

Applications of Formal Verification Functional Verification of Java Programs: Java Dynamic Logic

Bernhard Beckert · Mattias Ulbrich | SS 2019

KIT – Institut für Theoretische Informatik

3 Rules for Programs: Symbolic Execution

4 Calculus for 100% JAVA CARD

5 Loop Invariants

2 Sequent Calculus

3 Rules for Programs: Symbolic Execution

4) A Calculus for 100% JAVA CARD

5 Loop Invariants

Syntax

- Basis: Typed first-order predicate logic
- Modal operators $\langle p \rangle$ and [p] for each (JAVA CARD) program p
- Class definitions in background (not shown in formulas)

Semantics (Kripke)

Modal operators allow referring to the final state of *p*:

[p]F: If p terminates normally, then F holds in the final state ("partial correctness"

• $\langle p \rangle F$: *p* terminates normally, and

F holds in the final state ("total correctness"

Syntax

- Basis: Typed first-order predicate logic
- Modal operators (p) and [p] for each (JAVA CARD) program p
- Class definitions in background (not shown in formulas)

Semantics (Kripke)

Modal operators allow referring to the final state of *p*:

 $\langle p \rangle F$: p terminates normally, and

Syntax

- Basis: Typed first-order predicate logic
- Modal operators $\langle p \rangle$ and [p] for each (JAVA CARD) program p
- Class definitions in background (not shown in formulas)

Semantics (Kripke)

Modal operators allow referring to the final state of *p*:

- [*p*]*F*: If *p* terminates normally, then
 - F holds in the final state ("partial correctness")

 $\langle p \rangle F$: *p* terminates normally, and

F holds in the final state ("total correctness"

Syntax

- Basis: Typed first-order predicate logic
- Modal operators $\langle p \rangle$ and [p] for each (JAVA CARD) program p
- Class definitions in background (not shown in formulas)

Semantics (Kripke)

Modal operators allow referring to the final state of p:

- [p]F: If p terminates normally, then
 - F holds in the final state ("partial correctness")
- $\langle p \rangle F$: p terminates normally, and
 - F holds in the final state ("total correctness")

Transparency wrt target programming language

- Encompasses Hoare Logic
- More expressive and flexible than Hoare logic
- Symbolic execution is a natural interactive proof paradigm
- Programs are "first-class citizens"
- Real Java syntax

Transparency wrt target programming language

- Encompasses Hoare Logic
- More expressive and flexible than Hoare logic
- Symbolic execution is a natural interactive proof paradigm

Hoare triple $\{\psi\} \alpha \{\phi\}$ equiv. to DL formula $\psi \rightarrow [\alpha]\phi$

- Transparency wrt target programming language
- Encompasses Hoare Logic
- More expressive and flexible than Hoare logic
- Symbolic execution is a natural interactive proof paradigm

Not merely partial/total correctness:

- can employ programs for specification (e.g., verifying program transformations)
- can express security properties (two runs are indistinguishable)
- extension-friendly (e.g., temporal modalities)

- Transparency wrt target programming language
- Encompasses Hoare Logic
- More expressive and flexible than Hoare logic
- Symbolic execution is a natural interactive proof paradigm

 $(balance >= c \land amount > 0) \rightarrow (charge (amount); balance > c$

(x = 1;)([while (true) {}]false)
 Program formulas can appear nested

\forall int val; ((⟨p⟩x = val) ↔ (⟨q⟩x = val))

■ p, q equivalent relative to computation state restricted to x

 $(balance >= c \land amount > 0) \rightarrow (charge (amount); balance > c$

(x = 1;)([while (true) {}]false)
Program formulas can appear nested

\forall int val; ((⟨p⟩x = val) ↔ (⟨q⟩x = val))
■ p, q equivalent relative to computation state restricted to x

 $(balance >= c \land amount > 0) \rightarrow (charge (amount); balance > c$

(x = 1;)([while (true) {}]false)
 Program formulas can appear nested

\forall int val; ((⟨p⟩x = val) ↔ (⟨q⟩x = val))
■ p, q equivalent relative to computation state restricted to x

 $(balance >= c \land amount > 0) \rightarrow (charge (amount); balance > c$

(x = 1;)([while (true) {}]false)
 Program formulas can appear nested

forall*int val*; ((⟨p⟩x =*val*) ↔ (⟨q⟩x =*val*)) ■ p, q equivalent relative to computation state restricted to x

 $(balance >= c \land amount > 0) \rightarrow (charge (amount); balance > c$

(x = 1;)([while (true) {}]false)
 Program formulas can appear nested

\forall *int val*; $((\langle p \rangle x = val) \leftrightarrow (\langle q \rangle x = val))$ **•** p, q equivalent relative to computation state restricted to x


```
a != null
->
  <
    int max = 0;
    if (a.length > 0) max = a[0];
    int i = 1;
    while (i < a.length) {
      if (a[i] > max) max = a[i];
      ++i:
  > (
      \forall int j; (j >= 0 & j < a.length -> max >= a[j])
      &
      (a.length > 0 ->
        \exists int j; (j \ge 0 \& j < a.length \& max = a[j]))
```

Variables

Logical variables disjoint from program variables

- No quantification over program variables
- Programs do not contain logical variables
- "Program variables" actually non-rigid functions

A JAVA CARD DL formula is valid iff it is true in all states.

