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Cyber-Physical Systems Analysis: Aircraft Example

Which control decisions are safe for aircraft collision avoidance?
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CPSs Promise Transformative Impact!

Prospects: Safe & Efficient

Driver assistance
Autonomous cars

Pilot decision support
Autopilots / UAVs

Train protection
Robots help people

Prerequisite: CPS need to be safe

How do we make sure CPS make the world a better place?
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Can you trust a computer to control physics?

Rationale
1 Safety guarantees require analytic foundations.

2 Foundations revolutionized digital computer science & our society.

3 Need even stronger foundations when software reaches out into our
physical world.

How can we provide people with cyber-physical systems they can bet their
lives on? — Jeannette Wing

Cyber-physical Systems

CPS combine cyber capabilities with physical capabilities to solve problems
that neither part could solve alone.
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CPSs are Multi-Dynamical Systems
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CPS Dynamics

CPS are characterized by multiple
facets of dynamical systems.

CPS Compositions

CPS combine multiple
simple dynamical effects.

Tame Parts

Exploiting compositionality
tames CPS complexity.
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Hybrid Systems & Cyber-Physical Systems

Mathematical model for complex physical systems:

Definition (Hybrid Systems)

systems with interacting discrete and continuous dynamics

Technical characteristics:

Definition (Cyber-Physical Systems)

(Distributed network of) computerized control for physical system
Computation, communication and control for physics
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Computational Thinking for CPS

Logical scrutiny, formalization, and correctness

proofs are critical for CPS!

1 CPSs are so easy to get wrong.

2 These logical aspects are an integral part of CPS design.

3 Critical to your understanding of the intricate complexities of CPS.

4 Tame complexity by a simple programming language for core aspects.
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Lecture Notes and Book

André Platzer.
Foundations of Cyber-Physical Systems.
Lecture notes.
Computer Science Department
Carnegie Mellon University.
http://symbolaris.com/course/

fcps16-schedule.html

André Platzer.
Logical Analysis of Hybrid Systems.
Springer, 426p., 2010.
DOI 10.1007/978-3-642-14509-4
http://symbolaris.com/lahs/

CMU library e-book

André Platzer (CMU) FCPS/01: Overview FCPS 25 / 29



02: Differential Equations & Domains
15-424: Foundations of Cyber-Physical Systems
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Differential Equations as Models of Continuous Processes

Example (Vector field and one solution of a differential equation)
[

y ′(t) = f (t, y)
y(t0) = y0

]

Intuition:

1 At each point in space, plot the
value of f (t, y) as a vector

2 Start at initial state y0 at initial
time t0

3 Follow the direction of the vector

The diagram should show
infinitely many vectors . . .

Your car’s ODE x ′ = v , v ′ = a Well it’s a wee bit more complicated
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The Meaning of Differential Equations

1 What exactly is a vector field?

2 What does it mean to describe directions of evolution at every point
in space?

3 Could directions possibly contradict each other?

Importance of meaning

The physical impacts of CPSs do not leave much room for failure, so we
immediately want to get into the mood of consistently studying the
behavior and exact meaning of all relevant aspects of CPS.
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Differential Equations & Initial-Value Problems

Definition (Ordinary Differential Equation, ODE)

f : D → Rn on domain D ⊆ R× Rn (i.e., open connected). Then
Y : I → Rn is solution of initial value problem (IVP)

[
y ′(t) = f (t, y)
y(t0) = y0

]

on interval I ⊆ R, iff, for all times t ∈ I ,

1 (t,Y (t)) ∈ D

2 Y ′(t) exists and Y ′(t) = f (t,Y (t)).

3 Y (t0) = y0

If f ∈ C (D,Rn), then Y ∈ C 1(I ,Rn).
If f continuous, then Y continuously differentiable.
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Example: A Constant Differential Equation

Example (Initial value problem)
[
x ′(t) = 5
x(0) = 2

]

has a solution

x(t) = 5t + 2

Check by inserting solution into ODE+IVP.
[

(x(t))′ = (5t + 2)′ = 5
x(0) = 5 · 0 + 2 = 2

]
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Example: A Linear Differential Equation from before

