
KIT – INSTITUT FÜR THEORETISCHE INFORMATIK

Applications of Formal Verification
Functional Verification of Java Programs:
Java Dynamic Logic
Bernhard Beckert · Mattias Ulbrich | SS 2019

KIT – University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

1 JAVA CARD DL

2 Sequent Calculus

3 Rules for Programs: Symbolic Execution

4 A Calculus for 100% JAVA CARD

5 Loop Invariants

Beckert, Ulbrich – Applications of Formal Verification SS 2019 2/44

1 JAVA CARD DL

2 Sequent Calculus

3 Rules for Programs: Symbolic Execution

4 A Calculus for 100% JAVA CARD

5 Loop Invariants

Beckert, Ulbrich – Applications of Formal Verification SS 2019 3/44

Syntax and Semantics

Syntax
Basis: Typed first-order predicate logic
Modal operators 〈p〉 and [p] for each
(JAVA CARD) program p
Class definitions in background (not shown in formulas)

Semantics (Kripke)

Modal operators allow referring to the final state of p:
[p]F : If p terminates normally, then

F holds in the final state (“partial correctness”)
〈p〉F : p terminates normally, and

F holds in the final state (“total correctness”)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 4/44

Syntax and Semantics

Syntax
Basis: Typed first-order predicate logic
Modal operators 〈p〉 and [p] for each
(JAVA CARD) program p
Class definitions in background (not shown in formulas)

Semantics (Kripke)

Modal operators allow referring to the final state of p:
[p]F : If p terminates normally, then

F holds in the final state (“partial correctness”)
〈p〉F : p terminates normally, and

F holds in the final state (“total correctness”)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 4/44

Syntax and Semantics

Syntax
Basis: Typed first-order predicate logic
Modal operators 〈p〉 and [p] for each
(JAVA CARD) program p
Class definitions in background (not shown in formulas)

Semantics (Kripke)

Modal operators allow referring to the final state of p:
[p]F : If p terminates normally, then

F holds in the final state (“partial correctness”)
〈p〉F : p terminates normally, and

F holds in the final state (“total correctness”)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 4/44

Syntax and Semantics

Syntax
Basis: Typed first-order predicate logic
Modal operators 〈p〉 and [p] for each
(JAVA CARD) program p
Class definitions in background (not shown in formulas)

Semantics (Kripke)

Modal operators allow referring to the final state of p:
[p]F : If p terminates normally, then

F holds in the final state (“partial correctness”)
〈p〉F : p terminates normally, and

F holds in the final state (“total correctness”)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 4/44

Why Dynamic Logic?

Transparency wrt target programming language
Encompasses Hoare Logic
More expressive and flexible than Hoare logic
Symbolic execution is a natural interactive proof paradigm

Programs are “first-class citizens”
Real Java syntax

Beckert, Ulbrich – Applications of Formal Verification SS 2019 5/44

Why Dynamic Logic?

Transparency wrt target programming language
Encompasses Hoare Logic
More expressive and flexible than Hoare logic
Symbolic execution is a natural interactive proof paradigm

Hoare triple {ψ} α {φ} equiv. to DL formula ψ → [α]φ

Beckert, Ulbrich – Applications of Formal Verification SS 2019 5/44

Why Dynamic Logic?

Transparency wrt target programming language
Encompasses Hoare Logic
More expressive and flexible than Hoare logic
Symbolic execution is a natural interactive proof paradigm

Not merely partial/total correctness:
can employ programs for specification (e.g., verifying
program transformations)
can express security properties (two runs are
indistinguishable)
extension-friendly (e.g., temporal modalities)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 5/44

Why Dynamic Logic?

Transparency wrt target programming language
Encompasses Hoare Logic
More expressive and flexible than Hoare logic
Symbolic execution is a natural interactive proof paradigm

Beckert, Ulbrich – Applications of Formal Verification SS 2019 5/44

Dynamic Logic Example Formulas

(balance >= c ∧ amount > 0)→
〈charge(amount);〉 balance > c

〈x = 1;〉([while (true) {}]false)

Program formulas can appear nested

\forall int val ;
(
(〈p〉x = val) ←→ (〈q〉x = val)

)
p, q equivalent relative to computation state restricted to x

Beckert, Ulbrich – Applications of Formal Verification SS 2019 6/44

Dynamic Logic Example Formulas

(balance >= c ∧ amount > 0)→
〈charge(amount);〉 balance > c

〈x = 1;〉([while (true) {}]false)

Program formulas can appear nested

\forall int val ;
(
(〈p〉x = val) ←→ (〈q〉x = val)

)
p, q equivalent relative to computation state restricted to x

Beckert, Ulbrich – Applications of Formal Verification SS 2019 6/44

Dynamic Logic Example Formulas

(balance >= c ∧ amount > 0)→
〈charge(amount);〉 balance > c

〈x = 1;〉([while (true) {}]false)

Program formulas can appear nested

\forall int val ;
(
(〈p〉x = val) ←→ (〈q〉x = val)

)
p, q equivalent relative to computation state restricted to x

Beckert, Ulbrich – Applications of Formal Verification SS 2019 6/44

Dynamic Logic Example Formulas

(balance >= c ∧ amount > 0)→
〈charge(amount);〉 balance > c

〈x = 1;〉([while (true) {}]false)

Program formulas can appear nested

\forall int val ;
(
(〈p〉x = val) ←→ (〈q〉x = val)

)
p, q equivalent relative to computation state restricted to x

Beckert, Ulbrich – Applications of Formal Verification SS 2019 6/44

Dynamic Logic Example Formulas

(balance >= c ∧ amount > 0)→
〈charge(amount);〉 balance > c

〈x = 1;〉([while (true) {}]false)

Program formulas can appear nested

\forall int val ;
(
(〈p〉x = val) ←→ (〈q〉x = val)

)
p, q equivalent relative to computation state restricted to x

Beckert, Ulbrich – Applications of Formal Verification SS 2019 6/44

Dynamic Logic Example Formulas

a != null
->
<
int max = 0;
if (a.length > 0) max = a[0];
int i = 1;
while (i < a.length) {
if (a[i] > max) max = a[i];
++i;

}
>(

\forall int j; (j >= 0 & j < a.length -> max >= a[j])
&
(a.length > 0 ->
\exists int j; (j >= 0 & j < a.length & max = a[j]))

)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 7/44

Variables

Logical variables disjoint from program variables

No quantification over program variables
Programs do not contain logical variables
“Program variables” actually non-rigid functions

Beckert, Ulbrich – Applications of Formal Verification SS 2019 8/44

Validity

A JAVA CARD DL formula is valid iff it is true in all states.

We need a calculus for checking validity of formulas

Beckert, Ulbrich – Applications of Formal Verification SS 2019 9/44

Validity

A JAVA CARD DL formula is valid iff it is true in all states.

We need a calculus for checking validity of formulas

Beckert, Ulbrich – Applications of Formal Verification SS 2019 9/44

1 JAVA CARD DL

2 Sequent Calculus

3 Rules for Programs: Symbolic Execution

4 A Calculus for 100% JAVA CARD

5 Loop Invariants

Beckert, Ulbrich – Applications of Formal Verification SS 2019 10/44

1 JAVA CARD DL

2 Sequent Calculus

3 Rules for Programs: Symbolic Execution

4 A Calculus for 100% JAVA CARD

5 Loop Invariants

Beckert, Ulbrich – Applications of Formal Verification SS 2019 11/44

Sequents and their Semantics

Syntax

ψ1, . . . , ψm︸ ︷︷ ︸
Antecedent

=⇒ φ1, . . . , φn︸ ︷︷ ︸
Succedent

where the φi , ψi are formulae (without free variables)

Semantics

Same as the formula

(ψ1 ∧ · · · ∧ ψm) → (φ1 ∨ · · · ∨ φn)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 12/44

Sequents and their Semantics

Syntax

ψ1, . . . , ψm︸ ︷︷ ︸
Antecedent

=⇒ φ1, . . . , φn︸ ︷︷ ︸
Succedent

where the φi , ψi are formulae (without free variables)