We need a calculus for checking validity of formulas

A JAVA CARD DL formula is valid iff it is true in all states.

We need a calculus for checking validity of formulas

2 Sequent Calculus

3 Rules for Programs: Symbolic Execution

4) A Calculus for 100% JAVA CARD

5 Loop Invariants

2 Sequent Calculus

3 Rules for Programs: Symbolic Execution

4) A Calculus for 100% JAVA CARD

5 Loop Invariants

Sequents and their Semantics

Semantics

Same as the formula

$$(\psi_1 \wedge \cdots \wedge \psi_m) \rightarrow (\phi_1 \vee \cdots \vee \phi_n)$$

Sequents and their Semantics

Semantics

Same as the formula

$$(\psi_1 \wedge \cdots \wedge \psi_m) \quad \rightarrow \quad (\phi_1 \vee \cdots \vee \phi_n)$$

Soundness

If all premisses are valid, then the conclusion is valid

Use in practice

Goal is matched to conclusion

Soundness

If all premisses are valid, then the conclusion is valid

Use in practice

Goal is matched to conclusion

Soundness

If all premisses are valid, then the conclusion is valid

Use in practice

Goal is matched to conclusion

Soundness

If all premisses are valid, then the conclusion is valid

Use in practice

Goal is matched to conclusion

NOT_LEFT
$$\frac{\Gamma \Longrightarrow A, \Delta}{\Gamma, \neg A \Longrightarrow \Delta}$$

$$\mathsf{IMP_LEFT} \quad \frac{\Gamma \Longrightarrow A, \Delta \qquad \Gamma, B \Longrightarrow \Delta}{\Gamma, A \to B \Longrightarrow \Delta}$$

CLOSE_GOAL
$$\Gamma, A \Longrightarrow A, \Delta$$
 CLOSE_BY_TRUE $\Gamma \Longrightarrow \text{true}, \Delta$

ALL_LEFT
$$\frac{\Gamma, | \text{forall } t \; x; \phi, \; \{x/e\}\phi \Longrightarrow \Delta}{\Gamma, | \text{forall } t \; x; \phi \Longrightarrow \Delta}$$

where *e* var-free term of type $t' \prec t$

NOT_LEFT
$$\frac{\Gamma \Longrightarrow A, \Delta}{\Gamma, \neg A \Longrightarrow \Delta}$$

$$\mathsf{IMP_LEFT} \quad \frac{\Gamma \Longrightarrow A, \Delta \qquad \Gamma, B \Longrightarrow \Delta}{\Gamma, A \to B \Longrightarrow \Delta}$$

CLOSE_GOAL
$$\Gamma, A \Longrightarrow A, \Delta$$
 CLOSE_BY_TRUE $\Gamma \Longrightarrow \text{true}, \Delta$

ALL_LEFT
$$\frac{\Gamma, \forall forall \ t \ x; \phi, \ \{x/e\}\phi \Longrightarrow \Delta}{\Gamma, \forall forall \ t \ x; \phi \Longrightarrow \Delta}$$

where *e* var-free term of type $t' \prec t$

NOT_LEFT
$$\frac{\Gamma \Longrightarrow A, \Delta}{\Gamma, \neg A \Longrightarrow \Delta}$$

$$\mathsf{IMP_LEFT} \quad \frac{\Gamma \Longrightarrow A, \Delta \qquad \Gamma, B \Longrightarrow \Delta}{\Gamma, A \to B \Longrightarrow \Delta}$$

$$\begin{array}{c} \mathsf{CLOSE_GOAL} & \hline \\ \hline \Gamma, A \Longrightarrow A, \Delta \end{array} \quad \begin{array}{c} \mathsf{CLOSE_BY_TRUE} & \hline \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \mathsf{T} \Longrightarrow \mathsf{true}, \Delta \end{array}$$

ALL_LEFT
$$\frac{\Gamma, \forall forall \ t \ x; \phi, \ \{x/e\}\phi \Longrightarrow \Delta}{\Gamma, \forall forall \ t \ x; \phi \Longrightarrow \Delta}$$

where *e* var-free term of type $t' \prec t$

NOT_LEFT
$$\frac{\Gamma \Longrightarrow A, \Delta}{\Gamma, \neg A \Longrightarrow \Delta}$$

$$\mathsf{IMP_LEFT} \quad \frac{\Gamma \Longrightarrow A, \Delta \qquad \Gamma, B \Longrightarrow \Delta}{\Gamma, A \to B \Longrightarrow \Delta}$$

