Applications of Formal Verification

Functional Verification of Java Programs: Java Dynamic Logic

Bernhard Beckert • Mattias Ulbrich | SS 2019

KIT - Institut für Theoretische Informatik

(1) Java Card DL
(2) Sequent Calculus
(3) Rules for Programs: Symbolic Execution
(4) A Calculus for 100% Java Card
(5) Loop Invariants

(2) Sequent Calculus

3 Rules for Programs: Symbolic Execution
4. A Calculus for 100% Java CARD
(5) Loop Invariants

Syntax and Semantics

Syntax

- Basis: Typed first-order predicate logic
- Modal operators $\langle p\rangle$ and $[p]$ for each (JAVA CARD) program p
- Class definitions in background (not shown in formulas)
\square
Modal operators allow referring to the final state of p :

Syntax and Semantics

Syntax

- Basis: Typed first-order predicate logic
- Modal operators $\langle p\rangle$ and $[p]$ for each (JAVA CARD) program p
- Class definitions in background (not shown in formulas)

Semantics (Kripke)

Modal operators allow referring to the final state of p :

Syntax and Semantics

Syntax

- Basis: Typed first-order predicate logic
- Modal operators $\langle p\rangle$ and $[p]$ for each (JAVA CARD) program p
- Class definitions in background (not shown in formulas)

Semantics (Kripke)

Modal operators allow referring to the final state of p :

- [$p] F$: If p terminates normally, then
F holds in the final state ("partial correctness")
- $\langle p\rangle F: \quad p$ terminates normally, and
F holds in the final state

Syntax and Semantics

Syntax

- Basis: Typed first-order predicate logic
- Modal operators $\langle p\rangle$ and $[p]$ for each (JAVA CARD) program p
- Class definitions in background (not shown in formulas)

Semantics (Kripke)

Modal operators allow referring to the final state of p :

- [$p] F$: If p terminates normally, then
F holds in the final state ("partial correctness")
- $\langle p\rangle F: \quad p$ terminates normally, and F holds in the final state ("total correctness")

Why Dynamic Logic?

- Transparency wrt target programming language
- Encompasses Hoare Logic
- More expressive and flexible than Hoare logic
- Symbolic execution is a natural interactive proof paradigm
- Programs are "first-class citizens"
- Real Java syntax

Why Dynamic Logic?

- Transparency wrt target programming language
- Encompasses Hoare Logic
- More expressive and flexible than Hoare logic - Symbolic execution is a natural interactive proof paradigm

Hoare triple $\{\psi\} \alpha\{\phi\} \quad$ equiv. to DL formula $\psi \rightarrow[\alpha] \phi$

Why Dynamic Logic?

- Transparency wrt target programming language
- Encompasses Hoare Logic
- More expressive and flexible than Hoare logic
- Symbolic execution is a natural interactive proof paradigm

Not merely partial/total correctness:

- can employ programs for specification (e.g., verifying program transformations)
- can express security properties (two runs are indistinguishable)
- extension-friendly (e.g., temporal modalities)

Why Dynamic Logic?

- Transparency wrt target programming language
- Encompasses Hoare Logic
- More expressive and flexible than Hoare logic
- Symbolic execution is a natural interactive proof paradigm

Dynamic Logic Example Formulas

$($ balance $>=c \wedge$ amount $>0) \rightarrow$
\langle charge (amount) ; \rangle balance $>c$

Dynamic Logic Example Formulas

(balance $>=c \wedge$ amount $>0) \rightarrow$
\langle charge (amount) ;) balance $>c$

$$
\langle x=1 ;\rangle([\text { while }(\text { true }) \quad\}] f a l s e)
$$

Program formulas can appear nested

Dynamic Logic Example Formulas

(balance $>=c \wedge$ amount $>0) \rightarrow$
\langle charge (amount) ;) balance $>c$

$$
\langle x=1 ;\rangle([\text { while (true) }\}] \text { false })
$$

- Program formulas can appear nested

Dynamic Logic Example Formulas

(balance $>=c \wedge$ amount >0) \rightarrow
\langle charge (amount) ;) balance $>c$
$\langle x=1 ;\rangle([$ while (true) $\}]$ false $)$

- Program formulas can appear nested
\forall int val; $((\langle\mathrm{p}\rangle \mathrm{x}=\mathrm{val}) \longleftrightarrow(\langle\mathrm{q}\rangle \mathrm{x}=\mathrm{val}))$
- p, q equivalent relative to computation state restricted to x

Dynamic Logic Example Formulas

(balance $>=c \wedge$ amount $>0) \rightarrow$
\langle charge (amount) ; \rangle balance $>c$
$\langle x=1 ;\rangle([$ while (true) $\}]$ false $)$

- Program formulas can appear nested
\forall int val; $((\langle\mathrm{p}\rangle \mathrm{x}=v a l) \longleftrightarrow(\langle\mathrm{q}\rangle \mathrm{x}=v a l))$
- p, q equivalent relative to computation state restricted to x

Dynamic Logic Example Formulas

```
    a ! = null
    ->
    \(<\)
        int max \(=0\);
        if ( a.length > 0 ) max = a[0];
        int \(i=1\);
        while ( i < a.length ) \{
        if ( a[i] > max ) max = a[i];
        ++i;
        \}
\(>1\)
\forall int j; (j >= 0 \& j < a.length -> max >= a[j]) \&
(a.length > 0 ->
\exists int j; (j >= 0 \& j < a.length \& max \(=a[j])\) )
```


Variables

- Logical variables disjoint from program variables
- No quantification over program variables
- Programs do not contain logical variables
- "Program variables" actually non-rigid functions

Validity

A Java Card DL formula is valid iff it is true in all states.

We need a calculus for checking validity of formulas

Validity

A Java Card DL formula is valid iff it is true in all states.

We need a calculus for checking validity of formulas

(2) Sequent Calculus

3 Rules for Programs: Symbolic Execution
4. A Calculus for 100% Java CARD
(5) Loop Invariants

(2) Sequent Calculus

(3) Rules for Programs: Symbolic Execution
4. A Calculus for 100% JAVA CARD
(5) Loop Invariants

Sequents and their Semantics

Syntax

where the ϕ_{i}, ψ_{i} are formulae (without free variables)

Sequents and their Semantics

Syntax

where the ϕ_{i}, ψ_{i} are formulae (without free variables)

Semantics

Same as the formula

$$
\left(\psi_{1} \wedge \cdots \wedge \psi_{m}\right) \quad \rightarrow \quad\left(\phi_{1} \vee \cdots \vee \phi_{n}\right)
$$

Sequent Rules

General form

Soundness
If all premisses are valid, then the conclusion is valid

Use in practice
Goal is matched to conclusion

Sequent Rules

General form

($r=0$ possible: closing rules)

Soundness
 If all premisses are valid, then the conclusion is valid

Use in practice
Goal is matched to conclusion

Sequent Rules

General form

($r=0$ possible: closing rules)