Semantics

Same as the formula

(ψ1 ∧ · · · ∧ ψm) → (φ1 ∨ · · · ∨ φn)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 12/44

Sequent Rules

General form

RULE NAME

Premisses︷ ︸︸ ︷
Γ1 =⇒ ∆1 · · · Γr =⇒ ∆r

Γ =⇒ ∆︸ ︷︷ ︸
Conclusion

(r = 0 possible: closing rules)

Soundness
If all premisses are valid, then the conclusion is valid

Use in practice
Goal is matched to conclusion

Beckert, Ulbrich – Applications of Formal Verification SS 2019 13/44

Sequent Rules

General form

RULE NAME

Premisses︷ ︸︸ ︷
Γ1 =⇒ ∆1 · · · Γr =⇒ ∆r

Γ =⇒ ∆︸ ︷︷ ︸
Conclusion

(r = 0 possible: closing rules)

Soundness
If all premisses are valid, then the conclusion is valid

Use in practice
Goal is matched to conclusion

Beckert, Ulbrich – Applications of Formal Verification SS 2019 13/44

Sequent Rules

General form

RULE NAME

Premisses︷ ︸︸ ︷
Γ1 =⇒ ∆1 · · · Γr =⇒ ∆r

Γ =⇒ ∆︸ ︷︷ ︸
Conclusion

(r = 0 possible: closing rules)

Soundness
If all premisses are valid, then the conclusion is valid

Use in practice
Goal is matched to conclusion

Beckert, Ulbrich – Applications of Formal Verification SS 2019 13/44

Sequent Rules

General form

RULE NAME

Premisses︷ ︸︸ ︷
Γ1 =⇒ ∆1 · · · Γr =⇒ ∆r

Γ =⇒ ∆︸ ︷︷ ︸
Conclusion

(r = 0 possible: closing rules)

Soundness
If all premisses are valid, then the conclusion is valid

Use in practice
Goal is matched to conclusion

Beckert, Ulbrich – Applications of Formal Verification SS 2019 13/44

Some Simple Sequent Rules

NOT LEFT
Γ =⇒ A,∆

Γ,¬A =⇒ ∆

IMP LEFT
Γ =⇒ A,∆ Γ,B =⇒ ∆

Γ,A→ B =⇒ ∆

CLOSE GOAL
Γ,A =⇒ A,∆

CLOSE BY TRUE
Γ =⇒ true,∆

ALL LEFT
Γ, \forall t x ;φ, {x/e}φ =⇒ ∆

Γ, \forall t x ;φ =⇒ ∆

where e var-free term of type t ′ ≺ t

Beckert, Ulbrich – Applications of Formal Verification SS 2019 14/44

Some Simple Sequent Rules

NOT LEFT
Γ =⇒ A,∆

Γ,¬A =⇒ ∆

IMP LEFT
Γ =⇒ A,∆ Γ,B =⇒ ∆

Γ,A→ B =⇒ ∆

CLOSE GOAL
Γ,A =⇒ A,∆

CLOSE BY TRUE
Γ =⇒ true,∆

ALL LEFT
Γ, \forall t x ;φ, {x/e}φ =⇒ ∆

Γ, \forall t x ;φ =⇒ ∆

where e var-free term of type t ′ ≺ t

Beckert, Ulbrich – Applications of Formal Verification SS 2019 14/44

Some Simple Sequent Rules

NOT LEFT
Γ =⇒ A,∆

Γ,¬A =⇒ ∆

IMP LEFT
Γ =⇒ A,∆ Γ,B =⇒ ∆

Γ,A→ B =⇒ ∆

CLOSE GOAL
Γ,A =⇒ A,∆

CLOSE BY TRUE
Γ =⇒ true,∆

ALL LEFT
Γ, \forall t x ;φ, {x/e}φ =⇒ ∆

Γ, \forall t x ;φ =⇒ ∆

where e var-free term of type t ′ ≺ t

Beckert, Ulbrich – Applications of Formal Verification SS 2019 14/44

Some Simple Sequent Rules

NOT LEFT
Γ =⇒ A,∆

Γ,¬A =⇒ ∆

IMP LEFT
Γ =⇒ A,∆ Γ,B =⇒ ∆

Γ,A→ B =⇒ ∆

CLOSE GOAL
Γ,A =⇒ A,∆

CLOSE BY TRUE
Γ =⇒ true,∆

ALL LEFT
Γ, \forall t x ;φ, {x/e}φ =⇒ ∆

Γ, \forall t x ;φ =⇒ ∆

where e var-free term of type t ′ ≺ t

Beckert, Ulbrich – Applications of Formal Verification SS 2019 14/44

Some Simple Sequent Rules

NOT LEFT
Γ =⇒ A,∆

Γ,¬A =⇒ ∆

IMP LEFT
Γ =⇒ A,∆ Γ,B =⇒ ∆

Γ,A→ B =⇒ ∆

CLOSE GOAL
Γ,A =⇒ A,∆

CLOSE BY TRUE
Γ =⇒ true,∆

ALL LEFT
Γ, \forall t x ;φ, {x/e}φ =⇒ ∆

Γ, \forall t x ;φ =⇒ ∆

where e var-free term of type t ′ ≺ t

Beckert, Ulbrich – Applications of Formal Verification SS 2019 14/44

Sequent Calculus Proofs

Proof tree
Proof is tree structure with
goal sequent as root
Rules are applied
from conclusion (old goal)
to premisses (new goals)
Rule with no premiss closes proof
branch
Proof is finished when all goals are
closed

Beckert, Ulbrich – Applications of Formal Verification SS 2019 15/44

Sequent Calculus Proofs

Proof tree
Proof is tree structure with
goal sequent as root
Rules are applied
from conclusion (old goal)
to premisses (new goals)
Rule with no premiss closes proof
branch
Proof is finished when all goals are
closed

Beckert, Ulbrich – Applications of Formal Verification SS 2019 15/44

Sequent Calculus Proofs

Proof tree
Proof is tree structure with
goal sequent as root
Rules are applied
from conclusion (old goal)
to premisses (new goals)
Rule with no premiss closes proof
branch
Proof is finished when all goals are
closed

Beckert, Ulbrich – Applications of Formal Verification SS 2019 15/44

Sequent Calculus Proofs

Proof tree
Proof is tree structure with
goal sequent as root
Rules are applied
from conclusion (old goal)
to premisses (new goals)
Rule with no premiss closes proof
branch
Proof is finished when all goals are
closed

Beckert, Ulbrich – Applications of Formal Verification SS 2019 15/44

1 JAVA CARD DL

2 Sequent Calculus

3 Rules for Programs: Symbolic Execution

4 A Calculus for 100% JAVA CARD

5 Loop Invariants

Beckert, Ulbrich – Applications of Formal Verification SS 2019 16/44

1 JAVA CARD DL

2 Sequent Calculus

3 Rules for Programs: Symbolic Execution

4 A Calculus for 100% JAVA CARD

5 Loop Invariants

Beckert, Ulbrich – Applications of Formal Verification SS 2019 17/44

Proof by Symbolic Program
Execution

Sequent rules for program formulas?
What corresponds to top-level connective in a program?

The Active Statement in a Program

Sequent rules execute symbolically the active statement

Beckert, Ulbrich – Applications of Formal Verification SS 2019 18/44

Proof by Symbolic Program
Execution

Sequent rules for program formulas?
What corresponds to top-level connective in a program?

The Active Statement in a Program

l:{try{ i=0; j=0; } finally{ k=0; }}

Sequent rules execute symbolically the active statement

Beckert, Ulbrich – Applications of Formal Verification SS 2019 18/44

Proof by Symbolic Program
Execution

Sequent rules for program formulas?
What corresponds to top-level connective in a program?

The Active Statement in a Program

l:{try{ i=0; j=0; } finally{ k=0; }}

Sequent rules execute symbolically the active statement

Beckert, Ulbrich – Applications of Formal Verification SS 2019 18/44

Proof by Symbolic Program
Execution

Sequent rules for program formulas?
What corresponds to top-level connective in a program?

