initially valid) (preserved) (use case)

Idea behind loop invariants

- A formula *Inv* whose validity is *preserved* by loop guard and body
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- If the loop terminates at all, then Inv holds afterwards
- Encode the desired postcondition after loop into Inv

Basic Invariant Rule

 $\begin{array}{c|c} \Gamma \Rightarrow \mathcal{U} \textit{Inv}, \Delta & \text{(initially valid)} \\ \textit{Inv}, \ b \doteq \texttt{TRUE} \Rightarrow [\texttt{p}] \textit{Inv} & \text{(preserved)} \\ \hline \textit{loopInvariant} & \frac{\textit{Inv}, \ b \doteq \texttt{FALSE} \Rightarrow [\pi \ \omega] \phi}{\Gamma \Rightarrow \mathcal{U} [\pi \, \textbf{while} \, (\texttt{b}) \ \ \texttt{p} \, \omega] \phi, \Delta } & \text{(use case)} \\ \end{array}$

Idea behind loop invariants

- A formula *Inv* whose validity is *preserved* by loop guard and body
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- If the loop terminates at all, then Inv holds afterwards
- Encode the desired postcondition after loop into Inv

Basic Invariant Rule

 $\begin{array}{c|c} \Gamma \Rightarrow \mathcal{U} \textit{Inv}, \Delta & \text{(initially valid)} \\ \textit{Inv}, \ b \doteq \texttt{TRUE} \Rightarrow [\texttt{p}] \textit{Inv} & \text{(preserved)} \\ \hline \textit{loopInvariant} & \frac{\textit{Inv}, \ b \doteq \texttt{FALSE} \Rightarrow [\pi \ \omega] \phi}{\Gamma \Rightarrow \mathcal{U} [\pi \, \textbf{while} \, (\texttt{b}) \, \ \texttt{p} \, \omega] \phi, \Delta} & \text{(use case)} \\ \end{array}$

Idea behind loop invariants

- A formula *Inv* whose validity is *preserved* by loop guard and body
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- If the loop terminates at all, then Inv holds afterwards
- Encode the desired postcondition after loop into Inv

Basic Invariant Rule

 $\begin{array}{c} \Gamma \Rightarrow \mathcal{U} \textit{Inv}, \Delta & \text{(initially valid)} \\ \textit{Inv}, \ b \doteq \texttt{TRUE} \Rightarrow [\texttt{p}] \textit{Inv} & \text{(preserved)} \\ \textit{Inv}, \ b \doteq \texttt{FALSE} \Rightarrow [\pi \ \omega] \phi & \text{(use case)} \\ \hline \Gamma \Rightarrow \mathcal{U} [\pi \, \textbf{while} \, (\texttt{b}) \, \texttt{p} \, \omega] \phi, \Delta & \end{array}$

loopInvariant -

Idea behind loop invariants

- A formula *Inv* whose validity is *preserved* by loop guard and body
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- If the loop terminates at all, then Inv holds afterwards
- Encode the desired postcondition after loop into Inv

Basic Invariant Rule

$$\begin{array}{c} \Gamma \Rightarrow \mathcal{U} \textit{Inv}, \Delta & \text{(initially valid)} \\ \textit{Inv}, \ b \doteq \texttt{TRUE} \Rightarrow [\texttt{p}] \textit{Inv} & \text{(preserved)} \\ \textbf{loopInvariant} & \frac{\textit{Inv}, \ b \doteq \texttt{FALSE} \Rightarrow [\pi \ \omega] \phi}{\Gamma \Rightarrow \mathcal{U} [\pi \, \texttt{while} \, (\texttt{b}) \ \ \texttt{p} \ \omega] \phi, \Delta} \end{array}$$

$$\begin{array}{c} \Gamma \Longrightarrow \mathcal{U} \textit{Inv}, \Delta & \text{(initially valid)} \\ \textit{Inv}, \ b \doteq \texttt{TRUE} \Longrightarrow [\texttt{p}] \textit{Inv} & \text{(preserved)} \\ \textit{IoopInvariant} & \frac{\textit{Inv}, \ b \doteq \texttt{FALSE} \Longrightarrow [\pi \ \omega] \phi}{\Gamma \Longrightarrow \mathcal{U}[\pi \, \textbf{while} \, (\texttt{b}) \, \, \texttt{p} \, \omega] \phi, \Delta} & \text{(use case)} \end{array}$$