ALL_LEFT
$$\frac{\Gamma, \forall forall \ t \ x; \phi, \ \{x/e\}\phi \Longrightarrow \Delta}{\Gamma, \forall forall \ t \ x; \phi \Longrightarrow \Delta}$$

where *e* var-free term of type $t' \prec t$

NOT_LEFT
$$\frac{\Gamma \Longrightarrow A, \Delta}{\Gamma, \neg A \Longrightarrow \Delta}$$

$$\mathsf{IMP_LEFT} \quad \frac{\Gamma \Longrightarrow A, \Delta \qquad \Gamma, B \Longrightarrow \Delta}{\Gamma, A \to B \Longrightarrow \Delta}$$

ALL_LEFT
$$\frac{\Gamma, | \text{forall } t \; x; \phi, \; \{x/e\}\phi \Longrightarrow \Delta}{\Gamma, | \text{forall } t \; x; \phi \Longrightarrow \Delta}$$
where *e* var-free term of type $t' \prec t$

Sequent Calculus Proofs

Proof tree

- Proof is tree structure with goal sequent as root
- Rules are applied from conclusion (old goal) to premisses (new goals)
- Rule with no premiss closes proof branch
- Proof is finished when all goals are closed

Sequent Calculus Proofs

Proof tree

- Proof is tree structure with goal sequent as root
- Rules are applied from conclusion (old goal) to premisses (new goals)
- Rule with no premiss closes proof branch
- Proof is finished when all goals are closed

Sequent Calculus Proofs

Proof tree

- Proof is tree structure with goal sequent as root
- Rules are applied from conclusion (old goal) to premisses (new goals)
- Rule with no premiss closes proof branch
- Proof is finished when all goals are closed

Sequent Calculus Proofs

Proof tree

- Proof is tree structure with goal sequent as root
- Rules are applied from conclusion (old goal) to premisses (new goals)
- Rule with no premiss closes proof branch
- Proof is finished when all goals are closed

2 Sequent Calculus

3 Rules for Programs: Symbolic Execution

4) A Calculus for 100% JAVA CARD

5 Loop Invariants

2 Sequent Calculus

3 Rules for Programs: Symbolic Execution

A Calculus for 100% JAVA CARD

5 Loop Invariants

- Sequent rules for program formulas?
- What corresponds to top-level connective in a program?

The Active Statement in a Program

Sequent rules execute symbolically the active statement

- Sequent rules for program formulas?
- What corresponds to top-level connective in a program?

The Active Statement in a Program

l:{try{ i=0; j=0; } finally{ k=0; }}

Sequent rules execute symbolically the active statement

- Sequent rules for program formulas?
- What corresponds to top-level connective in a program?

The Active Statement in a Program

l:{try{ i=0; j=0; } finally{ k=0; }}

Sequent rules execute symbolically the active statement

- Sequent rules for program formulas?
- What corresponds to top-level connective in a program?

The Active Statement in a Program

 (μ)

 $\begin{array}{ll} \mbox{passive prefix} & \pi \\ \mbox{active statement} & \mbox{i=0;} \\ \mbox{rest} & \omega \end{array}$

 π

Sequent rules execute symbolically the active statement

18/44

- Sequent rules for program formulas?
- What corresponds to top-level connective in a program?

The Active Statement in a Program

 (μ)

passive prefix π active statementi=0;rest ω

 π

Sequent rules execute symbolically the active statement

18/44

Rules for Symbolic Program Execution

If-then-else rule

$$\frac{\Gamma, B = \textit{true} \Longrightarrow \langle p \ \omega \rangle \phi, \Delta}{\Gamma \Longrightarrow \langle \text{if } (B) \ \{ p \ \} \text{ else } \{ q \ \} \omega \rangle \phi, \Delta}$$

Complicated statements/expressions are simplified first, e.g.

$$\begin{split} \Gamma &\Longrightarrow \langle \mathbf{v} = \mathbf{y}; \quad \mathbf{y} = \mathbf{y} + 1; \quad \mathbf{x} = \mathbf{v}; \quad \omega \rangle \phi, \Delta \\ \Gamma &\Longrightarrow \langle \mathbf{x} = \mathbf{y} + +; \quad \omega \rangle \phi, \Delta \end{split}$$

Simple assignment rule

$$\Gamma \Longrightarrow \{ loc := val \} \langle \omega \rangle \phi, \Delta$$
$$\Gamma \Longrightarrow \langle loc = val : \omega \rangle \phi, \Delta$$

