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Syntax and Semantics

Syntax
Basis: Typed first-order predicate logic
Modal operators 〈p〉 and [p] for each
(JAVA CARD) program p
Class definitions in background (not shown in formulas)

Semantics (Kripke)

Modal operators allow referring to the final state of p:
[p]F : If p terminates normally, then

F holds in the final state (“partial correctness”)
〈p〉F : p terminates normally, and

F holds in the final state (“total correctness”)
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Why Dynamic Logic?

Transparency wrt target programming language
Encompasses Hoare Logic
More expressive and flexible than Hoare logic
Symbolic execution is a natural interactive proof paradigm

Programs are “first-class citizens”
Real Java syntax
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Symbolic execution is a natural interactive proof paradigm

Not merely partial/total correctness:
can employ programs for specification (e.g., verifying
program transformations)
can express security properties (two runs are
indistinguishable)
extension-friendly (e.g., temporal modalities)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 5/44



Why Dynamic Logic?

Transparency wrt target programming language
Encompasses Hoare Logic
More expressive and flexible than Hoare logic
Symbolic execution is a natural interactive proof paradigm

Beckert, Ulbrich – Applications of Formal Verification SS 2019 5/44



Dynamic Logic Example Formulas

(balance >= c ∧ amount > 0)→
〈charge(amount);〉 balance > c

〈x = 1;〉([while (true) {}]false)

Program formulas can appear nested

\forall int val ;
(
(〈p〉x = val) ←→ (〈q〉x = val)

)
p, q equivalent relative to computation state restricted to x
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Dynamic Logic Example Formulas

a != null
->
<
int max = 0;
if ( a.length > 0 ) max = a[0];
int i = 1;
while ( i < a.length ) {
if ( a[i] > max ) max = a[i];
++i;

}
>(

\forall int j; (j >= 0 & j < a.length -> max >= a[j])
&
(a.length > 0 ->
\exists int j; (j >= 0 & j < a.length & max = a[j]))

)
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Variables

Logical variables disjoint from program variables

No quantification over program variables
Programs do not contain logical variables
“Program variables” actually non-rigid functions
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Validity

A JAVA CARD DL formula is valid iff it is true in all states.

We need a calculus for checking validity of formulas
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Sequents and their Semantics

Syntax

ψ1, . . . , ψm︸ ︷︷ ︸
Antecedent

=⇒ φ1, . . . , φn︸ ︷︷ ︸
Succedent

where the φi , ψi are formulae (without free variables)

Semantics

Same as the formula

(ψ1 ∧ · · · ∧ ψm) → (φ1 ∨ · · · ∨ φn)
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Sequent Rules

General form

RULE NAME

Premisses︷ ︸︸ ︷
Γ1 =⇒ ∆1 · · · Γr =⇒ ∆r

Γ =⇒ ∆︸ ︷︷ ︸
Conclusion

(r = 0 possible: closing rules)

Soundness
If all premisses are valid, then the conclusion is valid

Use in practice
Goal is matched to conclusion
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Some Simple Sequent Rules

NOT LEFT
Γ =⇒ A,∆

Γ,¬A =⇒ ∆

IMP LEFT
Γ =⇒ A,∆ Γ,B =⇒ ∆

Γ,A→ B =⇒ ∆

CLOSE GOAL
Γ,A =⇒ A,∆

CLOSE BY TRUE
Γ =⇒ true,∆

ALL LEFT
Γ, \forall t x ;φ, {x/e}φ =⇒ ∆

Γ, \forall t x ;φ =⇒ ∆

where e var-free term of type t ′ ≺ t
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Sequent Calculus Proofs

Proof tree
Proof is tree structure with
goal sequent as root
Rules are applied
from conclusion (old goal)
to premisses (new goals)
Rule with no premiss closes proof
branch
Proof is finished when all goals are
closed
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Proof by Symbolic Program
Execution

Sequent rules for program formulas?
What corresponds to top-level connective in a program?

The Active Statement in a Program

Sequent rules execute symbolically the active statement
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Proof by Symbolic Program
Execution

Sequent rules for program formulas?
What corresponds to top-level connective in a program?

The Active Statement in a Program

l:{try{︸ ︷︷ ︸
π

i=0; j=0; } finally{ k=0; }}︸ ︷︷ ︸
ω

passive prefix π
active statement i=0;
rest ω
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Rules for Symbolic Program
Execution

If-then-else rule

Γ,B = true =⇒ 〈p ω〉φ,∆ Γ,B = false =⇒ 〈q ω〉φ,∆
Γ =⇒ 〈if (B) { p } else { q } ω〉φ,∆

Complicated statements/expressions are simplified first,
e.g.