Example (Initial value problem)
[
x ′(t) = 1

4x(t)
x(0) = 1

]

has a solution

x(t) = e
t
4

Check by inserting solution into ODE+IVP.
[

(x(t))′ = (e
t
4 )′ = e

t
4 ( t

4 )′ = e
t
4

1
4 = 1

4x(t)

x(0) = e
0
4 = 1

]
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ODE Examples

Solutions more complicated than ODE

ODE Solution

x ′ = 1, x(0) = x0 x(t) = x0 + t

x ′ = 5, x(0) = x0 x(t) = x0 + 5t
x ′ = x , x(0) = x0 x(t) = x0e

t

x ′ = x2, x(0) = x0 x(t) = x0
1−tx0

x ′ = 1
x , x(0) = 1 x(t) =

√
1 + 2t . . .

y ′(x) = −2xy , y(0) = 1 y(x) = e−x
2

x ′(t) = tx , x(0) = x0 x(t) = x0e
t2

2

x ′ =
√
x , x(0) = x0 x(t) = t2

4 ± t
√
x0 + x0

x ′ = y , y ′ = −x , x(0) = 0, y(0) = 1 x(t) = sin t, y(t) = cos t
x ′ = 1 + x2, x(0) = 0 x(t) = tan t

x ′(t) = 2
t3 x(t) x(t) = e−

1
t2 non-analytic

x ′ = x2 + x4 ???

x ′(t) = et
2

non-elementary

André Platzer (CMU) FCPS / 02: Differential Equations & Domains 9 / 12



ODE Examples

Solutions more complicated than ODE

ODE Solution

x ′ = 1, x(0) = x0 x(t) = x0 + t
x ′ = 5, x(0) = x0 x(t) = x0 + 5t

x ′ = x , x(0) = x0 x(t) = x0e
t

x ′ = x2, x(0) = x0 x(t) = x0
1−tx0

x ′ = 1
x , x(0) = 1 x(t) =

√
1 + 2t . . .

y ′(x) = −2xy , y(0) = 1 y(x) = e−x
2

x ′(t) = tx , x(0) = x0 x(t) = x0e
t2

2

x ′ =
√
x , x(0) = x0 x(t) = t2

4 ± t
√
x0 + x0

x ′ = y , y ′ = −x , x(0) = 0, y(0) = 1 x(t) = sin t, y(t) = cos t
x ′ = 1 + x2, x(0) = 0 x(t) = tan t

x ′(t) = 2
t3 x(t) x(t) = e−

1
t2 non-analytic

x ′ = x2 + x4 ???

x ′(t) = et
2

non-elementary
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x ′ = 1 + x2, x(0) = 0 x(t) = tan t

x ′(t) = 2
t3 x(t) x(t) = e−

1
t2 non-analytic

x ′ = x2 + x4 ???

x ′(t) = et
2

non-elementary
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ODE Examples Solutions more complicated than ODE
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Takeaway Message

Descriptive power of differential equations

1 Solutions of differential equations can be much more involved than
the differential equations themselves.

2 Representational and descriptive power of differential equations!

3 Simple differential equations can describe quite complicated physical
processes.

4 Local description as the direction into which the system evolves.
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Hybrid automata – Motivation
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Hybrid automata – Example

fill

x ′ = 1
y ′ = 1
y ≤ 10

start

stop

x ′ = 1
y ′ = 1
x ≤ 2

drain

x ′ = 1
y ′ = −2
y ≥ 5

start

x ′ = 1
y ′ = −2
x ≤ 2

y = 10 / x := 0

x = 2

y = 5 / x := 0

x = 2
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Hybrid Automata

Extension of Finite State Machines (Henzinger, 1990s)

State q ∈ S with edge to r ∈ S :

q
ODEsq

condq,r / actionq,r

ODEs may have domain constraints

Semantics (Idea)

1 Sequence of edge steps and time steps (flow)

2 during flow: variables evolve according to ODEsq
3 discrete state changes at ti from qi to qi+1:

condqi must hold, actionqi ,qi+1 is performed

4 edge: condition condq,r satisfied, actionq,r performed
discretely, new state is r
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Rectangular Hybrid Automata

Rectangular condition

A rectangular condition on Var is a conjunction of atoms of the
form x ≤ const or x ≥ const for variables x ∈ Var .