Rules for Symbolic Program Execution

If-then-else rule

$$\begin{array}{c|c} \Gamma, B = \textit{true} \Longrightarrow \langle p \ \omega \rangle \phi, \Delta & \Gamma, B = \textit{false} \Longrightarrow \langle q \ \omega \rangle \phi, \Delta \\ \hline \Gamma \Longrightarrow \langle \texttt{if} \ (B) \ \{ \ p \ \} \ \texttt{else} \ \{ \ q \ \} \ \omega \rangle \phi, \Delta \end{array}$$

Complicated statements/expressions are simplified first, e.g.

$$\begin{array}{c} \Gamma \Longrightarrow \langle \mathbf{v} = \mathbf{y}; \ \mathbf{y} = \mathbf{y} + \mathbf{1}; \ \mathbf{x} = \mathbf{v}; \ \omega \rangle \phi, \Delta \\ \\ \Gamma \Longrightarrow \langle \mathbf{x} = \mathbf{y} + \mathbf{z}; \ \omega \rangle \phi, \Delta \end{array}$$

Simple assignment rule

$$\Gamma \Longrightarrow \{ loc := val \} \langle \omega \rangle \phi, \Delta$$
$$\Gamma \Longrightarrow \langle loc = val ; \omega \rangle \phi, \Delta$$

Rules for Symbolic Program Execution

If-then-else rule

$$\begin{array}{c|c} \Gamma, B = \textit{true} \Longrightarrow \langle p \ \omega \rangle \phi, \Delta & \Gamma, B = \textit{false} \Longrightarrow \langle q \ \omega \rangle \phi, \Delta \\ \hline \Gamma \Longrightarrow \langle \texttt{if} \ (B) \ \{ \ p \ \} \ \texttt{else} \ \{ \ q \ \} \ \omega \rangle \phi, \Delta \end{array}$$

Complicated statements/expressions are simplified first, e.g.

$$\begin{array}{c} \Gamma \Longrightarrow \langle {\rm v=y}; \ {\rm y=y+1}; \ {\rm x=v}; \ \omega \rangle \phi, \Delta \\ \\ \hline \Gamma \Longrightarrow \langle {\rm x=y++}; \ \omega \rangle \phi, \Delta \end{array} \end{array}$$

Simple assignment rule

$$\frac{\Gamma \Longrightarrow \{\textit{loc} := \textit{val}\}\langle \omega \rangle \phi, \Delta}{\Gamma \Longrightarrow \langle \textit{loc} = \textit{val}; \ \omega \rangle \phi, \Delta}$$

Beckert, Ulbrich - Applications of Formal Verification

Treating Assignment with "Updates"

Updates

syntactic elements in the logic - (explicit substitutions)

Elementary Updates

 $\{\mathit{loc} := \mathit{val}\}\phi$

where

- loc is a program variable
- val is an expression type-compatible with loc

Parallel Updates

$$\{loc_1 := t_1 || \cdots || loc_n := t_n\}\phi$$

no dependency between the *n* components (but 'last wins' semantics)

Treating Assignment with "Updates"

Updates

syntactic elements in the logic - (explicit substitutions)

Elementary Updates

$$\{\mathit{loc} := \mathit{val}\}\phi$$

where

- loc is a program variable
- val is an expression type-compatible with loc

Parallel Updates

$$\{ loc_1 := t_1 \mid | \cdots \mid | loc_n := t_n \} \phi$$

no dependency between the *n* components (but 'last wins' semantics)

Treating Assignment with "Updates"

Updates

syntactic elements in the logic - (explicit substitutions)

Elementary Updates

$$\{ loc := val \} \phi$$

where

- loc is a program variable
- val is an expression type-compatible with loc

Parallel Updates

$$\{\mathit{loc}_1 := t_1 \mid | \cdots \mid | \mathit{loc}_n := t_n\}\phi$$

no dependency between the *n* components (but 'last wins' semantics)

20/44

Why Updates?

Updates are

- aggregations of state change
- eagerly parallelised + simplified
- lazily applied (i.e., substituted into postcondition)

Advantages

- no renaming required (compared to another forward proof technique: strongest-postcondition calculus)
- delayed/minimised proof branching efficient aliasing treatment)

Why Updates?