The Active Statement in a Program

l:{try{︸ ︷︷ ︸
π

i=0; j=0; } finally{ k=0; }}︸ ︷︷ ︸
ω

passive prefix π
active statement i=0;
rest ω

Sequent rules execute symbolically the active statement

Beckert, Ulbrich – Applications of Formal Verification SS 2019 18/44

Proof by Symbolic Program
Execution

Sequent rules for program formulas?
What corresponds to top-level connective in a program?

The Active Statement in a Program

l:{try{︸ ︷︷ ︸
π

i=0; j=0; } finally{ k=0; }}︸ ︷︷ ︸
ω

passive prefix π
active statement i=0;
rest ω

Sequent rules execute symbolically the active statement

Beckert, Ulbrich – Applications of Formal Verification SS 2019 18/44

Rules for Symbolic Program
Execution

If-then-else rule

Γ,B = true =⇒ 〈p ω〉φ,∆ Γ,B = false =⇒ 〈q ω〉φ,∆
Γ =⇒ 〈if (B) { p } else { q } ω〉φ,∆

Complicated statements/expressions are simplified first,
e.g.

Γ =⇒ 〈v=y; y=y+1; x=v; ω〉φ,∆
Γ =⇒ 〈x=y++; ω〉φ,∆

Simple assignment rule

Γ =⇒ {loc := val}〈ω〉φ,∆
Γ =⇒ 〈loc=val; ω〉φ,∆

Beckert, Ulbrich – Applications of Formal Verification SS 2019 19/44

Rules for Symbolic Program
Execution

If-then-else rule

Γ,B = true =⇒ 〈p ω〉φ,∆ Γ,B = false =⇒ 〈q ω〉φ,∆
Γ =⇒ 〈if (B) { p } else { q } ω〉φ,∆

Complicated statements/expressions are simplified first,
e.g.

Γ =⇒ 〈v=y; y=y+1; x=v; ω〉φ,∆
Γ =⇒ 〈x=y++; ω〉φ,∆

Simple assignment rule

Γ =⇒ {loc := val}〈ω〉φ,∆
Γ =⇒ 〈loc=val; ω〉φ,∆

Beckert, Ulbrich – Applications of Formal Verification SS 2019 19/44

Rules for Symbolic Program
Execution

If-then-else rule

Γ,B = true =⇒ 〈p ω〉φ,∆ Γ,B = false =⇒ 〈q ω〉φ,∆
Γ =⇒ 〈if (B) { p } else { q } ω〉φ,∆

Complicated statements/expressions are simplified first,
e.g.

Γ =⇒ 〈v=y; y=y+1; x=v; ω〉φ,∆
Γ =⇒ 〈x=y++; ω〉φ,∆

Simple assignment rule

Γ =⇒ {loc := val}〈ω〉φ,∆
Γ =⇒ 〈loc=val; ω〉φ,∆

Beckert, Ulbrich – Applications of Formal Verification SS 2019 19/44

Treating Assignment with “Updates”

Updates
syntactic elements in the logic – (explicit substitutions)

Elementary Updates

{loc := val}φ

where
loc is a program variable
val is an expression type-compatible with loc

Parallel Updates

{loc1 := t1 || · · · || locn := tn}φ

no dependency between the n components (but ‘last wins’
semantics)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 20/44

Treating Assignment with “Updates”

Updates
syntactic elements in the logic – (explicit substitutions)

Elementary Updates

{loc := val}φ

where
loc is a program variable
val is an expression type-compatible with loc

Parallel Updates

{loc1 := t1 || · · · || locn := tn}φ

no dependency between the n components (but ‘last wins’
semantics)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 20/44

Treating Assignment with “Updates”

Updates
syntactic elements in the logic – (explicit substitutions)

Elementary Updates

{loc := val}φ

where
loc is a program variable
val is an expression type-compatible with loc

Parallel Updates

{loc1 := t1 || · · · || locn := tn}φ

no dependency between the n components (but ‘last wins’
semantics)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 20/44

Why Updates?

Updates are
aggregations of state change
eagerly parallelised + simplified
lazily applied (i.e., substituted into postcondition)

Advantages
no renaming required
(compared to another forward proof technique:
strongest-postcondition calculus)

delayed/minimised proof branching
efficient aliasing treatment)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 21/44

Why Updates?

Updates are
aggregations of state change
eagerly parallelised + simplified
lazily applied (i.e., substituted into postcondition)

Advantages
no renaming required
(compared to another forward proof technique:
strongest-postcondition calculus)

delayed/minimised proof branching
efficient aliasing treatment)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 21/44

Symbolic Execution with Updates
(by Example)

x < y =⇒ x < y
...

x < y =⇒ {x:=y || y:=x}〈〉 y < x
...

x < y =⇒ {t:=x || x:=y || y:=x}〈〉 y < x
...

x < y =⇒ {t:=x || x:=y}{y:=t}〈〉 y < x
...

x < y =⇒ {t:=x}{x:=y}〈y=t;〉 y < x
...

x < y =⇒ {t:=x}〈x=y; y=t;〉 y < x
...

=⇒ x < y→ 〈int t=x; x=y; y=t;〉 y < x

Beckert, Ulbrich – Applications of Formal Verification SS 2019 22/44

Symbolic Execution with Updates
(by Example)

x < y =⇒ x < y
...

x < y =⇒ {x:=y || y:=x}〈〉 y < x
...

x < y =⇒ {t:=x || x:=y || y:=x}〈〉 y < x
...

x < y =⇒ {t:=x || x:=y}{y:=t}〈〉 y < x
...

x < y =⇒ {t:=x}{x:=y}〈y=t;〉 y < x
...

x < y =⇒ {t:=x}〈x=y; y=t;〉 y < x
...

=⇒ x < y→ 〈int t=x; x=y; y=t;〉 y < x

Beckert, Ulbrich – Applications of Formal Verification SS 2019 22/44

Symbolic Execution with Updates
(by Example)

x < y =⇒ x < y
...

x < y =⇒ {x:=y || y:=x}〈〉 y < x
...

x < y =⇒ {t:=x || x:=y || y:=x}〈〉 y < x
...

x < y =⇒ {t:=x || x:=y}{y:=t}〈〉 y < x
...

x < y =⇒ {t:=x}{x:=y}〈y=t;〉 y < x
...

x < y =⇒ {t:=x}〈x=y; y=t;〉 y < x
...

=⇒ x < y→ 〈int t=x; x=y; y=t;〉 y < x

Beckert, Ulbrich – Applications of Formal Verification SS 2019 22/44

Symbolic Execution with Updates
(by Example)

x < y =⇒ x < y
...

x < y =⇒ {x:=y || y:=x}〈〉 y < x
...

x < y =⇒ {t:=x || x:=y || y:=x}〈〉 y < x
...

x < y =⇒ {t:=x || x:=y}{y:=t}〈〉 y < x
...

x < y =⇒ {t:=x}{x:=y}〈y=t;〉 y < x
...

x < y =⇒ {t:=x}〈x=y; y=t;〉 y < x
...

=⇒ x < y→ 〈int t=x; x=y; y=t;〉 y < x

Beckert, Ulbrich – Applications of Formal Verification SS 2019 22/44

Symbolic Execution with Updates
(by Example)

x < y =⇒ x < y
...

x < y =⇒ {x:=y || y:=x}〈〉 y < x
...

x < y =⇒ {t:=x || x:=y || y:=x}〈〉 y < x
...

x < y =⇒ {t:=x || x:=y}{y:=t}〈〉 y < x
...

x < y =⇒ {t:=x}{x:=y}〈y=t;〉 y < x
...

x < y =⇒ {t:=x}〈x=y; y=t;〉 y < x
...

=⇒ x < y→ 〈int t=x; x=y; y=t;〉 y < x

Beckert, Ulbrich – Applications of Formal Verification SS 2019 22/44

Symbolic Execution with Updates
(by Example)

x < y =⇒ x < y
...

x < y =⇒ {x:=y || y:=x}〈〉 y < x
...

x < y =⇒ {t:=x || x:=y || y:=x}〈〉 y < x
...

x < y =⇒ {t:=x || x:=y}{y:=t}〈〉 y < x
...

x < y =⇒ {t:=x}{x:=y}〈y=t;〉 y < x
...

x < y =⇒ {t:=x}〈x=y; y=t;〉 y < x
...