Γ =⇒ 〈v=y; y=y+1; x=v; ω〉φ,∆
Γ =⇒ 〈x=y++; ω〉φ,∆

Simple assignment rule

Γ =⇒ {loc := val}〈ω〉φ,∆
Γ =⇒ 〈loc=val; ω〉φ,∆
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Treating Assignment with “Updates”

Updates
syntactic elements in the logic – (explicit substitutions)

Elementary Updates

{loc := val}φ

where
loc is a program variable
val is an expression type-compatible with loc

Parallel Updates

{loc1 := t1 || · · · || locn := tn}φ

no dependency between the n components (but ‘last wins’
semantics)
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Why Updates?

Updates are
aggregations of state change
eagerly parallelised + simplified
lazily applied (i.e., substituted into postcondition)

Advantages
no renaming required
(compared to another forward proof technique:
strongest-postcondition calculus)

delayed/minimised proof branching
efficient aliasing treatment)
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Symbolic Execution with Updates
(by Example)

x < y =⇒ x < y
...

x < y =⇒ {x:=y || y:=x}〈〉 y < x
...

x < y =⇒ {t:=x || x:=y || y:=x}〈〉 y < x
...

x < y =⇒ {t:=x || x:=y}{y:=t}〈〉 y < x
...

x < y =⇒ {t:=x}{x:=y}〈y=t;〉 y < x
...

x < y =⇒ {t:=x}〈x=y; y=t;〉 y < x
...

=⇒ x < y→ 〈int t=x; x=y; y=t;〉 y < x
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The theory of arrays

An abstract datatype Array(I,V)
Types: Indices I, Values V

Function symbols:
select : Array(I,V)× I→ V
store : Array(I,V)× I× V→ Array(I,V)

Axioms
∀a, i , v . select(store(a, i , v), i) = v
∀a, i , j , v . i 6= j → select(store(a, i , v), j) = select(a, j)

Intuition
D(Array(I,V)) represents the set of functions D(I)→ D(V)
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John McCarthy (1927–2011):
Theory of arrays is decidable



Program State Representation

Local program variables
Modeled as non-rigid constants

Heap
Modeled with theory of arrays: I = Object × Field , V = Any

heap : Heap (the heap in the current state)
select : Heap ×Object × Field → Any
store : Heap ×Object × Field × Any → Heap

Some special program variables

self the current receiver object (this in Java)
exc the currently active exception (null if none thrown)
result the result of the method invocation
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1 JAVA CARD DL

2 Sequent Calculus

3 Rules for Programs: Symbolic Execution

4 A Calculus for 100% JAVA CARD

5 Loop Invariants
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Supported Java Features

method invocation with polymorphism/dynamic binding
object creation and initialisation
arrays
abrupt termination
throwing of NullPointerExceptions, etc.
bounded integer data types
transactions

All JAVA CARD language features are fully addressed in KeY
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Java—A Language of Many Features

Ways to deal with Java features
Program transformation, up-front
Local program transformation, done by a rule on-the-fly
Modeling with first-order formulas
Special-purpose extensions of program logic

Pro: Feature needs not be handled in calculus
Contra: Modified source code
Example in KeY: Very rare: treating inner classes
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Ways to deal with Java features
Program transformation, up-front
Local program transformation, done by a rule on-the-fly
Modeling with first-order formulas
Special-purpose extensions of program logic

Pro: Flexible, easy to implement, usable
Contra: Not expressive enough for all features
Example in KeY: Complex expression eval, method inlining,
etc., etc.
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Java—A Language of Many Features

Ways to deal with Java features
Program transformation, up-front
Local program transformation, done by a rule on-the-fly
Modeling with first-order formulas
Special-purpose extensions of program logic

Pro: No logic extensions required, enough to express most
features
Contra: Creates difficult first-order POs, unreadable
antecedents
Example in KeY: Dynamic types and branch predicates
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Java—A Language of Many Features

Ways to deal with Java features
Program transformation, up-front
Local program transformation, done by a rule on-the-fly
Modeling with first-order formulas
Special-purpose extensions of program logic

Pro: Arbitrarily expressive extensions possible
Contra: Increases complexity of all rules
Example in KeY: Method frames, updates
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Components of the Calculus

1 Non-program rules
first-order rules
rules for data-types
first-order modal rules
induction rules

2 Rules for reducing/simplifying the program (symbolic
execution)
Replace the program by

case distinctions (proof branches) and
sequences of updates

3 Rules for handling loops
using loop invariants
using induction

4 Rules for replacing a method invocations by the method’s
contract

5 Update simplification
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Loop Invariants

Symbolic execution of loops: unwind

UNWINDLOOP
Γ =⇒ U [π if(b) { p; while(b) p} ω]φ,∆

Γ =⇒ U [π while(b) p ω]φ,∆

How to handle a loop with. . .
0 iterations? Unwind 1×
10 iterations? Unwind 11×
10000 iterations? Unwind 10001×
(and don’t make any plans for the rest of the day)
an unknown number of iterations?