Updates are

- aggregations of state change
- eagerly parallelised + simplified
- lazily applied (i.e., substituted into postcondition)

Advantages

- no renaming required (compared to another forward proof technique: strongest-postcondition calculus)
- delayed/minimised proof branching efficient aliasing treatment)

 \Rightarrow x < y \rightarrow (int t=x; x=y; y=t;) y < x

 $x < y \implies \{t:=x\} \langle x=y; y=t; \rangle y < x$ \Rightarrow x < y \rightarrow (int t=x; x=y; y=t;) y < x

 $x < y \implies \{t := x\} \{x := y\} \langle y = t; \rangle y < x$ $x < y \implies \{t:=x\} \langle x=y; y=t; \rangle y < x$ \Rightarrow x < y \rightarrow (int t=x; x=y; y=t;) y < x

$$x < y \implies x < y$$

$$\vdots$$

$$x < y \implies \{x :=y || y :=x\} \langle \rangle y < x$$

$$\vdots$$

$$x < y \implies \{t :=x || x :=y || y :=x\} \langle \rangle y < x$$

$$\vdots$$

$$x < y \implies \{t :=x || x :=y\} \{y :=t\} \langle \rangle y < x$$

$$\vdots$$

$$x < y \implies \{t :=x\} \{x :=y\} \langle y =t; \rangle y < x$$

$$\vdots$$

$$x < y \implies \{t :=x\} \langle x =y; y =t; \rangle y < x$$

$$\vdots$$

$$\Rightarrow x < y \implies (int t=x; x=y; y=t;) y < x$$

$$x < y \implies x < y$$

$$\vdots$$

$$x < y \implies \{x :=y || y :=x\} \langle \rangle y < x$$

$$\vdots$$

$$x < y \implies \{t :=x || x :=y || y :=x\} \langle \rangle y < x$$

$$\vdots$$

$$x < y \implies \{t :=x || x :=y\} \{y :=t\} \langle \rangle y < x$$

$$\vdots$$

$$x < y \implies \{t :=x\} \{x :=y\} \langle y = t; \rangle y < x$$

$$\vdots$$

$$x < y \implies \{t :=x\} \langle x = y; y = t; \rangle y < x$$

$$\vdots$$

$$\Rightarrow x < y \implies (int t =x; x =y; y = t; \rangle y < x$$

$$x < y \implies x < y$$

$$\vdots$$

$$x < y \implies \{x := y || y := x\} \langle \rangle y < x$$

$$\vdots$$

$$x < y \implies \{t := x || x := y || y := x\} \langle \rangle y < x$$

$$\vdots$$

$$x < y \implies \{t := x || x := y\} \{y := t\} \langle \rangle y < x$$

$$\vdots$$

$$x < y \implies \{t := x\} \{x := y\} \langle y = t; \rangle y < x$$

$$\vdots$$

$$x < y \implies \{t := x\} \langle x = y; y = t; \rangle y < x$$

$$\vdots$$

$$\Rightarrow x < y \implies (int t = x; x = y; y = t; \rangle y < x$$

$$x < y \implies x < y$$

$$\vdots$$

$$x < y \implies \{x := y || y := x\} \langle \rangle y < x$$

$$\vdots$$

$$x < y \implies \{t := x || x := y || y := x\} \langle \rangle y < x$$

$$\vdots$$

$$x < y \implies \{t := x || x := y\} \{y := t\} \langle \rangle y < x$$

$$\vdots$$

$$x < y \implies \{t := x\} \{x := y\} \langle y = t; \rangle y < x$$

$$\vdots$$

$$x < y \implies \{t := x\} \langle x = y; y = t; \rangle y < x$$

$$\vdots$$

$$\Rightarrow x < y \implies (int t = x; x = y; y = t; \rangle y < x$$

An abstract datatype $Array(\mathbb{I}, \mathbb{V})$

Types: Indices \mathbb{I} , Values \mathbb{V}

Function symbols:

- select : $Array(\mathbb{I}, \mathbb{V}) \times \mathbb{I} \to \mathbb{V}$
- store : $Array(\mathbb{I}, \mathbb{V}) \times \mathbb{I} \times \mathbb{V} \to Array(\mathbb{I}, \mathbb{V})$

Axioms

 $\forall a, i, v. \qquad select(store(a, i, v), i) = v \\ \forall a, i, j, v. i \neq j \rightarrow select(store(a, i, v), j) = select(a, j) \end{cases}$

Intuition

 $\mathcal{D}(\textit{Array}(\mathbb{I},\mathbb{V}))$ represents the set of functions $\mathcal{D}(\mathbb{I}) o \mathcal{D}(\mathbb{V})$

An abstract datatype $Array(\mathbb{I}, \mathbb{V})$

Types: Indices \mathbb{I} , Values \mathbb{V}

Function symbols:

- select : Array $(\mathbb{I}, \mathbb{V}) \times \mathbb{I} \to \mathbb{V}$
- store : $Array(\mathbb{I}, \mathbb{V}) \times \mathbb{I} \times \mathbb{V} \to Array(\mathbb{I}, \mathbb{V})$

Axioms

 $\begin{array}{ll} \forall a, i, v. & select(store(a, i, v), i) = v \\ \forall a, i, j, v. \ i \neq j \rightarrow select(store(a, i, v), j) = select(a, j) \end{array}$

Intuition

 $\mathcal{D}(\textit{Array}(\mathbb{I},\mathbb{V})) \text{ represents the set of functions } \mathcal{D}(\mathbb{I}) \to \mathcal{D}(\mathbb{V})$