- **Context** Γ, Δ , \mathcal{U} must be omitted in 2nd and 3rd premise
- But: context contains (part of) precondition and class invariants
- Required context information must be added to loop invariant *Inv*

$$\begin{array}{c} \Gamma \Longrightarrow \mathcal{U} \textit{Inv}, \Delta & \text{(initially valid)} \\ \textit{Inv}, \ b \doteq \texttt{TRUE} \Longrightarrow [\texttt{p}] \textit{Inv} & \text{(preserved)} \\ \textit{IoopInvariant} & \frac{\textit{Inv}, \ b \doteq \texttt{FALSE} \Longrightarrow [\pi \ \omega] \phi}{\Gamma \Longrightarrow \mathcal{U}[\pi \, \textbf{while} \, (\texttt{b}) \, \, \texttt{p} \, \omega] \phi, \Delta} & \text{(use case)} \end{array}$$

- **Context** Γ, Δ , \mathcal{U} must be omitted in 2nd and 3rd premise
- But: context contains (part of) precondition and class invariants
- Required context information must be added to loop invariant *Inv*

$$\begin{array}{c} \Gamma \Longrightarrow \mathcal{U} \textit{Inv}, \Delta & \text{(initially valid)} \\ \textit{Inv}, \ b \doteq \texttt{TRUE} \Longrightarrow [\texttt{p}] \textit{Inv} & \text{(preserved)} \\ \textit{IoopInvariant} & \frac{\textit{Inv}, \ b \doteq \texttt{FALSE} \Longrightarrow [\pi \ \omega] \phi}{\Gamma \Longrightarrow \mathcal{U}[\pi \, \textbf{while} \, (\texttt{b}) \, \, \texttt{p} \, \omega] \phi, \Delta} & \text{(use case)} \end{array}$$

- **Context** Γ, Δ , \mathcal{U} must be omitted in 2nd and 3rd premise
- But: context contains (part of) precondition and class invariants
- Required context information must be added to loop invariant *Inv*

$$\begin{array}{c} \Gamma \Longrightarrow \mathcal{U} \textit{Inv}, \Delta & \text{(initially valid)} \\ \textit{Inv}, \ b \doteq \texttt{TRUE} \Longrightarrow [\texttt{p}] \textit{Inv} & \text{(preserved)} \\ \textit{IoopInvariant} & \frac{\textit{Inv}, \ b \doteq \texttt{FALSE} \Longrightarrow [\pi \ \omega] \phi}{\Gamma \Longrightarrow \mathcal{U}[\pi \, \texttt{while} \, (\texttt{b}) \, \, \texttt{p} \, \omega] \phi, \Delta} & \text{(use case)} \end{array}$$

- **Context** Γ, Δ , \mathcal{U} must be omitted in 2nd and 3rd premise
- But: context contains (part of) precondition and class invariants
- Required context information must be added to loop invariant Inv


```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}</pre>
```


Precondition: $a \neq null$

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}</pre>
```



```
Precondition: a ≠ null

int i = 0;

while(i < a.length) {
    a[i] = 1;
    i++;
```



```
Precondition: a ≠ null

int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}</pre>
```

Postcondition: \forall int x; $(0 \le x < a.length \rightarrow a[x] \doteq 1)$

Loop invariant: $0 \le i$ & $i \le a.length$


```
Precondition: a ≠ null

int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}</pre>
```

```
Loop invariant: 0 \le i \& i \le a.length \& \forall int x; (0 \le x < i \rightarrow a[x] \doteq 1)
```