Soundness

If all premisses are valid, then the conclusion is valid

Sequent Rules

General form

($r=0$ possible: closing rules)

Soundness

If all premisses are valid, then the conclusion is valid

Use in practice
Goal is matched to conclusion

Some Simple Sequent Rules

$$
\text { NOT_LEFT } \frac{\Gamma \Longrightarrow A, \Delta}{\Gamma, \neg A \Longrightarrow \Delta}
$$

IMP_LEFT

Some Simple Sequent Rules

$$
\begin{array}{r}
\text { NOT_LEFT } \frac{\Gamma \Longrightarrow A, \Delta}{\Gamma, \neg A \Longrightarrow \Delta} \\
\text { IMP_LEFT } \frac{\Gamma \Longrightarrow A, \Delta \quad \Gamma, B \Longrightarrow \Delta}{\Gamma, A \rightarrow B \Longrightarrow \Delta}
\end{array}
$$

Some Simple Sequent Rules

$$
\text { NOT_LEFT } \frac{\Gamma \Rightarrow A, \Delta}{\Gamma, \neg A \Rightarrow \Delta}
$$

$$
\text { IMP_LEFT } \frac{\Gamma \Rightarrow A, \Delta \quad\ulcorner, B \Rightarrow \Delta}{\Gamma, A \rightarrow B \Rightarrow \Delta}
$$

CLOSE_GOAL

$$
\overline{\Gamma, A \Rightarrow A, \Delta}
$$

where e var-free term of type $t^{\prime} \prec t$

Some Simple Sequent Rules

$$
\text { NOT_LEFT } \frac{\Gamma \Rightarrow A, \Delta}{\Gamma, \neg A \Rightarrow \Delta}
$$

$$
\text { IMP_LEFT } \frac{\Gamma \Rightarrow A, \Delta \quad\ulcorner, B \Rightarrow \Delta}{\Gamma, A \rightarrow B \Rightarrow \Delta}
$$

CLOSE_GOAL

$$
\overline{\Gamma, A \Rightarrow A, \Delta}
$$

CLOSE_BY_TRUE

$$
\Gamma \Longrightarrow \text { true, } \Delta
$$

Some Simple Sequent Rules

$$
\text { NOT_LEFT } \frac{\Gamma \Rightarrow A, \Delta}{\Gamma, \neg A \Rightarrow \Delta}
$$

$$
\begin{gathered}
\Gamma \Rightarrow A, \Delta \quad\ulcorner, B \Rightarrow \Delta \\
\Gamma, A \rightarrow B \Rightarrow \Delta
\end{gathered}
$$

CLOSE_GOAL

$$
\Gamma, A \Rightarrow A, \Delta
$$

CLOSE_BY_TRUE

$$
\Gamma \Longrightarrow \text { true, } \Delta
$$

$$
\text { ALL_LEFT } \frac{\Gamma, \backslash \text { forall } t x ; \phi,\{x / e\} \phi \Longrightarrow \Delta}{\Gamma, \backslash \text { forall } t x ; \phi \Longrightarrow \Delta}
$$

where e var-free term of type $t^{\prime} \prec t$

Sequent Calculus Proofs

Proof tree

- Proof is tree structure with goal sequent as root
- Rules are applied from conclusion (old goal) to premisses (new goals)
- Rule with no premiss closes proof branch
- Proof is finished when all goals are closed

```
Proof
0}\mathrm{ Proof Tree
    1:imp_right
    2:imp_left
9-0 Case 1
    3:double_not
    6:imp_right
    8:close_goal
    Z 10:Closed goal
O--9
```


Sequent Calculus Proofs

Proof tree

- Proof is tree structure with goal sequent as root
- Rules are applied from conclusion (old goal) to premisses (new goals)
- Rule with no premiss closes proof branch
- Proof is firished when all goals are closed

```
Proof
0}\mathrm{ Proof Tree
    1:imp_right
    2:imp_left
9-9 Case 1
    3:double_not
    6:imp_right
    8:close_goal
    Z 10:Closed goal
0-7 Case 2
```


Sequent Calculus Proofs

Proof tree

- Proof is tree structure with goal sequent as root
- Rules are applied from conclusion (old goal) to premisses (new goals)
- Rule with no premiss closes proof branch
- Proof is finished when all goals are closed

```
Proof
0}\mathrm{ Proof Tree
    1:imp_right
    2:imp_left
9-0 Case 1
    3:double_not
    6:imp_right
    8:close_goal
    Z 10:Closed goal
O-G Case 2
```


Sequent Calculus Proofs

Proof tree

- Proof is tree structure with goal sequent as root
- Rules are applied from conclusion (old goal) to premisses (new goals)
- Rule with no premiss closes proof branch
- Proof is finished when all goals are closed

```
Proof
0}\mathrm{ Proof Tree
    1:imp_right
    2:imp_left
9-0 Case 1
    3:double_not
    6:imp_right
    8:close_goal
    & 10:Closed goal
O-G Case 2
```


(2) Sequent Calculus

(3) Rules for Programs: Symbolic Execution
4. A Calculus for 100% JAVA CARD
(5) Loop Invariants

(2) Sequent Calculus

(3) Rules for Programs: Symbolic Execution
(4) A Calculus for 100% JAVA CARD
(5) Loop Invariants

Proof by Symbolic Program Execution

- Sequent rules for program formulas?
- What corresponds to top-level connective in a program?

- Sequent rules execute symbolically the active statement

Proof by Symbolic Program Execution

- Sequent rules for program formulas?
- What corresponds to top-level connective in a program?

The Active Statement in a Program

$$
l:\{\operatorname{try}\{i=0 ; j=0 ;\} \text { finally\{ } k=0 ;\}\}
$$

- Sequent rules execute symbolically the active statement

Proof by Symbolic Program Execution

- Sequent rules for program formulas?
- What corresponds to top-level connective in a program?

The Active Statement in a Program

$$
l:\{\operatorname{try}\{i=0 ; j=0 ;\} \text { finally\{ } k=0 ;\}\}
$$

- Sequent rules execute symbolically the active statement

Proof by Symbolic Program Execution

- Sequent rules for program formulas?
- What corresponds to top-level connective in a program?

The Active Statement in a Program

$$
\underbrace{l:\{t r y\{ }_{\pi} i=0 ; \underbrace{j=0 ; \quad\} \text { finally }\{k=0 ; \quad\}\}}_{\omega}
$$

passive prefix π
active statement $\quad i=0$;
rest
ω

- Sequent rules execute symbolically the active statement

Proof by Symbolic Program Execution

- Sequent rules for program formulas?
- What corresponds to top-level connective in a program?