23/44

An abstract datatype $Array(\mathbb{I}, \mathbb{V})$

Types: Indices \mathbb{I} , Values \mathbb{V}

Function symbols:

- select : Array $(\mathbb{I}, \mathbb{V}) \times \mathbb{I} \to \mathbb{V}$
- store : $Array(\mathbb{I}, \mathbb{V}) \times \mathbb{I} \times \mathbb{V} \to Array(\mathbb{I}, \mathbb{V})$

Axioms

 $\forall a, i, v. \qquad select(store(a, i, v), i) = v \\ \forall a, i, j, v. i \neq j \rightarrow select(store(a, i, v), j) = select(a, j)$

Intuition

 $\mathcal{D}(\textit{Array}(\mathbb{I},\mathbb{V}))$ represents the set of functions $\mathcal{D}(\mathbb{I}) \to \mathcal{D}(\mathbb{V})$

An abstract data Types: Indices I, Function symbo

- select : Array
- store : Array(

Axioms

∀*a*,*i*,*v*.

Photo by "null0" (www.flickr.com/photos/null0/272015955)

John McCarthy (1927–2011): Theory of arrays, is decidable

 $\forall a, i, j, v. i \neq j \rightarrow select(store(a, i, v), j) = select(a, j)$

Intuition

 $\mathcal{D}(\textit{Array}(\mathbb{I},\mathbb{V}))$ represents the set of functions $\mathcal{D}(\mathbb{I}) \to \mathcal{D}(\mathbb{V})$

Program State Representation

Local program variables

Modeled as non-rigid constants

Heap

Modeled with theory of arrays: $I = Object \times Field$, V = Any

heap:	Heap ((the heap	in the	current	state)
-------	--------	-----------	--------	---------	--------

- select: Heap \times Object \times Field \rightarrow Any
- store: Heap \times Object \times Field \times Any \rightarrow Heap

Some special program variables

selfthe current receiver object (this in Java)excthe currently active exception (null if none thrown)resultthe result of the method invocation

Program State Representation

Local program variables

Modeled as non-rigid constants

Heap

Modeled with theory of arrays: $\mathbb{I} = \textit{Object} \times \textit{Field}, \mathbb{V} = \textit{Any}$

- *heap*: *Heap* (the heap in the current state)
- $\textit{select}: \quad \textit{Heap} \times \textit{Object} \times \textit{Field} \rightarrow \textit{Any}$
- $\textit{store:} \qquad \textit{Heap} \times \textit{Object} \times \textit{Field} \times \textit{Any} \rightarrow \textit{Heap}$

Some special program variables

selfthe current receiver object (this in Java)excthe currently active exception (null if none thrown)resultthe result of the method invocation

Program State Representation

Local program variables

Modeled as non-rigid constants

Heap

Modeled with theory of arrays: $\mathbb{I} = \textit{Object} \times \textit{Field}, \mathbb{V} = \textit{Any}$

houp (the heup hi the build blace)

- select: Heap \times Object \times Field \rightarrow Any
- store: $Heap \times Object \times Field \times Any \rightarrow Heap$

Some special program variables

self	the current receiver object (this in Java)
exc	the currently active exception (null if none thrown)
result	the result of the method invocation

2 Sequent Calculus

3 Rules for Programs: Symbolic Execution

A Calculus for 100% JAVA CARD

5 Loop Invariants

2 Sequent Calculus

3 Rules for Programs: Symbolic Execution

4 Calculus for 100% JAVA CARD

5 Loop Invariants

Supported Java Features

method invocation with polymorphism/dynamic binding

- object creation and initialisation
- arrays
- abrupt termination
- throwing of NullPointerExceptions, etc.
- bounded integer data types
- transactions

All JAVA CARD language features are fully addressed in KeY

Supported Java Features

method invocation with polymorphism/dynamic binding

- object creation and initialisation
- arrays
- abrupt termination
- throwing of NullPointerExceptions, etc.
- bounded integer data types
- transactions

All JAVA CARD language features are fully addressed in KeY

Java—A Language of Many Features

Ways to deal with Java features

- Program transformation, up-front
- Local program transformation, done by a rule on-the-fly
- Modeling with first-order formulas
- Special-purpose extensions of program logic

Pro: Feature needs not be handled in calculus Contra: Modified source code Example in KeY: Very rare: treating inner classes

Ways to deal with Java features

- Program transformation, up-front
- Local program transformation, done by a rule on-the-fly
- Modeling with first-order formulas
- Special-purpose extensions of program logic

Pro: Flexible, easy to implement, usable Contra: Not expressive enough for all features Example in KeY: Complex expression eval, method inlining, etc., etc.