```
Precondition: a ≠ null

int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}</pre>
```

```
Loop invariant: 0 \le i & i \le a.length & \forall int x; (0 \le x < i \rightarrow a[x] \doteq 1) & a \ne null
```


Precondition: a # null & ClassInv

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}</pre>
```

```
Loop invariant: 0 \le i & i \le a.length & \forall int x; (0 \le x < i \rightarrow a[x] \doteq 1) & a \ne null & ClassInv'
```

Keeping the Context

- Want to keep part of the context that is unmodified by loop
- assignable clauses for loops can tell what might be modified

```
@ assignable i, a[*]
```

Keeping the Context

- Want to keep part of the context that is unmodified by loop
- assignable clauses for loops can tell what might be modified

```
@ assignable i, a[*];
```

Example with Improved Invariant Rule


```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}</pre>
```

Example with Improved Invariant Rule


```
Precondition: a \neq null
```

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}</pre>
```

Example with Improved Invariant Rule

Precondition: $a \neq null$

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}</pre>
```

Postcondition: \forall int x; $(0 \le x < a.length \rightarrow a[x] \doteq 1)$

Example with Improved Invariant Rule


```
Precondition: a \neq null
```

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}</pre>
```

Postcondition: \forall int x; $(0 \le x < a.length \rightarrow a[x] \doteq 1)$

Loop invariant: $0 \le i \& i \le a.length$

Example with Improved Invariant Rule


```
Precondition: a ≠ null

int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}</pre>
```

Postcondition: $\forall int x$; $(0 \le x < a.length \rightarrow a[x] = 1)$

```
Loop invariant: 0 \le i \& i \le a.length \& \forall int x; (0 \le x < i \rightarrow a[x] \doteq 1)
```

Example with Improved Invariant Rule


```
Precondition: a \neq null
```

```
int i = 0;
while(i < a.length) {</pre>
    a[i] = 1;
    i++;
```

Postcondition: \forall int x; $(0 \le x < a.length \rightarrow a[x] \doteq 1)$

Loop invariant:
$$0 \le i \& i \le a.length \& \forall int x; (0 \le x < i \rightarrow a[x] \doteq 1)$$

Example with Improved Invariant Rule


```
Precondition: a ≠ null & ClassInv
```

```
int i = 0;
while(i < a.length) {</pre>
    a[i] = 1;
    i++;
```

Postcondition: \forall int x; $(0 \le x < a.length \rightarrow a[x] \doteq 1)$

Loop invariant:
$$0 \le i \& i \le a.length \& \forall int x; (0 \le x < i \rightarrow a[x] \doteq 1)$$

Example in JML/Java - Loop. java


```
public int[] a;
/*@ public normal behavior
   ensures (\forall int x; 0<=x && x<a.length; a[x]==1);</pre>
  @ diverges true;
  @*/
public void m() {
  int i = 0;
  /*@ loop_invariant
    0 <= i \&\& i <= a.length \&\&
         (\forall int x; 0<=x && x<i; a[x]==1));
    @ assignable i, a[*];
    @*/
  while(i < a.length) {</pre>
    a[i] = 1;
    i++;
```



```
\forall int X;

(n \stackrel{.}{=} X \land X >= 0 \rightarrow

[i = 0; r = 0;

while (i<n) { i = i + 1; r = r + i;}

r=r+r-n;

]r \stackrel{.}{=}?)
```

How can we prove that the above formula is valid (i.e., satisfied in all states)?

Solution:

```
@ loop_invariant
@ i>=0 && 2*r == i*(i + 1) && i <= n,
@ assignable i, r;</pre>
```



```
\forall int X;

(n \doteq X \land X >= 0 \rightarrow

[i = 0; r = 0;

while (i<n) { i = i + 1; r = r + i;}

r=r+r-n;

]r \doteq X * X)
```

How can we prove that the above formula is valid (i.e., satisfied in all states)?

Solution:

```
@ loop_invariant
@ i>=0 && 2*r == i*(i + 1) && i <= n,
@ assignable i, r;</pre>
```



```
\forall int X;

(n \doteq X \land X >= 0 \rightarrow

[i = 0; r = 0;

while (i<n) { i = i + 1; r = r + i;}

r=r+r-n;