The Active Statement in a Program

$$
\underbrace{l:\{t r y\{ }_{\pi} i=0 ; \underbrace{j=0 ; \quad\} \text { finally }\{k=0 ; \quad\}\}}_{\omega}
$$

passive prefix π
active statement $\quad i=0$;
rest
ω

- Sequent rules execute symbolically the active statement

Rules for Symbolic Program Execution

If-then-else rule

$$
\frac{\Gamma, B=\text { true } \Rightarrow\langle p \omega\rangle \phi, \Delta \quad \Gamma, B=\text { false } \Rightarrow\langle q \omega\rangle \phi, \Delta}{\Gamma \Rightarrow\langle i f(B)\{p\} \text { else }\{q\} \omega\rangle \phi, \Delta}
$$

Rules for Symbolic Program Execution

If-then-else rule

$$
\frac{\Gamma, B=\text { true } \Rightarrow\langle p \omega\rangle \phi, \Delta \quad \Gamma, B=\text { false } \Rightarrow\langle q \omega\rangle \phi, \Delta}{\Gamma \Rightarrow\langle\text { if }(B)\{p\} \text { else }\{q\} \omega\rangle \phi, \Delta}
$$

Complicated statements/expressions are simplified first, e.g.

$$
\frac{\Gamma \Rightarrow\langle\mathrm{v}=\mathrm{y} ; \mathrm{y}=\mathrm{y}+1 ; \quad \mathrm{x}=\mathrm{v} ; \omega\rangle \phi, \Delta}{\Gamma \Rightarrow\langle\mathrm{x}=\mathrm{y}++; \omega\rangle \phi, \Delta}
$$

Rules for Symbolic Program Execution

If-then-else rule

$$
\frac{\Gamma, B=\text { true } \Rightarrow\langle p \omega\rangle \phi, \Delta \quad \Gamma, B=\text { false } \Rightarrow\langle q \omega\rangle \phi, \Delta}{\Gamma \Rightarrow\langle\text { if }(B)\{p\} \text { else }\{q\} \omega\rangle \phi, \Delta}
$$

Complicated statements/expressions are simplified first, e.g.

$$
\frac{\Gamma \Rightarrow\langle v=y ; y=y+1 ; \quad x=v ; \omega\rangle \phi, \Delta}{\Gamma \Rightarrow\langle\mathrm{x}=\mathrm{y}++; \omega\rangle \phi, \Delta}
$$

Simple assignment rule

$$
\frac{\Gamma \Rightarrow\{l o c:=v a l\}\langle\omega\rangle \phi, \Delta}{\Gamma \Rightarrow\langle l o c=v a l ; \quad \omega\rangle \phi, \Delta}
$$

Treating Assignment with "Updates"

Updates
syntactic elements in the logic - (explicit substitutions)
Elementary Updates
where

- loc is a program variable
- val is an expression type-compatible with loc

Parallel Updates

no dependency between the n components (but 'last wins' semantics)

Treating Assignment with "Updates"

Updates

syntactic elements in the logic - (explicit substitutions)
Elementary Updates

$$
\{l o c:=v a l\} \phi
$$

where

- loc is a program variable
- val is an expression type-compatible with loc
\square

no dependency between the n components (but 'last wins' semantics)

Treating Assignment with "Updates"

Updates

syntactic elements in the logic - (explicit substitutions)

Elementary Updates

$$
\{l o c:=v a l\} \phi
$$

where

- loc is a program variable
- val is an expression type-compatible with loc

Parallel Updates

$$
\left\{l o c_{1}:=t_{1}\|\cdots\| l o c_{n}:=t_{n}\right\} \phi
$$

no dependency between the n components (but 'last wins' semantics)

Why Updates?

Updates are

- aggregations of state change
- eagerly parallelised + simplified
- lazily applied (i.e., substituted into postcondition)

```
Advantages
    - no renaming required
    (compared to another forward proof technique:
    strongest-postcondition calculus)
    - delayed/minimised nroof hranching
    efficient aliasing treatment)
```


Why Updates?

Updates are

- aggregations of state change
- eagerly parallelised + simplified
- lazily applied (i.e., substituted into postcondition)

Advantages

- no renaming required (compared to another forward proof technique: strongest-postcondition calculus)
- delayed/minimised proof branching efficient aliasing treatment)

Symbolic Execution with Updates (by Example)

$$
\Longrightarrow \mathrm{x}<\mathrm{y} \rightarrow\langle\text { int } \mathrm{t}=\mathrm{x} ; \mathrm{x}=\mathrm{y} ; \mathrm{y}=\mathrm{t} ;\rangle \mathrm{y}<\mathrm{x}
$$

Symbolic Execution with Updates (by Example)

$$
\begin{gathered}
x<y \Longrightarrow\{t:=x\}\langle x=y ; y=t ;\rangle y<x \\
\vdots \\
\Rightarrow x<y \rightarrow\langle\text { int } t=x ; x=y ; y=t ;\rangle<x
\end{gathered}
$$

Symbolic Execution with Updates (by Example)

$$
\begin{gathered}
x<y \Longrightarrow\{t:=x\}\{x:=y\}\langle y=t ;\rangle y<x \\
\vdots \\
x<y \Longrightarrow\{t:=x\}\langle x=y ; y=t ;\rangle y<x \\
\vdots \\
\Rightarrow x<y \rightarrow\langle\text { int } t=x ; x=y ; y=t ;\rangle y<x
\end{gathered}
$$

Symbolic Execution with Updates (by Example)

$$
\begin{gathered}
x<y \Longrightarrow\{t:=x \| x:=y\}\{y:=t\}\langle \rangle y<x \\
\vdots \\
x<y \Longrightarrow\{t:=x\}\{x:=y\}\langle y=t ;\rangle y<x \\
\vdots \\
x<y \Longrightarrow\{t:=x\}\langle x=y ; y=t ;\rangle y<x \\
\vdots \\
\Rightarrow x<y \rightarrow\langle i n t \quad t=x ; x=y ; y=t ;\rangle y<x
\end{gathered}
$$

Symbolic Execution with Updates (by Example)

$$
\begin{gathered}
x<y \Longrightarrow\{t:=x\|x:=y\| y:=x\}\langle \rangle y<x \\
\vdots \\
x<y \Longrightarrow\{t:=x \| x:=y\}\{y:=t\}\langle \rangle y<x \\
\vdots \\
x<y \Longrightarrow\{t:=x\}\{x:=y\}\langle y=t ;\rangle y<x \\
\vdots \\
x<y \Longrightarrow\{t:=x\}\langle x=y ; y=t ;\rangle y<x \\
\vdots \\
\Rightarrow x<y \rightarrow\langle i n t \quad t=x ; x=y ; y=t ;\rangle y<x
\end{gathered}
$$

Symbolic Execution with Updates (by Example)

$$
\begin{gathered}
x<y \Longrightarrow\{x:=y \| y:=x\}\langle \rangle y<x \\
\vdots \\
x<y \Longrightarrow\{t:=x\|x:=y\| y:=x\}\langle \rangle y<x \\
\vdots \\
x<y \Longrightarrow\{t:=x \| x:=y\}\{y:=t\}\langle \rangle y<x \\
\vdots \\
x<y \Longrightarrow\{t:=x\}\{x:=y\}\langle y=t ;\rangle y<x \\
\vdots \\
x<y \Longrightarrow\{t:=x\}\langle x=y ; y=t ;\rangle y<x \\
\vdots
\end{gathered}
$$