=⇒ x < y→ 〈int t=x; x=y; y=t;〉 y < x

Beckert, Ulbrich – Applications of Formal Verification SS 2019 22/44

Symbolic Execution with Updates
(by Example)

x < y =⇒ x < y
...

x < y =⇒ {x:=y || y:=x}〈〉 y < x
...

x < y =⇒ {t:=x || x:=y || y:=x}〈〉 y < x
...

x < y =⇒ {t:=x || x:=y}{y:=t}〈〉 y < x
...

x < y =⇒ {t:=x}{x:=y}〈y=t;〉 y < x
...

x < y =⇒ {t:=x}〈x=y; y=t;〉 y < x
...

=⇒ x < y→ 〈int t=x; x=y; y=t;〉 y < x

Beckert, Ulbrich – Applications of Formal Verification SS 2019 22/44

The theory of arrays

An abstract datatype Array(I,V)
Types: Indices I, Values V

Function symbols:
select : Array(I,V)× I→ V
store : Array(I,V)× I× V→ Array(I,V)

Axioms
∀a, i , v . select(store(a, i , v), i) = v
∀a, i , j , v . i 6= j → select(store(a, i , v), j) = select(a, j)

Intuition
D(Array(I,V)) represents the set of functions D(I)→ D(V)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 23/44

The theory of arrays

An abstract datatype Array(I,V)
Types: Indices I, Values V

Function symbols:
select : Array(I,V)× I→ V
store : Array(I,V)× I× V→ Array(I,V)

Axioms
∀a, i , v . select(store(a, i , v), i) = v
∀a, i , j , v . i 6= j → select(store(a, i , v), j) = select(a, j)

Intuition
D(Array(I,V)) represents the set of functions D(I)→ D(V)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 23/44

The theory of arrays

An abstract datatype Array(I,V)
Types: Indices I, Values V

Function symbols:
select : Array(I,V)× I→ V
store : Array(I,V)× I× V→ Array(I,V)

Axioms
∀a, i , v . select(store(a, i , v), i) = v
∀a, i , j , v . i 6= j → select(store(a, i , v), j) = select(a, j)

Intuition
D(Array(I,V)) represents the set of functions D(I)→ D(V)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 23/44

The theory of arrays

An abstract datatype Array(I,V)
Types: Indices I, Values V

Function symbols:
select : Array(I,V)× I→ V
store : Array(I,V)× I× V→ Array(I,V)

Axioms
∀a, i , v . select(store(a, i , v), i) = v
∀a, i , j , v . i 6= j → select(store(a, i , v), j) = select(a, j)

Intuition
D(Array(I,V)) represents the set of functions D(I)→ D(V)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 23/44

Photo by “null0” (www.flickr.com/photos/null0/272015955)

John McCarthy (1927–2011):
Theory of arrays is decidable

Program State Representation

Local program variables
Modeled as non-rigid constants

Heap
Modeled with theory of arrays: I = Object × Field , V = Any

heap : Heap (the heap in the current state)
select : Heap ×Object × Field → Any
store : Heap ×Object × Field × Any → Heap

Some special program variables

self the current receiver object (this in Java)
exc the currently active exception (null if none thrown)
result the result of the method invocation

Beckert, Ulbrich – Applications of Formal Verification SS 2019 24/44

Program State Representation

Local program variables
Modeled as non-rigid constants

Heap
Modeled with theory of arrays: I = Object × Field , V = Any

heap : Heap (the heap in the current state)
select : Heap ×Object × Field → Any
store : Heap ×Object × Field × Any → Heap

Some special program variables

self the current receiver object (this in Java)
exc the currently active exception (null if none thrown)
result the result of the method invocation

Beckert, Ulbrich – Applications of Formal Verification SS 2019 24/44

Program State Representation

Local program variables
Modeled as non-rigid constants

Heap
Modeled with theory of arrays: I = Object × Field , V = Any

heap : Heap (the heap in the current state)
select : Heap ×Object × Field → Any
store : Heap ×Object × Field × Any → Heap

Some special program variables

self the current receiver object (this in Java)
exc the currently active exception (null if none thrown)
result the result of the method invocation

Beckert, Ulbrich – Applications of Formal Verification SS 2019 24/44

1 JAVA CARD DL

2 Sequent Calculus

3 Rules for Programs: Symbolic Execution

4 A Calculus for 100% JAVA CARD

5 Loop Invariants

Beckert, Ulbrich – Applications of Formal Verification SS 2019 25/44

1 JAVA CARD DL

2 Sequent Calculus

3 Rules for Programs: Symbolic Execution

4 A Calculus for 100% JAVA CARD

5 Loop Invariants

Beckert, Ulbrich – Applications of Formal Verification SS 2019 26/44

Supported Java Features

method invocation with polymorphism/dynamic binding
object creation and initialisation
arrays
abrupt termination
throwing of NullPointerExceptions, etc.
bounded integer data types
transactions

All JAVA CARD language features are fully addressed in KeY

Beckert, Ulbrich – Applications of Formal Verification SS 2019 27/44

Supported Java Features

method invocation with polymorphism/dynamic binding
object creation and initialisation
arrays
abrupt termination
throwing of NullPointerExceptions, etc.
bounded integer data types
transactions

All JAVA CARD language features are fully addressed in KeY

Beckert, Ulbrich – Applications of Formal Verification SS 2019 27/44

Java—A Language of Many Features

Ways to deal with Java features
Program transformation, up-front
Local program transformation, done by a rule on-the-fly
Modeling with first-order formulas
Special-purpose extensions of program logic

Pro: Feature needs not be handled in calculus
Contra: Modified source code
Example in KeY: Very rare: treating inner classes

Beckert, Ulbrich – Applications of Formal Verification SS 2019 28/44

Java—A Language of Many Features

Ways to deal with Java features
Program transformation, up-front
Local program transformation, done by a rule on-the-fly
Modeling with first-order formulas
Special-purpose extensions of program logic

Pro: Flexible, easy to implement, usable
Contra: Not expressive enough for all features
Example in KeY: Complex expression eval, method inlining,
etc., etc.

Beckert, Ulbrich – Applications of Formal Verification SS 2019 28/44

Java—A Language of Many Features

Ways to deal with Java features
Program transformation, up-front
Local program transformation, done by a rule on-the-fly
Modeling with first-order formulas
Special-purpose extensions of program logic

Pro: No logic extensions required, enough to express most
features
Contra: Creates difficult first-order POs, unreadable
antecedents
Example in KeY: Dynamic types and branch predicates

Beckert, Ulbrich – Applications of Formal Verification SS 2019 28/44

Java—A Language of Many Features

Ways to deal with Java features
Program transformation, up-front
Local program transformation, done by a rule on-the-fly
Modeling with first-order formulas
Special-purpose extensions of program logic

Pro: Arbitrarily expressive extensions possible
Contra: Increases complexity of all rules
Example in KeY: Method frames, updates