Ways to deal with Java features

- Program transformation, up-front
- Local program transformation, done by a rule on-the-fly
- Modeling with first-order formulas
- Special-purpose extensions of program logic

Pro: No logic extensions required, enough to express most features Contra: Creates difficult first-order POs, unreadable antecedents Example in KeY: Dynamic types and branch predicates

Ways to deal with Java features

- Program transformation, up-front
- Local program transformation, done by a rule on-the-fly
- Modeling with first-order formulas
- Special-purpose extensions of program logic

Pro: Arbitrarily expressive extensions possible Contra: Increases complexity of all rules Example in KeY: Method frames, updates

Non-program rules

- first-order rules
- rules for data-types
- first-order modal rules
- induction rules
- Pulse for reducing/simplifying the program (symbolic execution) Replace the program by
 - case distinctions (proof branches) and
 sequences of updates
- 3 Rules for handling loops using loop invariants
 - using induction
- Rules for replacing a method invocations by the method's contract

Non-program rules

- first-order rules
- rules for data-types
- first-order modal rules
- induction rules
- Rules for reducing/simplifying the program (symbolic execution)
 Replace the program by
 - case distinctions (proof branches) and
 - sequences of updates
- Rules for handling loops
 using loop invariants
 using induction
- Rules for replacing a method invocations by the method's contract

Non-program rules

- first-order rules
- rules for data-types
- first-order modal rules
- induction rules
- Rules for reducing/simplifying the program (symbolic execution) Replace the program by

Replace the program by

- case distinctions (proof branches) and
- sequences of updates
- 3 Rules for handling loops
 - using loop invariants
 - using induction

Rules for replacing a method invocations by the method's contract

Non-program rules

- first-order rules
- rules for data-types
- first-order modal rules
- induction rules
- Rules for reducing/simplifying the program (symbolic execution)

Replace the program by

- case distinctions (proof branches) and
- sequences of updates
- 3 Rules for handling loops
 - using loop invariants
 - using induction
- A Rules for replacing a method invocations by the method's contract

Non-program rules

- first-order rules
- rules for data-types
- first-order modal rules
- induction rules
- Rules for reducing/simplifying the program (symbolic execution)

Replace the program by

- case distinctions (proof branches) and
- sequences of updates
- 3 Rules for handling loops
 - using loop invariants
 - using induction
- Rules for replacing a method invocations by the method's contract

Symbolic execution of loops: unwind

UNWINDLOOP
$$\frac{\Gamma \Longrightarrow \mathcal{U}[\pi \texttt{if}(\texttt{b}) \{\texttt{p; while}(\texttt{b}) \texttt{p}\} \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \texttt{while}(\texttt{b}) \texttt{p} \omega] \phi, \Delta}$$

How to handle a loop with...

- 0 iterations? Unwind 1×
- 10 iterations? Unwind 11×
- 10000 iterations? Unwind 10001× (and don't make any plans for the rest of the day)
- an unknown number of iterations?

Symbolic execution of loops: unwind

UNWINDLOOP
$$\frac{\Gamma \Longrightarrow \mathcal{U}[\pi \texttt{if}(\texttt{b}) \{\texttt{p; while}(\texttt{b}) \texttt{p}\} \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \texttt{while}(\texttt{b}) \texttt{p} \omega] \phi, \Delta}$$

How to handle a loop with...

- 0 iterations? Unwind 1×
- 10 iterations? Unwind 11×
- 10000 iterations? Unwind 10001× (and don't make any plans for the rest of the day)
- an unknown number of iterations?

Symbolic execution of loops: unwind

UNWINDLOOP
$$\frac{\Gamma \Longrightarrow \mathcal{U}[\pi \texttt{if}(\texttt{b}) \{\texttt{p; while}(\texttt{b}) \texttt{p}\} \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \texttt{while}(\texttt{b}) \texttt{p} \omega] \phi, \Delta}$$

How to handle a loop with...

- 0 iterations? Unwind 1×
- 10 iterations? Unwind 11×
- 10000 iterations? Unwind 10001× (and don't make any plans for the rest of the day)
- an unknown number of iterations?

Symbolic execution of loops: unwind

UNWINDLOOP
$$\frac{\Gamma \Longrightarrow \mathcal{U}[\pi \texttt{if}(\texttt{b}) \{\texttt{p; while}(\texttt{b}) \texttt{p}\} \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \texttt{while}(\texttt{b}) \texttt{p} \omega] \phi, \Delta}$$

How to handle a loop with...

- 0 iterations? Unwind 1×
- 10 iterations? Unwind 11×
- 10000 iterations? Unwind 10001× (and don't make any plans for the rest of the day)
- an unknown number of iterations?