Symbolic Execution with Updates

(by Example)

$$
\begin{gathered}
x<y \Rightarrow x<y \\
\vdots \\
x<y \Rightarrow\{x:=y \| y:=x\}\langle \rangle y<x \\
\vdots \\
x<y \Rightarrow\{t:=x\|x:=y\| y:=x\}\langle \rangle y<x \\
\vdots \\
x<y \Rightarrow\{t:=x \| x:=y\}\{y:=t\}\langle \rangle y<x \\
\vdots \\
x<y \Rightarrow\{t:=x\}\{x:=y\}\langle y=t ;\rangle y<x \\
\vdots \\
x<y \Rightarrow\{t:=x\}\langle x=y ; y=t ;\rangle y<x \\
\vdots \\
x
\end{gathered}
$$

The theory of arrays

An abstract datatype $\operatorname{Array}(\mathbb{I}, \mathbb{V})$

Types: Indices \mathbb{I}, Values \mathbb{V}

Function symbols:

- select : $\operatorname{Array}(\mathbb{I}, \mathbb{V}) \times \mathbb{I} \rightarrow \mathbb{V}$
- store : $\operatorname{Array}(\mathbb{I}, \mathbb{V}) \times \mathbb{I} \times \mathbb{V} \rightarrow \operatorname{Array}(\mathbb{I}, \mathbb{V})$

$$
\begin{aligned}
& \operatorname{select}(\operatorname{store}(a, i, v), i)=v \\
& \operatorname{select}(\operatorname{store}(a, i, v), j)=\operatorname{select}(a, j)
\end{aligned}
$$

Intuition
$\mathcal{D}(\operatorname{Array}(\mathbb{I}, \mathbb{V}))$ represents the set of functions $\mathcal{D}(\mathbb{I}) \rightarrow \mathcal{D}(\mathbb{V})$

The theory of arrays

An abstract datatype $\operatorname{Array}(\mathbb{I}, \mathbb{V})$

Types: Indices \mathbb{I}, Values \mathbb{V}

Function symbols:

- select : $\operatorname{Array}(\mathbb{I}, \mathbb{V}) \times \mathbb{I} \rightarrow \mathbb{V}$
- store : $\operatorname{Array}(\mathbb{I}, \mathbb{V}) \times \mathbb{I} \times \mathbb{V} \rightarrow \operatorname{Array}(\mathbb{I}, \mathbb{V})$

Axioms

$$
\begin{aligned}
\forall a, i, v . & \operatorname{select}(\operatorname{store}(a, i, v), i)
\end{aligned}=v 6
$$

$$
\mathcal{D}(\operatorname{Array}(\mathbb{I}, \mathbb{V})) \text { represents the set of functions } \mathcal{D}(\mathbb{I}) \rightarrow \mathcal{D}(\mathbb{V})
$$

The theory of arrays

An abstract datatype $\operatorname{Array}(\mathbb{I}, \mathbb{V})$

Types: Indices \mathbb{I}, Values \mathbb{V}

Function symbols:

- select : $\operatorname{Array}(\mathbb{I}, \mathbb{V}) \times \mathbb{I} \rightarrow \mathbb{V}$
- store : $\operatorname{Array}(\mathbb{I}, \mathbb{V}) \times \mathbb{I} \times \mathbb{V} \rightarrow \operatorname{Array}(\mathbb{I}, \mathbb{V})$

Axioms

$$
\begin{aligned}
\forall a, i, v . & \operatorname{select}(\operatorname{store}(a, i, v), i)
\end{aligned}=v 6
$$

Intuition

$\mathcal{D}(\operatorname{Array}(\mathbb{I}, \mathbb{V}))$ represents the set of functions $\mathcal{D}(\mathbb{I}) \rightarrow \mathcal{D}(\mathbb{V})$

The theory of arrays

An abstract date Photo by "nullo" (www.filickr.com/photos/nullo/272015955)
Types: Indices \mathbb{I},

Function symbo

- select : Array
- store : Array(

Axioms

$$
\begin{aligned}
& \forall a, i, v . \quad \text { Theory of arrays is decidable } \\
& \forall a, i, j, v . i \neq j \rightarrow \operatorname{select}(\operatorname{store}(a, i, v), j)=\operatorname{select}(a, j)
\end{aligned}
$$

Intuition

$\mathcal{D}(\operatorname{Array}(\mathbb{I}, \mathbb{V}))$ represents the set of functions $\mathcal{D}(\mathbb{I}) \rightarrow \mathcal{D}(\mathbb{V})$

Program State Representation

Local program variables
Modeled as non-rigid constants

\square

Program State Representation

Local program variables

Modeled as non-rigid constants

Heap

Modeled with theory of arrays: $\mathbb{I}=$ Object \times Field, $\mathbb{V}=$ Any heap: Heap (the heap in the current state) select: Heap \times Object \times Field \rightarrow Any store: \quad Heap \times Object \times Field \times Any \rightarrow Heap
the current receiver object (this in Java)
the currently active exception (null if none thrown) the result of the method invocation

Program State Representation

Local program variables

Modeled as non-rigid constants

Heap

Modeled with theory of arrays: $\mathbb{I}=$ Object \times Field, $\mathbb{V}=$ Any heap: Heap (the heap in the current state) select: Heap \times Object \times Field \rightarrow Any store: \quad Heap \times Object \times Field \times Any \rightarrow Heap

Some special program variables

self the current receiver object (this in Java)
exc
result the currently active exception (null if none thrown) the result of the method invocation
(2) Sequent Calculus

3 Rules for Programs: Symbolic Execution
(4) A Calculus for 100% JAVA CARD
(5) Loop Invariants

(2) Sequent Calculus

(3) Rules for Programs: Symbolic Execution
(4) A Calculus for 100% JAVA CARD
(5) Loop Invariants

Supported Java Features

- method invocation with polymorphism/dynamic binding
- object creation and initialisation
- arrays
- abrupt termination
- throwing of NullPointerExceptions, etc.
- bounded integer data types
- transactions

All Java CaRD language features are fully addressed in KeY

Supported Java Features

- method invocation with polymorphism/dynamic binding
- object creation and initialisation
- arrays
- abrupt termination
- throwing of NullPointerExceptions, etc.
- bounded integer data types
- transactions

All Java CaRD language features are fully addressed in KeY

Java-A Language of Many Features

Ways to deal with Java features
 - Program transformation, up-front
 - Local program transformation, done by a rule on-the-fly
 - Modeling with first-order formulas
 - Special-purpose extensions of program logic

Pro: Feature needs not be handled in calculus
Contra: Modified source code
Example in KeY: Very rare: treating inner classes

Java-A Language of Many Features

Ways to deal with Java features

- Program transformation, up-front
- Local program transformation, done by a rule on-the-fly
- Modeling with first-order formulas
- Special-purpose extensions of program logic

Pro: Flexible, easy to implement, usable
Contra: Not expressive enough for all features
Example in KeY: Complex expression eval, method inlining, etc., etc.