Beckert, Ulbrich – Applications of Formal Verification SS 2019 28/44

Components of the Calculus

1 Non-program rules
first-order rules
rules for data-types
first-order modal rules
induction rules

2 Rules for reducing/simplifying the program (symbolic
execution)
Replace the program by

case distinctions (proof branches) and
sequences of updates

3 Rules for handling loops
using loop invariants
using induction

4 Rules for replacing a method invocations by the method’s
contract

5 Update simplification
Beckert, Ulbrich – Applications of Formal Verification SS 2019 29/44

Components of the Calculus

1 Non-program rules
first-order rules
rules for data-types
first-order modal rules
induction rules

2 Rules for reducing/simplifying the program (symbolic
execution)
Replace the program by

case distinctions (proof branches) and
sequences of updates

3 Rules for handling loops
using loop invariants
using induction

4 Rules for replacing a method invocations by the method’s
contract

5 Update simplification
Beckert, Ulbrich – Applications of Formal Verification SS 2019 29/44

Components of the Calculus

1 Non-program rules
first-order rules
rules for data-types
first-order modal rules
induction rules

2 Rules for reducing/simplifying the program (symbolic
execution)
Replace the program by

case distinctions (proof branches) and
sequences of updates

3 Rules for handling loops
using loop invariants
using induction

4 Rules for replacing a method invocations by the method’s
contract

5 Update simplification
Beckert, Ulbrich – Applications of Formal Verification SS 2019 29/44

Components of the Calculus

1 Non-program rules
first-order rules
rules for data-types
first-order modal rules
induction rules

2 Rules for reducing/simplifying the program (symbolic
execution)
Replace the program by

case distinctions (proof branches) and
sequences of updates

3 Rules for handling loops
using loop invariants
using induction

4 Rules for replacing a method invocations by the method’s
contract

5 Update simplification
Beckert, Ulbrich – Applications of Formal Verification SS 2019 29/44

Components of the Calculus

1 Non-program rules
first-order rules
rules for data-types
first-order modal rules
induction rules

2 Rules for reducing/simplifying the program (symbolic
execution)
Replace the program by

case distinctions (proof branches) and
sequences of updates

3 Rules for handling loops
using loop invariants
using induction

4 Rules for replacing a method invocations by the method’s
contract

5 Update simplification
Beckert, Ulbrich – Applications of Formal Verification SS 2019 29/44

Loop Invariants

Symbolic execution of loops: unwind

UNWINDLOOP
Γ =⇒ U [π if(b) { p; while(b) p} ω]φ,∆

Γ =⇒ U [π while(b) p ω]φ,∆

How to handle a loop with. . .
0 iterations? Unwind 1×
10 iterations? Unwind 11×
10000 iterations? Unwind 10001×
(and don’t make any plans for the rest of the day)
an unknown number of iterations?

We need an invariant rule (or some other form of induction)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 30/44

Loop Invariants

Symbolic execution of loops: unwind

UNWINDLOOP
Γ =⇒ U [π if(b) { p; while(b) p} ω]φ,∆

Γ =⇒ U [π while(b) p ω]φ,∆

How to handle a loop with. . .
0 iterations? Unwind 1×
10 iterations? Unwind 11×
10000 iterations? Unwind 10001×
(and don’t make any plans for the rest of the day)
an unknown number of iterations?

We need an invariant rule (or some other form of induction)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 30/44

Loop Invariants

Symbolic execution of loops: unwind

UNWINDLOOP
Γ =⇒ U [π if(b) { p; while(b) p} ω]φ,∆

Γ =⇒ U [π while(b) p ω]φ,∆

How to handle a loop with. . .
0 iterations? Unwind 1×
10 iterations? Unwind 11×
10000 iterations? Unwind 10001×
(and don’t make any plans for the rest of the day)
an unknown number of iterations?

We need an invariant rule (or some other form of induction)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 30/44

Loop Invariants

Symbolic execution of loops: unwind

UNWINDLOOP
Γ =⇒ U [π if(b) { p; while(b) p} ω]φ,∆

Γ =⇒ U [π while(b) p ω]φ,∆

How to handle a loop with. . .
0 iterations? Unwind 1×
10 iterations? Unwind 11×
10000 iterations? Unwind 10001×
(and don’t make any plans for the rest of the day)
an unknown number of iterations?

We need an invariant rule (or some other form of induction)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 30/44

Loop Invariants

Symbolic execution of loops: unwind

UNWINDLOOP
Γ =⇒ U [π if(b) { p; while(b) p} ω]φ,∆

Γ =⇒ U [π while(b) p ω]φ,∆

How to handle a loop with. . .
0 iterations? Unwind 1×
10 iterations? Unwind 11×
10000 iterations? Unwind 10001×
(and don’t make any plans for the rest of the day)
an unknown number of iterations?

We need an invariant rule (or some other form of induction)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 30/44

Loop Invariants

Symbolic execution of loops: unwind

UNWINDLOOP
Γ =⇒ U [π if(b) { p; while(b) p} ω]φ,∆

Γ =⇒ U [π while(b) p ω]φ,∆

How to handle a loop with. . .
0 iterations? Unwind 1×
10 iterations? Unwind 11×
10000 iterations? Unwind 10001×
(and don’t make any plans for the rest of the day)
an unknown number of iterations?

We need an invariant rule (or some other form of induction)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 30/44

Loop Invariants

Symbolic execution of loops: unwind

UNWINDLOOP
Γ =⇒ U [π if(b) { p; while(b) p} ω]φ,∆

Γ =⇒ U [π while(b) p ω]φ,∆

How to handle a loop with. . .
0 iterations? Unwind 1×
10 iterations? Unwind 11×
10000 iterations? Unwind 10001×
(and don’t make any plans for the rest of the day)
an unknown number of iterations?

We need an invariant rule (or some other form of induction)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 30/44

Loop Invariants

Symbolic execution of loops: unwind

UNWINDLOOP
Γ =⇒ U [π if(b) { p; while(b) p} ω]φ,∆

Γ =⇒ U [π while(b) p ω]φ,∆

How to handle a loop with. . .
0 iterations? Unwind 1×
10 iterations? Unwind 11×
10000 iterations? Unwind 10001×
(and don’t make any plans for the rest of the day)
an unknown number of iterations?

We need an invariant rule (or some other form of induction)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 30/44

Loop Invariants

Symbolic execution of loops: unwind

UNWINDLOOP
Γ =⇒ U [π if(b) { p; while(b) p} ω]φ,∆

Γ =⇒ U [π while(b) p ω]φ,∆

How to handle a loop with. . .
0 iterations? Unwind 1×
10 iterations? Unwind 11×
10000 iterations? Unwind 10001×
(and don’t make any plans for the rest of the day)
an unknown number of iterations?

We need an invariant rule (or some other form of induction)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 30/44

Loop Invariants Cont’d

Idea behind loop invariants
A formula Inv that

holds initially and
whose validity is preserved by loop iteration

Consequence: if Inv was valid at start of the loop, then it
still holds after arbitrarily many loop iterations
If the loop terminates at all, then Inv holds afterwards
Make Inv strong enough to entail the desired postcondition

Basic Invariant Rule

loopInvariant

Γ =⇒ U Inv ,∆ (initially valid)
Inv , b .

= TRUE =⇒ [p]Inv (preserved)
Inv , b .

= FALSE =⇒ [π ω]φ (use case)
Γ =⇒ U [π while(b) p ω]φ,∆

Beckert, Ulbrich – Applications of Formal Verification SS 2019 31/44

Loop Invariants Cont’d

Idea behind loop invariants
A formula Inv that

holds initially and
whose validity is preserved by loop iteration

Consequence: if Inv was valid at start of the loop, then it
still holds after arbitrarily many loop iterations
If the loop terminates at all, then Inv holds afterwards
Make Inv strong enough to entail the desired postcondition

Basic Invariant Rule

loopInvariant

Γ =⇒ U Inv ,∆ (initially valid)
Inv , b .

= TRUE =⇒ [p]Inv (preserved)
Inv , b .

= FALSE =⇒ [π ω]φ (use case)
Γ =⇒ U [π while(b) p ω]φ,∆

Beckert, Ulbrich – Applications of Formal Verification SS 2019 31/44

Loop Invariants Cont’d

Idea behind loop invariants
A formula Inv that

holds initially and
whose validity is preserved by loop iteration

Consequence: if Inv was valid at start of the loop, then it
still holds after arbitrarily many loop iterations
If the loop terminates at all, then Inv holds afterwards
Make Inv strong enough to entail the desired postcondition

Basic Invariant Rule

loopInvariant

Γ =⇒ U Inv ,∆ (initially valid)
Inv , b .

= TRUE =⇒ [p]Inv (preserved)
Inv , b .

= FALSE =⇒ [π ω]φ (use case)
Γ =⇒ U [π while(b) p ω]φ,∆

Beckert, Ulbrich – Applications of Formal Verification SS 2019 31/44

Loop Invariants Cont’d

Idea behind loop invariants
A formula Inv that

holds initially and
whose validity is preserved by loop iteration

Consequence: if Inv was valid at start of the loop, then it
still holds after arbitrarily many loop iterations
If the loop terminates at all, then Inv holds afterwards
Make Inv strong enough to entail the desired postcondition

Basic Invariant Rule

loopInvariant

Γ =⇒ U Inv ,∆ (initially valid)
Inv , b .