We need an invariant rule (or some other form of induction)
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Loop Invariants Cont’d

Idea behind loop invariants
A formula Inv that

holds initially and
whose validity is preserved by loop iteration

Consequence: if Inv was valid at start of the loop, then it
still holds after arbitrarily many loop iterations
If the loop terminates at all, then Inv holds afterwards
Make Inv strong enough to entail the desired postcondition

Basic Invariant Rule

loopInvariant

Γ =⇒ U Inv ,∆ (initially valid)
Inv , b .

= TRUE =⇒ [p]Inv (preserved)
Inv , b .

= FALSE =⇒ [π ω]φ (use case)
Γ =⇒ U [π while(b) p ω]φ,∆
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Loop Invariants Cont’d

Basic Invariant Rule: Problem

loopInvariant

Γ =⇒ U Inv ,∆ (initially valid)
Inv , b .

= TRUE =⇒ [p]Inv (preserved)
Inv , b .

= FALSE =⇒ [π ω]φ (use case)
Γ =⇒ U [π while(b) p ω]φ,∆

Context Γ, ∆, U must be omitted in 2nd and 3rd premise
But: context contains (part of) precondition and class
invariants
Required context information must be added to loop
invariant Inv

Beckert, Ulbrich – Applications of Formal Verification SS 2019 32/44



Loop Invariants Cont’d

Basic Invariant Rule: Problem

loopInvariant

Γ =⇒ U Inv ,∆ (initially valid)
Inv , b .

= TRUE =⇒ [p]Inv (preserved)
Inv , b .

= FALSE =⇒ [π ω]φ (use case)
Γ =⇒ U [π while(b) p ω]φ,∆

Context Γ, ∆, U must be omitted in 2nd and 3rd premise
But: context contains (part of) precondition and class
invariants
Required context information must be added to loop
invariant Inv

Beckert, Ulbrich – Applications of Formal Verification SS 2019 32/44



Loop Invariants Cont’d

Basic Invariant Rule: Problem

loopInvariant

Γ =⇒ U Inv ,∆ (initially valid)
Inv , b .

= TRUE =⇒ [p]Inv (preserved)
Inv , b .

= FALSE =⇒ [π ω]φ (use case)
Γ =⇒ U [π while(b) p ω]φ,∆

Context Γ, ∆, U must be omitted in 2nd and 3rd premise
But: context contains (part of) precondition and class
invariants
Required context information must be added to loop
invariant Inv

Beckert, Ulbrich – Applications of Formal Verification SS 2019 32/44



Loop Invariants Cont’d

Basic Invariant Rule: Problem

loopInvariant

Γ =⇒ U Inv ,∆ (initially valid)
Inv , b .

= TRUE =⇒ [p]Inv (preserved)
Inv , b .

= FALSE =⇒ [π ω]φ (use case)
Γ =⇒ U [π while(b) p ω]φ,∆

Context Γ, ∆, U must be omitted in 2nd and 3rd premise
But: context contains (part of) precondition and class
invariants
Required context information must be added to loop
invariant Inv

Beckert, Ulbrich – Applications of Formal Verification SS 2019 32/44



Example

Precondition: a 6 .= null

& ClassInv

int i = 0;
while(i < a.length) {

a[i] = 1;
i++;

}

Postcondition: ∀int x ; (0 ≤ x < a.length→ a[x] .
= 1)

Loop invariant: 0 ≤ i ∧ i ≤ a.length

∧ ∀int x ; (0 ≤ x < i→ a[x] .
= 1)

∧ a 6 .= null
∧ ClassInv ′
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Keeping the Context

Want to keep part of the context that is unmodified by loop
assignable clauses for loops can tell what might be
modified

@ assignable i, a[*];
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Example with Improved Invariant
Rule

Precondition: a 6 .= null

& ClassInv

int i = 0;
while(i < a.length) {

a[i] = 1;
i++;

}

Postcondition: ∀int x ; (0 ≤ x < a.length→ a[x] .
= 1)

Loop invariant: 0 ≤ i ∧ i ≤ a.length

∧ ∀int x ; (0 ≤ x < i→ a[x] .
= 1)
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Example in JML/Java – Loop.java

public int[] a;
/*@ public normal_behavior
@ ensures (\forall int x; 0<=x && x<a.length; a[x]==1);
@ diverges true;
@*/

public void m() {
int i = 0;
/*@ loop_invariant
@ (0 <= i && i <= a.length &&
@ (\forall int x; 0<=x && x<i; a[x]==1));
@ assignable i, a[*];
@*/

while(i < a.length) {
a[i] = 1;
i++;

}
}
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Example
∀ int x ;

(n
.