Java-A Language of Many Features

Ways to deal with Java features

- Program transformation, up-front
- Local program transformation, done by a rule on-the-fly
- Modeling with first-order formulas
- Special-purpose extensions of program logic

Pro: No logic extensions required, enough to express most features
Contra: Creates difficult first-order POs, unreadable antecedents
Example in KeY: Dynamic types and branch predicates

Java-A Language of Many Features

Ways to deal with Java features

- Program transformation, up-front
- Local program transformation, done by a rule on-the-fly
- Modeling with first-order formulas
- Special-purpose extensions of program logic

Pro: Arbitrarily expressive extensions possible
Contra: Increases complexity of all rules
Example in KeY: Method frames, updates

Components of the Calculus

(1) Non-program rules

- first-order rules
- rules for data-types
- first-order modal rules
- induction rules
(2) Rules for reducing/simplifying the program (symbolic execution) Replace the program by
(3) Rules for handling loops

44 Rules for replacing a method invocations by the method's contract

Components of the Calculus

(1) Non-program rules

- first-order rules
- rules for data-types
- first-order modal rules
- induction rules
(2) Rules for reducing/simplifying the program (symbolic execution)
Replace the program by
- case distinctions (proof branches) and
- sequences of updates
(3) Rules for handling loops
(4) Rules for replacing a method invocations by the method's
contract

Components of the Calculus

(1) Non-program rules

- first-order rules
- rules for data-types
- first-order modal rules
- induction rules
(2) Rules for reducing/simplifying the program (symbolic execution)
Replace the program by
- case distinctions (proof branches) and
- sequences of updates
(3) Rules for handling loops
- using loop invariants
- using induction

44 Rules for replacing a method invocations by the method's contract

Components of the Calculus

(1) Non-program rules

- first-order rules
- rules for data-types
- first-order modal rules
- induction rules
(2) Rules for reducing/simplifying the program (symbolic execution)
Replace the program by
- case distinctions (proof branches) and
- sequences of updates
(3) Rules for handling loops
- using loop invariants
- using induction
(4) Rules for replacing a method invocations by the method's contract

Components of the Calculus

(1) Non-program rules

- first-order rules
- rules for data-types
- first-order modal rules
- induction rules
(2) Rules for reducing/simplifying the program (symbolic execution)
Replace the program by
- case distinctions (proof branches) and
- sequences of updates
(3) Rules for handling loops
- using loop invariants
- using induction
(4) Rules for replacing a method invocations by the method's contract
(5) Update simplification

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { UNWINDLOOP } \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \text { if }(\mathrm{b})\{\mathrm{p} ; \text { while }(\mathrm{b}) \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with...

```
- 0 iterations? Unwind 1
- 10 iterations? Unwind 11
- 10000 iterations? Unwind \(10001 \times\) (and don't make any plans for the rest of the day)
- an unknown number of iterations?
```

We need an invariant rule (or some other form of induction)

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { UNWINDLOOP } \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \text { if }(\mathrm{b})\{\mathrm{p} ; \text { while }(\mathrm{b}) \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Rightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with...

- 0 iterations?
- 10 iterations? Unwind 11
- 10000 iterations? Unwind 10001
(and don't make any plans for the rest of the day)
- an unknown number of iterations?

We need an invariant rule (or some other form of induction)

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { UNWINDLOOP } \frac{\Gamma \Rightarrow \mathcal{U}[\pi \text { if }(\mathrm{b})\{\mathrm{p} ; \text { while }(\mathrm{b}) \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Rightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with...

- 0 iterations? Unwind $1 \times$
- 10 iterations? Unwind 11
- 10000 iterations? Unwind 10001 (and don't make any plans for the rest of the day)
- an unknown number of iterations?

We need an invariant rule (or some other form of induction)

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { UNWINDLOOP } \frac{\Gamma \Rightarrow \mathcal{U}[\pi \text { if }(\mathrm{b})\{\mathrm{p} ; \text { while }(\mathrm{b}) \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Rightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with...

- 0 iterations? Unwind $1 \times$
- 10 iterations?
- 10000 iterations? Unwind $10001 \times$
(and don't make any plans for the rest of the day)
- an unknown number of iterations?

We need an invariant rule (or some other form of induction)

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { UNWINDLoop } \frac{\Gamma \Rightarrow \mathcal{U}[\pi \text { if }(\mathrm{b})\{\mathrm{p} ; \text { while }(\mathrm{b}) \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Rightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with...

- 0 iterations? Unwind $1 \times$
- 10 iterations? Unwind $11 \times$
- 10000 iterations? Unwind $10001 \times$
(and don't make any plans for the rest of the day)
- an unknown number of iterations?

We need an invariant rule (or some other form of induction)

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { UNWINDLOOP } \frac{\Gamma \Rightarrow \mathcal{U}[\pi \text { if }(\mathrm{b})\{\mathrm{p} ; \text { while }(\mathrm{b}) \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Rightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with...

- 0 iterations? Unwind $1 \times$
- 10 iterations? Unwind $11 \times$
- 10000 iterations?

Unwind 10001
(and don't make any plans for the rest of the day)

- an unknown number of iterations?

We need an invariant rule (or some other form of induction)

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { UNWINDLOOP } \frac{\Gamma \Longrightarrow \mathcal{U}[\pi \text { if }(\mathrm{b})\{\mathrm{p} ; \text { while }(\mathrm{b}) \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Rightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with...

- 0 iterations? Unwind $1 \times$
- 10 iterations? Unwind $11 \times$
- 10000 iterations? Unwind 10001× (and don't make any plans for the rest of the day)
- an unknown number of iterations?

We need an invariant rule (or some other form of induction)

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { UNWINDLoop } \frac{\Gamma \Rightarrow \mathcal{U}[\pi \text { if }(\mathrm{b})\{\mathrm{p} ; \text { while }(\mathrm{b}) \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Rightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with...

- 0 iterations? Unwind $1 \times$
- 10 iterations? Unwind $11 \times$
- 10000 iterations? Unwind $10001 \times$ (and don't make any plans for the rest of the day)
- an unknown number of iterations?

We need an invariant rule (or some other form of induction)

Loop Invariants

Symbolic execution of loops: unwind

$$
\text { UNWINDLoop } \frac{\Gamma \Rightarrow \mathcal{U}[\pi \text { if }(\mathrm{b})\{\mathrm{p} ; \text { while }(\mathrm{b}) \mathrm{p}\} \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta}
$$

How to handle a loop with...

- 0 iterations? Unwind $1 \times$
- 10 iterations? Unwind $11 \times$
- 10000 iterations? Unwind $10001 \times$ (and don't make any plans for the rest of the day)
- an unknown number of iterations?