]r \doteq X \times X)
```

How can we prove that the above formula is valid (i.e., satisfied in all states)?

Solution:

- @ loop_invariant
- @ i > = 0 && 2 * r == i * (i + 1) && i <= n;
- @ assignable i, r;


```
\forall int X;

(n \doteq X \land X >= 0 \rightarrow

[i = 0; r = 0;

while (i<n) { i = i + 1; r = r + i;}

r=r+r-n;

]r \doteq X \times X)
```

How can we prove that the above formula is valid (i.e., satisfied in all states)?

Solution:

- @ loop_invariant
- @ $i \ge 0 \&\& 2 \times r == i \times (i + 1) \&\& i \le n;$
- @ assignable i, r;

Hints

Proving assignable

- The invariant rule assumes that assignable is correct E.g., with assignable \nothing; one can prove nonsense
- Invariant rule of KeY generates proof obligation that ensures correctness of assignable

Setting in the KeY Prover when proving loops

- Loop treatment: Invariant
- Quantifier treatment: No Splits with Progs
- If program contains *, /: Arithmetic treatment: DefOps
- Is search limit high enough (time out, rule apps.)?
- When proving partial correctness, add diverges true;

Hints

Proving assignable

- The invariant rule assumes that assignable is correct E.g., with assignable \nothing; one can prove nonsense
- Invariant rule of KeY generates proof obligation that ensures correctness of assignable

Setting in the KeY Prover when proving loops

- Loop treatment: Invariant
- Quantifier treatment: No Splits with Progs
- If program contains *, /: Arithmetic treatment: DefOps
- Is search limit high enough (time out, rule apps.)?
- When proving partial correctness, add diverges true;

Find a decreasing integer term v (called variant)

Add the following premisses to the invariant rule:

- $v \ge 0$ is initially valid
- $v \ge 0$ is preserved by the loop body
- v is strictly decreased by the loop body

Proving termination in JML/Java

- Remove directive diverges true;
- Add directive decreasing v; to loop invariant
- KeY creates suitable invariant rule and PO (with $\langle \ldots \rangle \phi$)

Example: The array loop

@ decreasing

Find a decreasing integer term v (called variant)

Add the following premisses to the invariant rule:

- $v \ge 0$ is initially valid
- $v \ge 0$ is preserved by the loop body
- v is strictly decreased by the loop body

Proving termination in JML/Java

- Remove directive diverges true;
- Add directive decreasing v; to loop invariant
- KeY creates suitable invariant rule and PO (with $\langle \ldots \rangle \phi$)

Example: The array loop

@ decreasing

Find a decreasing integer term v (called variant)

Add the following premisses to the invariant rule:

- $v \ge 0$ is initially valid
- $v \ge 0$ is preserved by the loop body
- v is strictly decreased by the loop body

Proving termination in JML/Java

- Remove directive diverges true;
- Add directive decreasing v; to loop invariant
- KeY creates suitable invariant rule and PO (with $\langle \ldots \rangle \phi$)

Example: The array loop

@ decreasing

Find a decreasing integer term v (called variant)

Add the following premisses to the invariant rule:

- $v \ge 0$ is initially valid
- $v \ge 0$ is preserved by the loop body
- v is strictly decreased by the loop body

Proving termination in JML/Java

- Remove directive diverges true;
- Add directive decreasing v; to loop invariant
- KeY creates suitable invariant rule and PO (with $\langle \ldots \rangle \phi$)

Example: The array loop

@ decreasing a.length - i;

Find a decreasing integer term *v* (called *variant*)

Add the following premisses to the invariant rule:

- $v \ge 0$ is initially valid
- $v \ge 0$ is preserved by the loop body
- v is strictly decreased by the loop body

Proving termination in JML/Java

- Remove directive diverges true;
- Add directive decreasing v; to loop invariant
- KeY creates suitable invariant rule and PO (with $\langle \ldots \rangle \phi$)

Example: The array loop

decreasing a.length - i;

Files:

- LoopT.java
- Loop2T.java