= TRUE =⇒ [p]Inv (preserved)
Inv , b .

= FALSE =⇒ [π ω]φ (use case)
Γ =⇒ U [π while(b) p ω]φ,∆

Beckert, Ulbrich – Applications of Formal Verification SS 2019 31/44

Loop Invariants Cont’d

Idea behind loop invariants
A formula Inv that

holds initially and
whose validity is preserved by loop iteration

Consequence: if Inv was valid at start of the loop, then it
still holds after arbitrarily many loop iterations
If the loop terminates at all, then Inv holds afterwards
Make Inv strong enough to entail the desired postcondition

Basic Invariant Rule

loopInvariant

Γ =⇒ U Inv ,∆ (initially valid)
Inv , b .

= TRUE =⇒ [p]Inv (preserved)
Inv , b .

= FALSE =⇒ [π ω]φ (use case)
Γ =⇒ U [π while(b) p ω]φ,∆

Beckert, Ulbrich – Applications of Formal Verification SS 2019 31/44

Loop Invariants Cont’d

Basic Invariant Rule: Problem

loopInvariant

Γ =⇒ U Inv ,∆ (initially valid)
Inv , b .

= TRUE =⇒ [p]Inv (preserved)
Inv , b .

= FALSE =⇒ [π ω]φ (use case)
Γ =⇒ U [π while(b) p ω]φ,∆

Context Γ, ∆, U must be omitted in 2nd and 3rd premise
But: context contains (part of) precondition and class
invariants
Required context information must be added to loop
invariant Inv

Beckert, Ulbrich – Applications of Formal Verification SS 2019 32/44

Loop Invariants Cont’d

Basic Invariant Rule: Problem

loopInvariant

Γ =⇒ U Inv ,∆ (initially valid)
Inv , b .

= TRUE =⇒ [p]Inv (preserved)
Inv , b .

= FALSE =⇒ [π ω]φ (use case)
Γ =⇒ U [π while(b) p ω]φ,∆

Context Γ, ∆, U must be omitted in 2nd and 3rd premise
But: context contains (part of) precondition and class
invariants
Required context information must be added to loop
invariant Inv

Beckert, Ulbrich – Applications of Formal Verification SS 2019 32/44

Loop Invariants Cont’d

Basic Invariant Rule: Problem

loopInvariant

Γ =⇒ U Inv ,∆ (initially valid)
Inv , b .

= TRUE =⇒ [p]Inv (preserved)
Inv , b .

= FALSE =⇒ [π ω]φ (use case)
Γ =⇒ U [π while(b) p ω]φ,∆

Context Γ, ∆, U must be omitted in 2nd and 3rd premise
But: context contains (part of) precondition and class
invariants
Required context information must be added to loop
invariant Inv

Beckert, Ulbrich – Applications of Formal Verification SS 2019 32/44

Loop Invariants Cont’d

Basic Invariant Rule: Problem

loopInvariant

Γ =⇒ U Inv ,∆ (initially valid)
Inv , b .

= TRUE =⇒ [p]Inv (preserved)
Inv , b .

= FALSE =⇒ [π ω]φ (use case)
Γ =⇒ U [π while(b) p ω]φ,∆

Context Γ, ∆, U must be omitted in 2nd and 3rd premise
But: context contains (part of) precondition and class
invariants
Required context information must be added to loop
invariant Inv

Beckert, Ulbrich – Applications of Formal Verification SS 2019 32/44

Example

Precondition: a 6 .= null

& ClassInv

int i = 0;
while(i < a.length) {

a[i] = 1;
i++;

}

Postcondition: ∀int x ; (0 ≤ x < a.length→ a[x] .
= 1)

Loop invariant: 0 ≤ i ∧ i ≤ a.length

∧ ∀int x ; (0 ≤ x < i→ a[x] .
= 1)

∧ a 6 .= null
∧ ClassInv ′

Beckert, Ulbrich – Applications of Formal Verification SS 2019 33/44

Example

Precondition: a 6 .= null

& ClassInv

int i = 0;
while(i < a.length) {

a[i] = 1;
i++;

}

Postcondition: ∀int x ; (0 ≤ x < a.length→ a[x] .
= 1)

Loop invariant: 0 ≤ i ∧ i ≤ a.length

∧ ∀int x ; (0 ≤ x < i→ a[x] .
= 1)

∧ a 6 .= null
∧ ClassInv ′

Beckert, Ulbrich – Applications of Formal Verification SS 2019 33/44

Example

Precondition: a 6 .= null

& ClassInv

int i = 0;
while(i < a.length) {

a[i] = 1;
i++;

}

Postcondition: ∀int x ; (0 ≤ x < a.length→ a[x] .
= 1)

Loop invariant: 0 ≤ i ∧ i ≤ a.length

∧ ∀int x ; (0 ≤ x < i→ a[x] .
= 1)

∧ a 6 .= null
∧ ClassInv ′

Beckert, Ulbrich – Applications of Formal Verification SS 2019 33/44

Example

Precondition: a 6 .= null

& ClassInv

int i = 0;
while(i < a.length) {

a[i] = 1;
i++;

}

Postcondition: ∀int x ; (0 ≤ x < a.length→ a[x] .
= 1)

Loop invariant: 0 ≤ i ∧ i ≤ a.length

∧ ∀int x ; (0 ≤ x < i→ a[x] .
= 1)

∧ a 6 .= null
∧ ClassInv ′

Beckert, Ulbrich – Applications of Formal Verification SS 2019 33/44

Example

Precondition: a 6 .= null

& ClassInv

int i = 0;
while(i < a.length) {

a[i] = 1;
i++;

}

Postcondition: ∀int x ; (0 ≤ x < a.length→ a[x] .
= 1)

Loop invariant: 0 ≤ i ∧ i ≤ a.length
∧ ∀int x ; (0 ≤ x < i→ a[x] .

= 1)

∧ a 6 .= null
∧ ClassInv ′

Beckert, Ulbrich – Applications of Formal Verification SS 2019 33/44

Example

Precondition: a 6 .= null

& ClassInv

int i = 0;
while(i < a.length) {

a[i] = 1;
i++;

}

Postcondition: ∀int x ; (0 ≤ x < a.length→ a[x] .
= 1)

Loop invariant: 0 ≤ i ∧ i ≤ a.length
∧ ∀int x ; (0 ≤ x < i→ a[x] .

= 1)
∧ a 6 .= null

∧ ClassInv ′

Beckert, Ulbrich – Applications of Formal Verification SS 2019 33/44

Example

Precondition: a 6 .= null & ClassInv

int i = 0;
while(i < a.length) {

a[i] = 1;
i++;

}

Postcondition: ∀int x ; (0 ≤ x < a.length→ a[x] .
= 1)

Loop invariant: 0 ≤ i ∧ i ≤ a.length
∧ ∀int x ; (0 ≤ x < i→ a[x] .