Rectangular automata

A hybr. automaton is called rectangular if

every cond is a rectangular condition

every action is a sequence of assignments x := const

every ODE is a rectangular condition on the derivatives x ′, ...

every domain constraint is a rectangular condition
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Rectangular Hybrid Automata

Decidability

The safety problem for rectangular automata w.r.t. to rectangular
safety invariants is decidable (in PSPACE).

[“What’s Decidable about Hybrid Automata?”, Henzinger et al. 1998]

Proof by reduction to timed automata → lecture FS2: Application

Undecidablity result

The safety problem is undecidable for hybrid automata with
general linear ODEs.
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Differential Dynamic Logic
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Differential Dynamic Logic dL

is an extension of first order dynamic logic

Programs: If α, β are dL (regular) programs, then

α ; β

α ∪ β
α∗

x := t (x a variable, t a term)

?ϕ (ϕ a formula)

x ′1 = t1, . . . , x
′
n = tn & ϕ (xi a variable, ti a term, ϕ a

formula, i ∈ [1..n])

are dL programs, too.
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Differential Dynamic Logic dL: Semantics

Definition (Hybrid program semantics) ([[·]] : HP→ ℘(S × S))

[[x := e]] = {(ω, ν) : ν = ω except [[x ]]ν = [[e]]ω}
[[?Q]] = {(ω, ω) : ω ∈ [[Q]]}

[[x ′ = f (x)]] = {(ϕ(0), ϕ(r)) : ϕ |= x ′ = f (x) for some duration r}
[[α ∪ β]] = [[α]] ∪ [[β]]

[[α;β]] = [[α]] ◦ [[β]]

[[α∗]] =
⋃

n∈N
[[αn]]

Definition (dL semantics) ([[·]] : Fml→ ℘(S))

[[θ ≥ η]] = {ω : [[θ]]ω ≥ [[η]]ω}
[[¬φ]] = ([[φ]]){

[[φ ∧ ψ]] = [[φ]] ∩ [[ψ]]
[[〈α〉φ]] = [[α]] ◦ [[φ]] = {ω : ν ∈ [[φ]] for some ν : (ω, ν) ∈ [[α]]}
[[[α]φ]] = [[¬〈α〉¬φ]] = {ω : ν ∈ [[φ]] for all ν : (ω, ν) ∈ [[α]]}
[[∃x φ]] = {ω : ωr

x ∈ [[φ]] for some r ∈ R}
André Platzer (CMU) FCPS / 05: Dynamical Systems & Dynamic Axioms 6 / 12



Differential Dynamic Logic dL: Transition Semantics

ω ν
x := e

t

x

0

ω

ν if ν(x) = [[e]]ω
and ν(z) = ω(z) for z 6= x

ω ν
x ′ = f (x) &Q

t

x

Q
ν

ω

ϕ(t)

0 r
x ′ = f (x) &Q

ω

?Q

if ω ∈ [[Q]]
t

x

0

ω no change if ω ∈ [[Q]]
otherwise no transition
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Differential Dynamic Logic dL: Transition Semantics

ω

ν1

ν2

α

β

α ∪ β

t

x
ω ν1

ν2

ω µ ν

α ;β

α β t

x

s

ω ν

ω ω1 ω2 ν

α∗

α α α

α β α β α β

t

x
ω ν
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Differential Dynamic Logic dL: Transition Semantics

ω

ν1

ν2

α

β

α ∪ β

t

x
ω ν1

ν2

ω µ ν

α ;β

α β t

x

s

ω ν

ω ω1 ω2 ν

(α;β)∗

α β α β α β t

x
ω ν
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Quantum the Acrophobic Bouncing Ball

Example (Quantum the Bouncing Ball)

(
x ′ = v , v ′ = −g & x ≥ 0;

if(x = 0) v :=−cv
)∗
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Quantum the Acrophobic Bouncing Ball