= x ∧ x >= 0→
[ i = 0; r = 0;
while (i<n) { i = i + 1; r = r + i;}
r=r+r-n;

]r
.

=?)

How can we prove that the above formula is valid
(i.e., satisfied in all states)?

Solution:
@ loop_invariant
@ i>=0 && 2*r == i*(i + 1) && i <= n;
@ assignable i, r;

File: Loop2.java
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Hints
Proving assignable

The invariant rule on the slides assumes that assignable
is correct. With assignable \nothing; e.g., one can
prove nonsense
The invariant rule in KeY generates proof obligation that
ensures correctness of assignable

Setting in the KeY Prover when proving loops
Loop treatment: Invariant
Quantifier treatment: No Splits with Progs
If program contains *, /:
Arithmetic treatment: DefOps
Is search limit high enough (time out, rule apps.)?
When proving partial correctness, add diverges true;
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Total Correctness

Find a decreasing integer term v (called variant)
Add the following premisses to the invariant rule:

v ≥ 0 is initially valid
v ≥ 0 is preserved by the loop body
v is strictly decreased by the loop body

Proving termination in JML/Java
Remove directive diverges true;

Add directive decreasing v; to loop invariant
KeY creates suitable invariant rule and PO (with 〈...〉φ)

Example: The array loop

@ decreasing

a.length - i;

Files:
LoopT.java

Loop2T.java
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Side effects in loop guards

Find a postcondition:

int x, y;
// ...
while( x-- != ++y );

Note: Loop guards may have side effects.
Hence: Evaluate them in a modality.

Invariant rule with side effects

sideEffectLI

Γ =⇒ U Inv ,∆ (initially valid)
Inv , b .

= TRUE < 4 > [x=b;]x .
= TRUE =⇒ [p]Inv (preserved)

Inv , b .
= FALSE =⇒ [π ω]φ (use case)

Γ =⇒ U [π while(b) p ω]φ,∆
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Loops and Abrupt Completion

Rule loopInvariant requires normal, structural control flow
(loop body always fully executed; run continues after loop)

Non-structural control flow in Java

return break continue throw

make loop body terminate abruptly.

Solution
Transform non-standard control flow into standard control-flow
and with marker variables.
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Loops and Abrupt Completion

Original loop body p

if(x == 0) break;

if(x == 1) return 42;

if(x == 2) continue;
if(x == 3) throw e;
if(x == 4) x = -1;

Encoded loop body p̂

loopBody: { try {
BREAK = RETURN = false;
EXCEPTION = null;
if(x == 0) { BREAK=true;
break loopBody; }

if(x == 1) { res=42;
RETURN=true;
break loopBody; }

if(x == 2) break loopBody;
if(x == 3) throw e;
if(x == 4) x = -1;

} catch(Throwable e) { EXC = e; }}
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Loops and Abrupt Termination

Invariant rule with abrupt termination (using translation ·̂ )

loopInvariant

Γ =⇒ U Inv ,∆ (initially valid)
Inv , b .

= TRUE =⇒ [p]Inv (preserved)
Inv , b .

= FALSE =⇒ [π ω]φ (use case)
Γ =⇒ U [π while(b) p ω]φ,∆

where ψ is the formula

(EXC 6 .= null→ [π throw EXCEPTION; ω]ϕ)
∧ (BREAK

.
= TRUE→ [π ω]φ)

∧ (RETURN = TRUE→ [π return res; ω]φ)
∧ (NORMAL → Inv)

with NORMAL ≡ BREAK
.
= FALSE ∧ RETURN

.
= FALSE ∧ EXC

.
= null
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Loop Invariant – Conclusion

Is a difficult subject.
shows that real prog language is a challenge
Many technical non-trivial tricks.
A rule that puts together

1 considering assignable clauses
2 side effects in loop guards
3 abrupt termination

is in chapter 3.
Further reading: KeY book Ch. 15 ??
New developments: Loop scope rule, Loop contracts
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