= 1)
∧ a 6 .= null
∧ ClassInv ′

Beckert, Ulbrich – Applications of Formal Verification SS 2019 33/44

Keeping the Context

Want to keep part of the context that is unmodified by loop
assignable clauses for loops can tell what might be
modified

@ assignable i, a[*];

Beckert, Ulbrich – Applications of Formal Verification SS 2019 34/44

Keeping the Context

Want to keep part of the context that is unmodified by loop
assignable clauses for loops can tell what might be
modified

@ assignable i, a[*];

Beckert, Ulbrich – Applications of Formal Verification SS 2019 34/44

Example with Improved Invariant
Rule

Precondition: a 6 .= null

& ClassInv

int i = 0;
while(i < a.length) {

a[i] = 1;
i++;

}

Postcondition: ∀int x ; (0 ≤ x < a.length→ a[x] .
= 1)

Loop invariant: 0 ≤ i ∧ i ≤ a.length

∧ ∀int x ; (0 ≤ x < i→ a[x] .
= 1)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 35/44

Example with Improved Invariant
Rule

Precondition: a 6 .= null

& ClassInv

int i = 0;
while(i < a.length) {

a[i] = 1;
i++;

}

Postcondition: ∀int x ; (0 ≤ x < a.length→ a[x] .
= 1)

Loop invariant: 0 ≤ i ∧ i ≤ a.length

∧ ∀int x ; (0 ≤ x < i→ a[x] .
= 1)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 35/44

Example with Improved Invariant
Rule

Precondition: a 6 .= null

& ClassInv

int i = 0;
while(i < a.length) {

a[i] = 1;
i++;

}

Postcondition: ∀int x ; (0 ≤ x < a.length→ a[x] .
= 1)

Loop invariant: 0 ≤ i ∧ i ≤ a.length

∧ ∀int x ; (0 ≤ x < i→ a[x] .
= 1)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 35/44

Example with Improved Invariant
Rule

Precondition: a 6 .= null

& ClassInv

int i = 0;
while(i < a.length) {

a[i] = 1;
i++;

}

Postcondition: ∀int x ; (0 ≤ x < a.length→ a[x] .
= 1)

Loop invariant: 0 ≤ i ∧ i ≤ a.length

∧ ∀int x ; (0 ≤ x < i→ a[x] .
= 1)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 35/44

Example with Improved Invariant
Rule

Precondition: a 6 .= null

& ClassInv

int i = 0;
while(i < a.length) {

a[i] = 1;
i++;

}

Postcondition: ∀int x ; (0 ≤ x < a.length→ a[x] .
= 1)

Loop invariant: 0 ≤ i ∧ i ≤ a.length
∧ ∀int x ; (0 ≤ x < i→ a[x] .

= 1)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 35/44

Example with Improved Invariant
Rule

Precondition: a 6 .= null

& ClassInv

int i = 0;
while(i < a.length) {

a[i] = 1;
i++;

}

Postcondition: ∀int x ; (0 ≤ x < a.length→ a[x] .
= 1)

Loop invariant: 0 ≤ i ∧ i ≤ a.length
∧ ∀int x ; (0 ≤ x < i→ a[x] .

= 1)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 35/44

Example with Improved Invariant
Rule

Precondition: a 6 .= null & ClassInv

int i = 0;
while(i < a.length) {

a[i] = 1;
i++;

}

Postcondition: ∀int x ; (0 ≤ x < a.length→ a[x] .
= 1)

Loop invariant: 0 ≤ i ∧ i ≤ a.length
∧ ∀int x ; (0 ≤ x < i→ a[x] .

= 1)

Beckert, Ulbrich – Applications of Formal Verification SS 2019 35/44

Example in JML/Java – Loop.java

public int[] a;
/*@ public normal_behavior
@ ensures (\forall int x; 0<=x && x<a.length; a[x]==1);
@ diverges true;
@*/

public void m() {
int i = 0;
/*@ loop_invariant
@ (0 <= i && i <= a.length &&
@ (\forall int x; 0<=x && x<i; a[x]==1));
@ assignable i, a[*];
@*/

while(i < a.length) {
a[i] = 1;
i++;

}
}

Beckert, Ulbrich – Applications of Formal Verification SS 2019 36/44

Example
∀ int x ;

(n
.

= x ∧ x >= 0→
[i = 0; r = 0;
while (i<n) { i = i + 1; r = r + i;}
r=r+r-n;

]r
.

=?)

How can we prove that the above formula is valid
(i.e., satisfied in all states)?

Solution:
@ loop_invariant
@ i>=0 && 2*r == i*(i + 1) && i <= n;
@ assignable i, r;

File: Loop2.java

Beckert, Ulbrich – Applications of Formal Verification SS 2019 37/44

Example
∀ int x ;

(n
.

= x ∧ x >= 0→
[i = 0; r = 0;
while (i<n) { i = i + 1; r = r + i;}
r=r+r-n;

]r
.

= x ∗ x)

How can we prove that the above formula is valid
(i.e., satisfied in all states)?

Solution:
@ loop_invariant
@ i>=0 && 2*r == i*(i + 1) && i <= n;
@ assignable i, r;

File: Loop2.java

Beckert, Ulbrich – Applications of Formal Verification SS 2019 37/44

Example
∀ int x ;

(n
.

= x ∧ x >= 0→
[i = 0; r = 0;
while (i<n) { i = i + 1; r = r + i;}
r=r+r-n;

]r
.

= x ∗ x)

How can we prove that the above formula is valid
(i.e., satisfied in all states)?

Solution:
@ loop_invariant
@ i>=0 && 2*r == i*(i + 1) && i <= n;
@ assignable i, r;

File: Loop2.java

Beckert, Ulbrich – Applications of Formal Verification SS 2019 37/44

Example
∀ int x ;

(n
.

= x ∧ x >= 0→
[i = 0; r = 0;
while (i<n) { i = i + 1; r = r + i;}
r=r+r-n;

]r
.

= x ∗ x)

How can we prove that the above formula is valid
(i.e., satisfied in all states)?

Solution:
@ loop_invariant
@ i>=0 && 2*r == i*(i + 1) && i <= n;
@ assignable i, r;

File: Loop2.java

Beckert, Ulbrich – Applications of Formal Verification SS 2019 37/44

Hints
Proving assignable

The invariant rule on the slides assumes that assignable
is correct. With assignable \nothing; e.g., one can
prove nonsense
The invariant rule in KeY generates proof obligation that
ensures correctness of assignable

Setting in the KeY Prover when proving loops
Loop treatment: Invariant
Quantifier treatment: No Splits with Progs
If program contains *, /:
Arithmetic treatment: DefOps
Is search limit high enough (time out, rule apps.)?
When proving partial correctness, add diverges true;

Beckert, Ulbrich – Applications of Formal Verification SS 2019 38/44

Hints
Proving assignable

The invariant rule on the slides assumes that assignable
is correct. With assignable \nothing; e.g., one can
prove nonsense
The invariant rule in KeY generates proof obligation that
ensures correctness of assignable

Setting in the KeY Prover when proving loops
Loop treatment: Invariant
Quantifier treatment: No Splits with Progs
If program contains *, /:
Arithmetic treatment: DefOps
Is search limit high enough (time out, rule apps.)?
When proving partial correctness, add diverges true;

Beckert, Ulbrich – Applications of Formal Verification SS 2019 38/44

Total Correctness

Find a decreasing integer term v (called variant)
Add the following premisses to the invariant rule:

v ≥ 0 is initially valid
v ≥ 0 is preserved by the loop body
v is strictly decreased by the loop body

Proving termination in JML/Java
Remove directive diverges true;

Add directive decreasing v; to loop invariant
KeY creates suitable invariant rule and PO (with 〈...〉φ)

Example: The array loop

@ decreasing

a.length - i;

Files:
LoopT.java

Loop2T.java

Beckert, Ulbrich – Applications of Formal Verification SS 2019 39/44

Total Correctness

Find a decreasing integer term v (called variant)
Add the following premisses to the invariant rule:

v ≥ 0 is initially valid
v ≥ 0 is preserved by the loop body
v is strictly decreased by the loop body

Proving termination in JML/Java
Remove directive diverges true;

Add directive decreasing v; to loop invariant
KeY creates suitable invariant rule and PO (with 〈...〉φ)

Example: The array loop

@ decreasing

a.length - i;

Files:
LoopT.java

Loop2T.java

Beckert, Ulbrich – Applications of Formal Verification SS 2019 39/44

Total Correctness

Find a decreasing integer term v (called variant)
Add the following premisses to the invariant rule:

v ≥ 0 is initially valid
v ≥ 0 is preserved by the loop body
v is strictly decreased by the loop body

Proving termination in JML/Java
Remove directive diverges true;

Add directive decreasing v; to loop invariant
KeY creates suitable invariant rule and PO (with 〈...〉φ)

Example: The array loop

@ decreasing

a.length - i;

Files:
LoopT.java

Loop2T.java

Beckert, Ulbrich – Applications of Formal Verification SS 2019 39/44

Total Correctness

Find a decreasing integer term v (called variant)
Add the following premisses to the invariant rule:

v ≥ 0 is initially valid
v ≥ 0 is preserved by the loop body
v is strictly decreased by the loop body