We need an invariant rule (or some other form of induction)

Loop Invariants Cont'd

Idea behind loop invariants

- A formula Inv that
- holds initially and
- whose validity is preserved by loop iteration
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- If the loop terminates at all, then Inv holds afterwards
- Make Inv strong enough to entail the desired postcondition

Loop Invariants Cont'd

Idea behind loop invariants

- A formula Inv that
- holds initially and
- whose validity is preserved by loop iteration
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- If the loop terminates at all, then Inv holds afterwards
- Make Inv strong enough to entail the desired postcondition

Basic Invariant Rule

loopInvariant

$$
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta
$$

Loop Invariants Cont'd

Idea behind loop invariants

- A formula Inv that
- holds initially and
- whose validity is preserved by loop iteration
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- If the loop terminates at all, then Inv holds afterwards
- Make Inv strong enough to entail the desired postcondition

Basic Invariant Rule

$$
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta
$$

loopInvariant

$$
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta
$$

(initially valid)
(preserved)

Loop Invariants Cont'd

Idea behind loop invariants

- A formula Inv that
- holds initially and
- whose validity is preserved by loop iteration
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- If the loop terminates at all, then Inv holds afterwards
- Make Inv strong enough to entail the desired postcondition

Basic Invariant Rule

$$
\begin{array}{cl}
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta & \text { (initially valid) } \\
\operatorname{Inv}, b \doteq \operatorname{TRUE} \Longrightarrow[\mathrm{p}] \operatorname{Inv} & \text { (preserved) }
\end{array}
$$

loopInvariant

$$
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta
$$

(use case)

Loop Invariants Cont'd

Idea behind loop invariants

- A formula Inv that
- holds initially and
- whose validity is preserved by loop iteration
- Consequence: if Inv was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- If the loop terminates at all, then Inv holds afterwards
- Make Inv strong enough to entail the desired postcondition

Basic Invariant Rule

$$
\begin{array}{cl}
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta & \text { (initially valid) } \\
\text { Inv, } b \doteq \operatorname{TRUE} \Longrightarrow[\mathrm{p}] \ln v & \text { (preserved) } \\
\text { loopInvariant } \begin{array}{c}
\operatorname{Inv}, b \doteq \mathrm{FALSE} \Longrightarrow[\pi \omega] \phi \\
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta
\end{array} & \text { (use case) }
\end{array}
$$

Loop Invariants Cont'd

Basic Invariant Rule: Problem

$$
\begin{array}{ll}
\qquad \begin{array}{ll}
\operatorname{Inv}, b \doteq \operatorname{URInv,\Delta } \Delta[\mathrm{TRUE} \Longrightarrow[\mathrm{lnv} v & \begin{array}{l}
\text { (initially valid) } \\
\text { (preserved) }
\end{array} \\
\text { loopInvariant } \frac{\operatorname{Inv}, b \doteq \mathrm{FALSE} \Longrightarrow[\pi \omega] \phi}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta} & \text { (use case) }
\end{array} \\
\text { Context } \Gamma, \triangle, \mathcal{U} \text { must be omitted in } 2 \text { nd and 3rd premise } \\
\text { But: context contains (part of) precondition and class } \\
\text { invariants } \\
\text { Required context information must be added to loop } \\
\text { invariant Inv }
\end{array}
$$

Loop Invariants Cont'd

Basic Invariant Rule: Problem

$$
\begin{array}{cl}
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta & \text { (initially valid) } \\
\text { Inv, } b \doteq \operatorname{TRUE} \Longrightarrow[\mathrm{p}] \operatorname{lnv} & \text { (preserved) } \\
\text { loopInvariant } \frac{\ln v, b \doteq \operatorname{FALSE} \Longrightarrow[\pi \omega] \phi}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta} & \text { (use case) }
\end{array}
$$

- Context Г, Δ, \mathcal{U} must be omitted in 2nd and 3rd premise
- But: context contains (part of) precondition and class invariants
- Reauired context information must be added to loop invariant Inv

Loop Invariants Cont'd

Basic Invariant Rule: Problem

$$
\begin{array}{cl}
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta & \text { (initially valid) } \\
\text { Inv, } b \doteq \operatorname{TRUE} \Longrightarrow[\mathrm{p}] \operatorname{Inv} & \text { (preserved) } \\
\text { loopInvariant } \frac{\ln v, b \doteq \operatorname{FALSE} \Rightarrow[\pi \omega] \phi}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta} & \text { (use case) }
\end{array}
$$

- Context $\Gamma, \Delta, \mathcal{U}$ must be omitted in 2nd and 3rd premise
- But: context contains (part of) precondition and class invariants
- Required context information must be added to loop invariant Inv

Loop Invariants Cont'd

Basic Invariant Rule: Problem

$$
\begin{array}{cl}
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta & \text { (initially valid) } \\
\text { Inv, } b \doteq \operatorname{TRUE} \Longrightarrow[\mathrm{p}] \operatorname{Inv} & \text { (preserved) } \\
\text { loopInvariant } \frac{\ln v, b \doteq \operatorname{FALSE} \Longrightarrow[\pi \omega] \phi}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta} & \text { (use case) }
\end{array}
$$

- Context $\Gamma, \Delta, \mathcal{U}$ must be omitted in 2nd and 3rd premise
- But: context contains (part of) precondition and class invariants
- Required context information must be added to loop invariant Inv

Example

```
int i \(=0\);
while(i < a.length) \{
    a[i] = 1;
    i++;
\}
```


Example

Precondition: a \neq null

```
int i \(=0\);
while(i < a.length) \{
    a[i] = 1;
    i++;
\}
```


Example

Precondition: a \neq null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x<a$. length $\rightarrow \mathrm{a}[x] \doteq 1)$

Example

Precondition: a \neq null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x<a$. length $\rightarrow a[x] \doteq 1)$

Loop invariant: $0 \leq i \wedge i \leq a . l e n g t h$

Example

Precondition: a \neq null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x<a$. length $\rightarrow \mathrm{a}[x] \doteq 1)$

Loop invariant: $0 \leq i \wedge i \leq$ a.length

$$
\wedge \forall \text { int } x ;(0 \leq x<i \rightarrow a[x] \doteq 1)
$$

Example

Precondition: $a \neq$ null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x<a$. length $\rightarrow a[x] \doteq 1)$

Loop invariant: $0 \leq i \wedge i \leq a . l e n g t h$

$$
\begin{aligned}
& \wedge \forall \text { int } x ;(0 \leq x<i \rightarrow a[x] \doteq 1) \\
& \wedge a \neq \text { null }
\end{aligned}
$$

Example

Precondition: a \neq null \& ClassInv

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x<a$. length $\rightarrow \mathrm{a}[x] \doteq 1)$

Loop invariant: $0 \leq i \wedge i \leq a . l e n g t h$
$\wedge \forall$ int $x ;(0 \leq x<i \rightarrow a[x] \doteq 1)$
\wedge a \neq null
\wedge ClassInv'