Example (Quantum the Bouncing Ball)

(

x ′ = v , v ′ = −g & x ≥ 0

;

if(x = 0) v :=−cv
)∗
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Conjecture: Quantum the Acrophobic Bouncing Ball

Example (Quantum the Bouncing Ball) )

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0→
[(
x ′ = v , v ′ = −g & x ≥ 0; (?x = 0; v :=−cv∪?x 6= 0)

)∗]
(0 ≤ x∧x ≤ H)

Removing the repetition grotesquely changes the behavior to a single hop
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Conjecture: Quantum the Acrophobic Bouncing Ball

Example (Quantum the Bouncing Ball) (Single-hop)

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0→
[

(

x ′ = v , v ′ = −g & x ≥ 0; (?x = 0; v :=−cv∪?x 6= 0)

)∗

]
(0 ≤ x∧x ≤ H)

Removing the repetition grotesquely changes the behavior to a single hop
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A Proof of a Short Single-hop Bouncing Ball

A ` ∀t≥0
(
(H−g

2 t
2=0→B(H− g

2
t2,−c(−gt))) ∧ (H−g

2 t
2≥0→B(H− g

2
t2,−gt))

)

[:=] A ` ∀t≥0 [x := H − g
2 t

2]
(
(x=0→ B(x ,−c(−gt))) ∧ (x≥0→ B(x ,−gt))

)

[:=] A ` ∀t≥0 [x := H − g
2 t

2][v :=−gt]
(
(x=0→ B(x ,−cv)) ∧ (x≥0→ B(x ,v))

)

[;] A ` ∀t≥0 [x := H − g
2 t

2; v :=−gt]
(
(x=0→ B(x ,−cv)) ∧ (x≥0→ B(x ,v))

)

[′] A ` [x ′′ = −g ]
(
(x = 0→ B(x ,−cv)) ∧ (x ≥ 0→ B(x ,v))

)

[:=] A ` [x ′′ = −g ]
(
(x = 0→ [v :=−cv ]B(x ,v)) ∧ (x ≥ 0→ B(x ,v))

)

[?],[?]A ` [x ′′ = −g ]
(
[?x = 0][v :=−cv ]B(x ,v) ∧ [?x ≥ 0]B(x ,v)

)

[;] A ` [x ′′ = −g ]
(
[?x = 0; v :=−cv ]B(x ,v) ∧ [?x ≥ 0]B(x ,v)

)

[∪] A ` [x ′′ = −g ][?x = 0; v :=−cv ∪ ?x ≥ 0]B(x ,v)

[;] A ` [x ′′ = −g ; (?x = 0; v :=−cv ∪ ?x ≥ 0)]B(x ,v)

A
def≡ 0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0

B(x ,v)
def≡ 0 ≤ x ∧ x ≤ H

(x ′′ = −g)
def≡ (x ′ = v , v ′ = −g)
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André Platzer (CMU) FCPS / 05: Dynamical Systems & Dynamic Axioms 11 / 12



A Proof of a Short Single-hop Bouncing Ball

A ` ∀t≥0
(
(H−g

2 t
2=0→B(H− g

2
t2,−c(−gt))) ∧ (H−g

2 t
2≥0→B(H− g

2
t2,−gt))

)

[:=] A ` ∀t≥0 [x := H − g
2 t

2]
(
(x=0→ B(x ,−c(−gt))) ∧ (x≥0→ B(x ,−gt))

)

[:=] A ` ∀t≥0 [x := H − g
2 t

2][v :=−gt]
(
(x=0→ B(x ,−cv)) ∧ (x≥0→ B(x ,v))

)

[;] A ` ∀t≥0 [x := H − g
2 t

2; v :=−gt]
(
(x=0→ B(x ,−cv)) ∧ (x≥0→ B(x ,v))

)

[′] A ` [x ′′ = −g ]
(
(x = 0→ B(x ,−cv)) ∧ (x ≥ 0→ B(x ,v))

)

[:=] A ` [x ′′ = −g ]
(
(x = 0→ [v :=−cv ]B(x ,v)) ∧ (x ≥ 0→ B(x ,v))