Proving termination in JML/Java
Remove directive diverges true;

Add directive decreasing v; to loop invariant
KeY creates suitable invariant rule and PO (with 〈...〉φ)

Example: The array loop

@ decreasing a.length - i;

Files:
LoopT.java

Loop2T.java

Beckert, Ulbrich – Applications of Formal Verification SS 2019 39/44

Total Correctness

Find a decreasing integer term v (called variant)
Add the following premisses to the invariant rule:

v ≥ 0 is initially valid
v ≥ 0 is preserved by the loop body
v is strictly decreased by the loop body

Proving termination in JML/Java
Remove directive diverges true;

Add directive decreasing v; to loop invariant
KeY creates suitable invariant rule and PO (with 〈...〉φ)

Example: The array loop

@ decreasing a.length - i;

Files:
LoopT.java

Loop2T.java

Beckert, Ulbrich – Applications of Formal Verification SS 2019 39/44

Side effects in loop guards

Find a postcondition:

int x, y;
// ...
while(x-- != ++y);

Note: Loop guards may have side effects.
Hence: Evaluate them in a modality.

Invariant rule with side effects

sideEffectLI

Γ =⇒ U Inv ,∆ (initially valid)
Inv , b .

= TRUE < 4 > [x=b;]x .
= TRUE =⇒ [p]Inv (preserved)

Inv , b .
= FALSE =⇒ [π ω]φ (use case)

Γ =⇒ U [π while(b) p ω]φ,∆

Beckert, Ulbrich – Applications of Formal Verification SS 2019 40/44

Side effects in loop guards

Find a postcondition:

int x, y;
// ...
while(x-- != ++y);

Note: Loop guards may have side effects.
Hence: Evaluate them in a modality.

Invariant rule with side effects

sideEffectLI

Γ =⇒ U Inv ,∆ (initially valid)
Inv , b .

= TRUE < 4 > [x=b;]x .
= TRUE =⇒ [p]Inv (preserved)

Inv , b .
= FALSE =⇒ [π ω]φ (use case)

Γ =⇒ U [π while(b) p ω]φ,∆

Beckert, Ulbrich – Applications of Formal Verification SS 2019 40/44

Side effects in loop guards

Find a postcondition:

int x, y;
// ...
while(x-- != ++y);

Note: Loop guards may have side effects.
Hence: Evaluate them in a modality.

Invariant rule with side effects

sideEffectLI

Γ =⇒ U Inv ,∆ (initially valid)
Inv , b .

= TRUE < 4 > [x=b;]x .
= TRUE =⇒ [p]Inv (preserved)

Inv , b .
= FALSE =⇒ [π ω]φ (use case)

Γ =⇒ U [π while(b) p ω]φ,∆

Beckert, Ulbrich – Applications of Formal Verification SS 2019 40/44

Side effects in loop guards

Find a postcondition:

int x, y;
// ...
while(x-- != ++y);

Note: Loop guards may have side effects.
Hence: Evaluate them in a modality.

Invariant rule with side effects

sideEffectLI

Γ =⇒ U Inv ,∆ (initially valid)
Inv , [x=b;]x .

= TRUE =⇒ [p]Inv (preserved)
Inv , [x=b;]x .

= FALSE =⇒ [π ω]φ (use case)
Γ =⇒ U [π while(b) p ω]φ,∆

Beckert, Ulbrich – Applications of Formal Verification SS 2019 40/44

Side effects in loop guards

Find a postcondition:

int x, y;
// ...
while(x-- != ++y);

Note: Loop guards may have side effects.
Hence: Evaluate them in a modality.

Invariant rule with side effects

sideEffectLI

Γ =⇒ U Inv ,∆ (initially valid)
Inv , [x=b;]x .

= TRUE =⇒ [x=b;p]Inv (preserved)
Inv , [x=b;]x .

= FALSE =⇒ [π ω]φ (use case)
Γ =⇒ U [π while(b) p ω]φ,∆

Beckert, Ulbrich – Applications of Formal Verification SS 2019 40/44

Loops and Abrupt Completion

Rule loopInvariant requires normal, structural control flow
(loop body always fully executed; run continues after loop)

Non-structural control flow in Java

return break continue throw

make loop body terminate abruptly.

Solution
Transform non-standard control flow into standard control-flow
and with marker variables.

Beckert, Ulbrich – Applications of Formal Verification SS 2019 41/44

Loops and Abrupt Completion

Original loop body p

if(x == 0) break;

if(x == 1) return 42;

if(x == 2) continue;
if(x == 3) throw e;
if(x == 4) x = -1;

Encoded loop body p̂

loopBody: { try {
BREAK = RETURN = false;
EXCEPTION = null;
if(x == 0) { BREAK=true;
break loopBody; }

if(x == 1) { res=42;
RETURN=true;
break loopBody; }

if(x == 2) break loopBody;
if(x == 3) throw e;
if(x == 4) x = -1;

} catch(Throwable e) { EXC = e; }}

Beckert, Ulbrich – Applications of Formal Verification SS 2019 42/44

Loops and Abrupt Completion

Original loop body p

if(x == 0) break;

if(x == 1) return 42;

if(x == 2) continue;
if(x == 3) throw e;
if(x == 4) x = -1;

Encoded loop body p̂

loopBody: { try {
BREAK = RETURN = false;
EXCEPTION = null;
if(x == 0) { BREAK=true;
break loopBody; }

if(x == 1) { res=42;
RETURN=true;
break loopBody; }

if(x == 2) break loopBody;
if(x == 3) throw e;
if(x == 4) x = -1;

} catch(Throwable e) { EXC = e; }}

Beckert, Ulbrich – Applications of Formal Verification SS 2019 42/44

Loops and Abrupt Termination

Invariant rule with abrupt termination (using translation ·̂)

loopInvariant

Γ =⇒ U Inv ,∆ (initially valid)
Inv , b .

= TRUE =⇒ [p]Inv (preserved)
Inv , b .

= FALSE =⇒ [π ω]φ (use case)
Γ =⇒ U [π while(b) p ω]φ,∆

where ψ is the formula

(EXC 6 .= null→ [π throw EXCEPTION; ω]ϕ)
∧ (BREAK

.
= TRUE→ [π ω]φ)

∧ (RETURN = TRUE→ [π return res; ω]φ)
∧ (NORMAL → Inv)

with NORMAL ≡ BREAK
.
= FALSE ∧ RETURN

.
= FALSE ∧ EXC

.
= null

Beckert, Ulbrich – Applications of Formal Verification SS 2019 43/44

Loops and Abrupt Termination

Invariant rule with abrupt termination (using translation ·̂)

loopInvariant

Γ =⇒ U Inv ,∆ (initially valid)
Inv , b .

= TRUE =⇒ [p̂]ψ (preserved)
Inv , b .

= FALSE =⇒ [π ω]φ (use case)
Γ =⇒ U [π while(b) p ω]φ,∆

where ψ is the formula

(EXC 6 .= null→ [π throw EXCEPTION; ω]ϕ)
∧ (BREAK

.
= TRUE→ [π ω]φ)

∧ (RETURN = TRUE→ [π return res; ω]φ)
∧ (NORMAL → Inv)

with NORMAL ≡ BREAK
.
= FALSE ∧ RETURN

.
= FALSE ∧ EXC

.
= null

Beckert, Ulbrich – Applications of Formal Verification SS 2019 43/44

Loop Invariant – Conclusion

Is a difficult subject.
shows that real prog language is a challenge
Many technical non-trivial tricks.
A rule that puts together

1 considering assignable clauses
2 side effects in loop guards
3 abrupt termination

is in chapter 3.
Further reading: KeY book Ch. 15 ??
New developments: Loop scope rule, Loop contracts

Beckert, Ulbrich – Applications of Formal Verification SS 2019 44/44

	Java Card DL
	Sequent Calculus
	Rules for Programs: Symbolic Execution
	A Calculus for 100% Java Card
	Loop Invariants