Keeping the Context

- Want to keep part of the context that is unmodified by loop
- assignable clauses for loops can tell what might be modified

Keeping the Context

- Want to keep part of the context that is unmodified by loop
- assignable clauses for loops can tell what might be modified
@ assignable i, $a[*]$;

Example with Improved Invariant Rule

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```


Example with Improved Invariant Rule

Precondition: $a \neq$ null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```


Example with Improved Invariant Rule

Precondition: $a \neq$ null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x<a$. length $\rightarrow a[x] \doteq 1)$

Example with Improved Invariant Rule

Precondition: a \neq null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x<a$. length $\rightarrow a[x] \doteq 1)$

Loop invariant: $0 \leq i \wedge i \leq a$. length

Example with Improved Invariant Rule

Precondition: a \neq null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x<a$. length $\rightarrow \mathrm{a}[x] \doteq 1)$

Loop invariant: $0 \leq i \wedge i \leq a . l e n g t h$

$$
\wedge \forall \text { int } x ;(0 \leq x<i \rightarrow a[x] \doteq 1)
$$

Example with Improved Invariant Rule

Precondition: $a \neq$ null

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x<a$. length $\rightarrow \mathrm{a}[x] \doteq 1)$

Loop invariant: $0 \leq i \wedge i \leq a . l e n g t h$

$$
\wedge \forall \text { int } x ;(0 \leq x<i \rightarrow a[x] \doteq 1)
$$

Example with Improved Invariant Rule

Precondition: a \neq null \& ClassInv

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}
```

Postcondition: \forall int $x ;(0 \leq x<a$. length $\rightarrow \mathrm{a}[x] \doteq 1)$

Loop invariant: $0 \leq i \wedge i \leq a . l e n g t h$

$$
\wedge \forall \text { int } x ;(0 \leq x<i \rightarrow a[x] \doteq 1)
$$

Example in JML/Java - Loop. java

public int[] a;
/*@ public normal_behavior
@ ensures (\backslash forall int $x ; 0<=x$ \& $\& x<a . l e n g t h ; ~ a[x]==1$);
@ diverges true;
@ */
public void m() \{
int i $=0$;
/*@ loop_invariant
@ $(0<=i \& \& i<=a$.length $\& \&$
@ (\backslash forall int $x ; 0<=x$ \&\& $x<i ; ~ a[x]==1$));
@ assignable i, a[*];
@*/
while(i < a.length) \{
$a[i]=1$;
i++;
\}

Example

```
\(\forall\) int \(x\);
    \((\mathrm{n} \doteq x \wedge x>=0 \rightarrow\)
    [i = 0; r = 0 ;
        while (i<n) \{ i = i + 1; r = r + i; \}
        \(r=r+r-n\);
    ] \(\mathrm{H} \doteq\) ?)
```

How can we prove that the above formula is valid (i.e., satisfied in all states)?

Example

```
\(\forall\) int \(x\);
    \((\mathrm{n} \doteq x \wedge x>=0 \rightarrow\)
    [ir \(=0 ; r=0\);
        while (i<n) \{ i = i + 1; r = r + i; \}
        \(\mathrm{r}=\mathrm{r}+\mathrm{r}-\mathrm{n}\);
    ] \(\mathrm{r} \doteq x * x)\)
```

How can we prove that the above formula is valid (i.e., satisfied in all states)?

Example

\forall int x;

$$
\begin{aligned}
& (\mathrm{n} \doteq x \wedge x>=0 \rightarrow \\
& \text { [i = 0; r = } \text {; } \\
& \text { while (i<n) \{ i = i + 1; r = r + i; \} } \\
& \mathrm{r}=\mathrm{r}+\mathrm{r}-\mathrm{n} \text {; } \\
& \text {] } \mathrm{r} \doteq x * x)
\end{aligned}
$$

How can we prove that the above formula is valid (i.e., satisfied in all states)?

Solution:
@ loop_invariant
@ $i>=0 \& \& 2 \star r==i *(i+1) \& \& i<=n$;
@ assignable i, r;

Example

\forall int x;

$$
\begin{aligned}
& (\mathrm{n} \doteq x \wedge x>=0 \rightarrow \\
& \quad\left[\begin{array}{l}
i \\
\quad
\end{array}\right)=0 ; r=0 ; \\
& \quad \text { while }(i<n) \quad\{i=i+1 ; r=r+i ;\} \\
& r=r+r-n ; \\
&] r \doteq x * x)
\end{aligned}
$$

How can we prove that the above formula is valid (i.e., satisfied in all states)?

Solution:
@ loop_invariant
(c $i>=0 \& \& 2 \star r==i *(i+1) \& \& i<=n$;
@ assignable i, r;
File: Loop2. java

Hints

Proving assignable

- The invariant rule on the slides assumes that assignable is correct. With assignable \nothing; e.g., one can prove nonsense
- The invariant rule in KeY generates proof obligation that ensures correctness of assignable
- Loop treatment: Invariant
- Quantifier treatment: No Splits with Progs
- If program contains

Arithmetic treatment: DefOps

- Is search limit high enough (time out, rule apps.)?
- When proving partial correctness, add diverges true;

Hints

Proving assignable

- The invariant rule on the slides assumes that assignable is correct. With assignable \nothing; e.g., one can prove nonsense
- The invariant rule in KeY generates proof obligation that ensures correctness of assignable

Setting in the KeY Prover when proving loops

- Loop treatment: Invariant
- Quantifier treatment: No Splits with Progs
- If program contains *, /: Arithmetic treatment: DefOps
- Is search limit high enough (time out, rule apps.)?
- When proving partial correctness, add diverges true;

Total Correctness

Find a decreasing integer term v (called variant)
Add the following premisses to the invariant rule:

- $v \geq 0$ is initially valid
- $v \geq 0$ is preserved by the loop body
- v is strictly decreased by the loop body
\square
\square
e decreasing

Total Correctness

Find a decreasing integer term v (called variant)

Add the following premisses to the invariant rule:

- $v \geq 0$ is initially valid
- $v \geq 0$ is preserved by the loop body
- v is strictly decreased by the loop body

Proving termination in JML/Java

- Remove directive diverges true;
- Add directive decreasing v; to loop invariant
- KeY creates suitable invariant rule and PO (with $\langle\ldots\rangle \phi$)

[^0]
Total Correctness

Find a decreasing integer term v (called variant)

Add the following premisses to the invariant rule:

- $v \geq 0$ is initially valid
- $v \geq 0$ is preserved by the loop body
- v is strictly decreased by the loop body

Proving termination in JML/Java

- Remove directive diverges true;
- Add directive decreasing v; to loop invariant
- KeY creates suitable invariant rule and PO (with $\langle\ldots\rangle \phi$)

Example: The array loop

@ decreasing

Total Correctness

Find a decreasing integer term v (called variant)

Add the following premisses to the invariant rule:

- $v \geq 0$ is initially valid
- $v \geq 0$ is preserved by the loop body
- v is strictly decreased by the loop body

Proving termination in JML/Java

- Remove directive diverges true;
- Add directive decreasing v; to loop invariant
- KeY creates suitable invariant rule and PO (with $\langle\ldots\rangle \phi$)

Example: The array loop
@ decreasing a.length - i;

Total Correctness

Find a decreasing integer term v (called variant)

Add the following premisses to the invariant rule:

- $v \geq 0$ is initially valid
- $v \geq 0$ is preserved by the loop body
- v is strictly decreased by the loop body

Proving termination in JML/Java

- Remove directive diverges true;
- Add directive decreasing v; to loop invariant
- KeY creates suitable invariant rule and PO (with $\langle\ldots\rangle \phi$)

Example: The array loop

@ decreasing a.length - i;

Files:

- LoopT.java
- Loop2T.java

Side effects in loop guards

Find a postcondition:
int $x, y ;$
// ...
while($x--$! $=++y$);

Note: Loop guards may have side effects.
Hence: Evaluate them in a modality.

Invariant rule with side effects

Side effects in loop guards

Find a postcondition:

```
int x, y;
// ...
while( x-- != ++y );
```

Note: Loop guards may have side effects.
Hence: Evaluate them in a modality.

Side effects in loop guards

Find a postcondition:

```
int x, y;
// ...
while( x-- != ++y );
```

Note: Loop guards may have side effects.
Hence: Evaluate them in a modality.

Invariant rule with side effects

$$
\begin{gathered}
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta \\
\text { sideEffectLI } \frac{\operatorname{Inv}, b \doteq \mathrm{TRUE}<4>[\mathrm{x}=\mathrm{b} ;] x \doteq \mathrm{TRUE} \Longrightarrow[p] \ln v}{\ln v, b \doteq \mathrm{FALSE} \Longrightarrow[\pi \omega] \phi} \\
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta
\end{gathered}
$$

(initia (pres (use

Side effects in loop guards

Find a postcondition:

```
int x, y;
// ...
while( x-- != ++y );
```

Note: Loop guards may have side effects.
Hence: Evaluate them in a modality.

Invariant rule with side effects

$$
\begin{array}{cl}
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta & \text { (initially valid) } \\
\text { Inv, }[\mathrm{x}=\mathrm{b} ;] x \doteq \mathrm{TRUE} \Rightarrow[p] \operatorname{Inv} & \text { (preserved) } \\
\operatorname{Inv,[\mathrm {x}=\mathrm {b};]x\doteq \mathrm {FALSE}\Rightarrow [\pi \omega]\phi } \mathrm{\Gamma} \Rightarrow \mathcal{U}[\pi \text { while (b) } \mathrm{p} \omega] \phi, \Delta &
\end{array}
$$

Side effects in loop guards

Find a postcondition:

```
int x, y;
// ...
while( x-- != ++y );
```

Note: Loop guards may have side effects.
Hence: Evaluate them in a modality.

Invariant rule with side effects

$$
\begin{gathered}
\Gamma \Longrightarrow \text { UInv, } \Delta \\
\text { Inv, }[\mathrm{x}=\mathrm{b} ;] x \doteq \text { TRUE } \Rightarrow[\mathrm{x}=\mathrm{b} ; p] / n v \\
\text { IndeEffectLII } \xrightarrow{\text { Inv },[\mathrm{x}=\mathrm{b} ;] x \doteq \text { FALSE }} \Rightarrow[\pi \omega] \phi
\end{gathered}
$$

(initially valid)
(preserved)
(use case)

Loops and Abrupt Completion

Rule looplnvariant requires normal, structural control flow (loop body always fully executed; run continues after loop)

Non-structural control flow in Java

return break continue throw
make loop body terminate abruptly.

Solution

Transform non-standard control flow into standard control-flow and with marker variables.

Loops and Abrupt Completion

Original loop body p

if $(x=0)$ break;
if ($\mathrm{x}==1$) return 42;

$$
\begin{aligned}
& \text { if }(x==2) \text { continue; } \\
& \text { if }(x==3) \text { throw } e ; \\
& \text { if }(x=4) \quad x=-1 ;
\end{aligned}
$$

catch (Throwable e

Loops and Abrupt Completion

Encoded loop body \widehat{p}

```
loopBody: { try {
    BREAK = RETURN = false;
    EXCEPTION = null;
    if(x == 0) { BREAK=true;
        break loopBody; }
    if(x == 1) { res=42;
        RETURN=true;
        break loopBody; }
    if(x == 2) break loopBody;
    if(x == 3) throw e;
    if(x == 4) x = -1;
} catch(Throwable e) { Exc = e; }}
```


Loops and Abrupt Termination

Invariant rule with abrupt termination (using translation`)

$$
\begin{array}{cl}
\Gamma \nRightarrow \mathcal{U I n v , \Delta} & \text { (initially valid) } \\
\text { Inv, } b \doteq \text { TRUE } \Rightarrow[\mathrm{p}] / n v & \text { (preserved) } \\
\text { loopInvariant } \frac{\operatorname{Inv}, b \doteq \mathrm{FALSE} \Rightarrow[\pi \omega] \phi}{\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta} & \text { (use case) }
\end{array}
$$

where ψ is the formula

Loops and Abrupt Termination

Invariant rule with abrupt termination (using translation ^)

$$
\begin{array}{cl}
\Gamma \Longrightarrow \mathcal{U} \operatorname{Inv}, \Delta & \text { (initially valid) } \\
\text { Inv, } b \doteq \operatorname{TRUE} \Longrightarrow[\hat{\mathrm{p}}] \psi & \text { (preserved) } \\
\text { loopInvariant } \begin{array}{c}
\text { Inv, } b \doteq \mathrm{FALSE} \Longrightarrow[\pi \omega] \phi \\
\Gamma \Longrightarrow \mathcal{U}[\pi \text { while }(\mathrm{b}) \mathrm{p} \omega] \phi, \Delta
\end{array} & \text { (use case) }
\end{array}
$$

where ψ is the formula

| | $($ EXC \neq null $\rightarrow \quad[\pi$ throw ExCeftion; $\omega] \varphi)$ |
| :--- | :--- | :--- |
| \wedge | $($ BREAK $\doteq \operatorname{TRUE} \rightarrow[\pi \omega] \phi)$ |
| \wedge | $($ RETURN $=$ TRUE $\rightarrow[\pi$ return res; $\omega] \phi)$ |
| \wedge | $($ NORMAL $\rightarrow \quad \operatorname{lnv})$ |

with Normal \equiv Break \doteq FALSE \wedge RETURN \doteq FALSE $\wedge E x c \doteq$ null

Loop Invariant - Conclusion

Is a difficult subject.
shows that real prog language is a challenge
Many technical non-trivial tricks.
A rule that puts together
(1) considering assignable clauses
(2) side effects in loop guards
(3) abrupt termination
is in chapter 3.
Further reading: KeY book Ch. 15 ??
New developments: Loop scope rule, Loop contracts

[^0]: © decreasing