)

[?],[?]A ` [x ′′ = −g ]
(
[?x = 0][v :=−cv ]B(x ,v) ∧ [?x ≥ 0]B(x ,v)

)

[;] A ` [x ′′ = −g ]
(
[?x = 0; v :=−cv ]B(x ,v) ∧ [?x ≥ 0]B(x ,v)

)
[∪] A ` [x ′′ = −g ][?x = 0; v :=−cv ∪ ?x ≥ 0]B(x ,v)
[;] A ` [x ′′ = −g ; (?x = 0; v :=−cv ∪ ?x ≥ 0)]B(x ,v)

A
def≡ 0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0

B(x ,v)
def≡ 0 ≤ x ∧ x ≤ H

(x ′′ = −g)
def≡ (x ′ = v , v ′ = −g)
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André Platzer (CMU) FCPS / 05: Dynamical Systems & Dynamic Axioms 11 / 12



A Proof of a Short Single-hop Bouncing Ball

A ` ∀t≥0
(
(H−g

2 t
2=0→B(H− g

2
t2,−c(−gt))) ∧ (H−g

2 t
2≥0→B(H− g

2
t2,−gt))

)

[:=] A ` ∀t≥0 [x := H − g
2 t

2]
(
(x=0→ B(x ,−c(−gt))) ∧ (x≥0→ B(x ,−gt))

)

[:=] A ` ∀t≥0 [x := H − g
2 t

2][v :=−gt]
(
(x=0→ B(x ,−cv)) ∧ (x≥0→ B(x ,v))

)

[;] A ` ∀t≥0 [x := H − g
2 t

2; v :=−gt]
(
(x=0→ B(x ,−cv)) ∧ (x≥0→ B(x ,v))

)
[′] A ` [x ′′ = −g ]

(
(x = 0→ B(x ,−cv)) ∧ (x ≥ 0→ B(x ,v))

)
[:=] A ` [x ′′ = −g ]

(
(x = 0→ [v :=−cv ]B(x ,v)) ∧ (x ≥ 0→ B(x ,v))

)
[?],[?]A ` [x ′′ = −g ]

(
[?x = 0][v :=−cv ]B(x ,v) ∧ [?x ≥ 0]B(x ,v)

)
[;] A ` [x ′′ = −g ]

(
[?x = 0; v :=−cv ]B(x ,v) ∧ [?x ≥ 0]B(x ,v)

)
[∪] A ` [x ′′ = −g ][?x = 0; v :=−cv ∪ ?x ≥ 0]B(x ,v)
[;] A ` [x ′′ = −g ; (?x = 0; v :=−cv ∪ ?x ≥ 0)]B(x ,v)

A
def≡ 0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0

B(x ,v)
def≡ 0 ≤ x ∧ x ≤ H

(x ′′ = −g)
def≡ (x ′ = v , v ′ = −g)
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André Platzer (CMU) FCPS / 05: Dynamical Systems & Dynamic Axioms 11 / 12



A Proof of a Short Single-hop Bouncing Ball

A ` ∀t≥0
(
(H−g

2 t
2=0→B(H− g

2
t2,−c(−gt))) ∧ (H−g

2 t
2≥0→B(H− g

2
t2,−gt))

)
[:=] A ` ∀t≥0 [x := H − g

2 t
2]
(
(x=0→ B(x ,−c(−gt))) ∧ (x≥0→ B(x ,−gt))

)
[:=] A ` ∀t≥0 [x := H − g

2 t
2][v :=−gt]

(
(x=0→ B(x ,−cv)) ∧ (x≥0→ B(x ,v))

)
[;] A ` ∀t≥0 [x := H − g

2 t
2; v :=−gt]

(
(x=0→ B(x ,−cv)) ∧ (x≥0→ B(x ,v))

)
[′] A ` [x ′′ = −g ]

(
(x = 0→ B(x ,−cv)) ∧ (x ≥ 0→ B(x ,v))

)
[:=] A ` [x ′′ = −g ]

(
(x = 0→ [v :=−cv ]B(x ,v)) ∧ (x ≥ 0→ B(x ,v))

)
[?],[?]A ` [x ′′ = −g ]

(
[?x = 0][v :=−cv ]B(x ,v) ∧ [?x ≥ 0]B(x ,v)

)
[;] A ` [x ′′ = −g ]

(
[?x = 0; v :=−cv ]B(x ,v) ∧ [?x ≥ 0]B(x ,v)

)
[∪] A ` [x ′′ = −g ][?x = 0; v :=−cv ∪ ?x ≥ 0]B(x ,v)
[;] A ` [x ′′ = −g ; (?x = 0; v :=−cv ∪ ?x ≥ 0)]B(x ,v)

A
def≡ 0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0

B(x ,v)
def≡ 0 ≤ x ∧ x ≤ H

(x ′′ = −g)
def≡ (x ′ = v , v ′ = −g)
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A Proof of a Short Single-hop Bouncing Ball

Resolving abbreviations at the premise yields:

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0→
∀t≥0

(
(H − g

2
t2 = 0→ 0 ≤ H − g

2
t2 ∧ H − g

2
t2 ≤ H)

∧ (H − g

2
t2 ≥ 0→ 0 ≤ H − g

2
t2 ∧ H − g

2
t2 ≤ H)

)

which is provable by arithmetic (since g > 0 and t2 ≥ 0).

Exciting!

We have just formally verified our very first CPS!

Okay, alright, it was a grotesquely simplified single-hop bouncing ball.
But the axioms of our proof technique were completely general and not
specific to bouncing balls, so they should carry us forward to true CPS.

André Platzer (CMU) FCPS / 05: Dynamical Systems & Dynamic Axioms 12 / 12



A Proof of a Short Single-hop Bouncing Ball

Resolving abbreviations at the premise yields:

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0→
∀t≥0

(
(H − g

2
t2 = 0→ 0 ≤ H − g

2
t2 ∧ H − g

2
t2 ≤ H)

∧ (H − g

2
t2 ≥ 0→ 0 ≤ H − g

2
t2 ∧ H − g

2
t2 ≤ H)

)

which is provable by arithmetic (since g > 0 and t2 ≥ 0).

Exciting!

We have just formally verified our very first CPS!

Okay, alright, it was a grotesquely simplified single-hop bouncing ball.
But the axioms of our proof technique were completely general and not
specific to bouncing balls, so they should carry us forward to true CPS.
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Conjecture: Quantum the Acrophobic Bouncing Ball

Example (Quantum the Bouncing Ball) (Single-hop)

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 1 ≥ c ≥ 0→
[

(

x ′ = v , v ′ = −g & x ≥ 0; (?x = 0; v :=−cv∪?x 6= 0)

)∗

]
(0 ≤ x∧x ≤ H)

Removing the repetition grotesquely changes the behavior to a single hop

André Platzer (CMU) FCPS / 05: Dynamical Systems & Dynamic Axioms 8 / 12



Hybrid Programs and Loop Invariants

Repeatedly bouncing ball

0 ≤ x ∧ x = H ∧ v = 0 ∧ g > 0 ∧ 0 < c ≤ 1→
[(x ′′ = −g & x ≥ 0 ; if x = 0 then v := −c · v)∗](0 ≤ x ≤ H)

Use discrete invariant rules from DL to prove hybrid proof
obligation.

Beckert, Ulbrich – Formale Systeme II: Theorie 12/17



Sequent Calculus Rules

loop
Γ ` INV ,∆ INV ` [α]INV INV ` SAFE

Γ ` [α∗]SAFE ,∆

MR
Γ ` [α]Φ,∆ Φ ` [β]SAFE

Γ ` [α ; β]SAFE ,∆

[’]
Γ ` ∀t ≥ 0.([x := X (t)]φ),∆

Γ ` [x ′ = t & Q(x)]φ,∆
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ODE Examples Solutions more complicated than ODE

ODE Solution

x ′ = 1, x(0) = x0 x(t) = x0 + t
x ′ = 5, x(0) = x0 x(t) = x0 + 5t
x ′ = x , x(0) = x0 x(t) = x0e

t

x ′ = x2, x(0) = x0 x(t) = x0
1−tx0

x ′ = 1
x , x(0) = 1 x(t) =

√
1 + 2t . . .

y ′(x) = −2xy , y(0) = 1 y(x) = e−x
2

x ′(t) = tx , x(0) = x0 x(t) = x0e
t2

2

x ′ =
√
x , x(0) = x0 x(t) = t2

4 ± t
√
x0 + x0

x ′ = y , y ′ = −x , x(0) = 0, y(0) = 1 x(t) = sin t, y(t) = cos t
x ′ = 1 + x2, x(0) = 0 x(t) = tan t

x ′(t) = 2
t3 x(t) x(t) = e−

1
t2 non-analytic

x ′ = x2 + x4 ???

x ′(t) = et
2

non-elementary
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Differential Equations vs. Loops

Lemma (Differential equations are their own loop)

[[(x ′ = f (x))
∗
]] = [[x ′ = f (x)]]

loop α∗ ODE x ′ = f (x)
repeat any number n ∈ N of times evolve for any duration r ∈ R
can repeat 0 times can evolve for duration 0
effect depends on previous loop iteration effect depends on the past solution
local generator α local generator x ′ = f (x)
full global execution trace global solution ϕ : [0, r ]→ S
unwinding proof by iteration [∗] proof by global solution with [′]
inductive proof with loop invariant proof with differential invariant

André Platzer (CMU) FCPS / 10: Differential Equations & Differential Invariants 7 / 24



Intuition for Differential Invariants

Differential Invariant

Γ ` F ,∆ F ` ???F F ` P

Γ ` [x ′ = f (x)]P,∆

Want: F remains true in
the direction of the dynamics

¬ ¬FF F

[′] [x ′ = f (x)]P ↔ ∀t≥0 [x := y(t)]P (y’ =f(y), y(0)=x)

Don’t need to know where exactly the system evolves to. Just that it
remains somewhere in F .
Show: only evolves into directions in which formula F stays true.
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Guiding Example

: Rotational Dynamics

v2+w2 = r2 → [v ′ = w ,w ′ = −v ]v2+w2 = r2

∗

R ` 2v(w) + 2w(−v) = 0

[′:=] ` [v ′:=w ][w ′:=−v ]2vv ′ + 2ww ′ − r ′ = 0

DI=0v2+w2−r2=0 ` [v ′ = w ,w ′ = −v ]v2 + w2 − r2 = 0

→R ` v2+w2−r2=0→ [v ′ = w ,w ′ = −v ]v2+w2−r2=0

Simple proof without solving ODE
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Derivatives for a Change

Syntax e ::= x | c | e + k | e − k | e · k | e/k

Derivatives

(e + k)′ = (e)′ + (k)′

(e − k)′ = (e)′ − (k)′

(e · k)′ = (e)′ · k + e · (k)′

(e/k)′ =
(
(e)′ · k − e · (k)′

)
/k2

same singularities

(c())′ = 0 for constants/numbers c()

. . . What do these primes mean? . . .
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Derivatives for a Change

Syntax e ::= x | c | e + k | e − k | e · k | e/k

Derivatives

(e + k)′ = (e)′ + (k)′
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/k2
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Augmented states

For every variable x used in a differential equation, we add new
variable x ′.

Let x ′ also evolve by differential equations.

Semantics of diff. eq.

(s1, s2) ∈ ρ(x ′ = e & Q)
⇐⇒

ex. t > 0 and X : [0, t]→ R with

1 X (0) = s1(x)

2 X ′(u) = vals[x 7→X (u)](e) for all 0 ≤ u ≤ t

3 X (t) = s2(x)

4 s1[x 7→ X (u)] |= Q for all 0 ≤ u ≤ t

5 s1(y) = s2(y) for all other variables y .
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1 X (0) = s1(x)

2 X ′(u) = vals[x 7→X (u)](e) for all 0 ≤ u ≤ t

3 X (t) = s2(x) and X ′(t) = s2(x ′)

4 s1[x 7→ X (u)] |= Q for all 0 ≤ u ≤ t
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Notation

Let now ϕ : [0, r ]→ Rn for some duration r ∈ R be a solution of
x ′ = e & Q:

(ϕ(0), ϕ(r)) ∈ ρ(x ′ = e & Q)
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Derivatives for a Change

Syntax e ::= x | c | e + k | e − k | e · k | e/k | (e)′

Derivatives

(e + k)′ = (e)′ + (k)′

(e − k)′ = (e)′ − (k)′

(e · k)′ = (e)′ · k + e · (k)′

(e/k)′ =
(
(e)′ · k − e · (k)′

)
/k2 same singularities

(c())′ = 0 for constants/numbers c()

. . . What do these primes mean? . . .

internalize primes into dL syntax
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Differential Substitution Lemmas

Lemma (Differential lemma) (Differential value vs. Time-derivative)

If ϕ |= x ′ = f (x) ∧ Q for duration r > 0, then for all 0 ≤ z ≤ r :

[[(e)′]]ϕ(z) =
d[[e]]ϕ(t)

dt
(z)

Lemma (Differential assignment) (Effect on Differentials)

If ϕ |= x ′ = f (x) ∧ Q then ϕ |= P ↔ [x ′ := f (x)]P

Axiomatics

DE [x ′ = f (x) &Q]P ↔ [x ′ = f (x) &Q][x ′ := f (x)]P

DI
` [x ′ = f (x) &Q](e)′ = 0

e = 0 ` [x ′ = f (x) &Q]e = 0
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Differential Invariants for Differential Equations

Differential Invariant

DI=0
` [x ′ := f (x)](e)′ = 0

e = 0 ` [x ′ = f (x)]e = 0

DI
` [x ′ = f (x)](e)′ = 0

e = 0 ` [x ′ = f (x)]e = 0
DE [x ′ = f (x)]P ↔ [x ′ = f (x)][x ′ := f (x)]P

DI=0 is a derived rule:

` [x ′ := f (x)](e)′ = 0

G ` [x ′ = f (x)][x ′ := f (x)](e)′ = 0

DE ` [x ′ = f (x)](e)′ = 0

DIe = 0 ` [x ′ = f (x)]e = 0

G
P

[α]P
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Guiding Example: Rotational Dynamics

v2+w2 = r2 → [v ′ = w ,w ′ = −v ]v2+w2 = r2

v

w

w
=

r
co

s
ϑ

v
r sinϑ

r

∗

R ` 2v(w) + 2w(−v) = 0

[′:=] ` [v ′:=w ][w ′:=−v ]2vv ′ + 2ww ′ − r ′ = 0

DI=0v2+w2−r2=0 ` [v ′ = w ,w ′ = −v ]v2 + w2 − r2 = 0

→R ` v2+w2−r2=0→ [v ′ = w ,w ′ = −v ]v2+w2−r2=0

Simple proof without solving ODE
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André Platzer (CMU) FCPS / 10: Differential Equations & Differential Invariants 16 / 24



Guiding Example: Rotational Dynamics

v2+w2 = r2 → [v ′ = w ,w ′ = −v ]v2+w2 = r2

∗

R ` 2v(w) + 2w(−v) = 0

[′:=] ` [v ′:=w ][w ′:=−v ]2vv ′ + 2ww ′ − r ′ = 0
DI=0v2+w2−r2=0 ` [v ′ = w ,w ′ = −v ]v2 + w2 − r2 = 0
→R ` v2+w2−r2=0→ [v ′ = w ,w ′ = −v ]v2+w2−r2=0

Simple proof without solving ODE
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Strengthening Induction Hypotheses

Stronger Induction Hypotheses

1 As usual in math and in proofs with loops:

2 Inductive proofs may need stronger induction hypotheses to succeed.

3 Differentially inductive proofs may need a stronger differential
inductive structure to succeed.

4 Even if {(x , y) ∈ R2 : x2 + y2 = 0} = {{(x , y) ∈ R2 : x4 + y4 = 0}
have the same solutions, they have different differential structure.
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