Symbolic execution of loops: unwind

UNWINDLOOP
$$\frac{\Gamma \Longrightarrow \mathcal{U}[\pi \texttt{if}(\texttt{b}) \{\texttt{p; while}(\texttt{b}) \texttt{p}\} \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \texttt{while}(\texttt{b}) \texttt{p} \omega] \phi, \Delta}$$

How to handle a loop with...

- 0 iterations? Unwind 1×
- 10 iterations? Unwind 11×
- 10000 iterations? Unwind 10001× (and don't make any plans for the rest of the day)
- an unknown number of iterations?

Symbolic execution of loops: unwind

UNWINDLOOP
$$\frac{\Gamma \Longrightarrow \mathcal{U}[\pi \texttt{if}(\texttt{b}) \{\texttt{p; while}(\texttt{b}) \texttt{p}\} \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \texttt{while}(\texttt{b}) \texttt{p} \omega] \phi, \Delta}$$

How to handle a loop with...

- 0 iterations? Unwind 1×
- 10 iterations? Unwind 11×
- 10000 iterations? Unwind 10001 × (and don't make any plans for the rest of the day)
- an unknown number of iterations?

Symbolic execution of loops: unwind

UNWINDLOOP
$$\frac{\Gamma \Longrightarrow \mathcal{U}[\pi \texttt{if}(\texttt{b}) \{\texttt{p; while}(\texttt{b}) \texttt{p}\} \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \texttt{while}(\texttt{b}) \texttt{p} \omega] \phi, \Delta}$$

How to handle a loop with...

- 0 iterations? Unwind 1×
- 10 iterations? Unwind 11×
- 10000 iterations? Unwind 10001× (and don't make any plans for the rest of the day)
- an unknown number of iterations?

Symbolic execution of loops: unwind

UNWINDLOOP
$$\frac{\Gamma \Longrightarrow \mathcal{U}[\pi \texttt{if}(\texttt{b}) \{\texttt{p; while}(\texttt{b}) \texttt{p}\} \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \texttt{while}(\texttt{b}) \texttt{p} \omega] \phi, \Delta}$$

How to handle a loop with...

- 0 iterations? Unwind 1×
- 10 iterations? Unwind 11×
- 10000 iterations? Unwind 10001× (and don't make any plans for the rest of the day)
- an unknown number of iterations?

Symbolic execution of loops: unwind

UNWINDLOOP
$$\frac{\Gamma \Longrightarrow \mathcal{U}[\pi \texttt{if}(\texttt{b}) \ \{ \texttt{p; while}(\texttt{b}) \texttt{p} \} \omega] \phi, \Delta}{\Gamma \Longrightarrow \mathcal{U}[\pi \texttt{while}(\texttt{b}) \texttt{p} \omega] \phi, \Delta}$$

How to handle a loop with...

- 0 iterations? Unwind 1×
- 10 iterations? Unwind 11×
- 10000 iterations? Unwind 10001× (and don't make any plans for the rest of the day)
- an unknown number of iterations?

Idea behind loop invariants

- A formula Inv that
 - holds initially and
 - whose validity is preserved by loop iteration
- *Consequence*: if *Inv* was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- If the loop terminates at all, then *Inv* holds *afterwards*
- Make Inv strong enough to entail the desired postcondition

Basic Invariant Rule

$$\label{eq:constraint} \begin{split} & \Gamma \Longrightarrow \mathcal{U} \textit{Inv}, \Delta \ & \textit{Inv}, b \doteq ext{TRUE} \Longrightarrow [p] \textit{Inv} \ & \text{Inv}, b \doteq ext{FALSE} \Longrightarrow [\pi \ \omega] \phi \ & \text{oopInvariant} \ & \Gamma \Longrightarrow \mathcal{U}[\pi \ ext{while} (b) \ p \ \omega] \phi, \Delta \end{split}$$

(initially valid) (preserved) (use case)

Idea behind loop invariants

- A formula Inv that
 - holds initially and
 - whose validity is preserved by loop iteration
- *Consequence*: if *Inv* was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- If the loop terminates at all, then *Inv* holds *afterwards*
- Make Inv strong enough to entail the desired postcondition

Basic Invariant Rule

$$\begin{split} \Gamma &\Rightarrow \mathcal{U} | \mathbf{n} \mathbf{v}, \Delta \qquad \text{(in} \\ \mathbf{n} \mathbf{v}, b &\doteq \text{TRUE} \Rightarrow [p] | \mathbf{n} \mathbf{v} \qquad \text{(pr} \\ \mathbf{n} \mathbf{v}, b &\doteq \text{FALSE} \Rightarrow [\pi \ \omega] \phi \qquad \text{(us)} \\ \hline \Gamma &\Rightarrow \mathcal{U} [\pi \text{ while (b) } p \ \omega] \phi, \Delta \end{split}$$

Beckert, Ulbrich – Applications of Formal Verification

31/44

Idea behind loop invariants

- A formula Inv that
 - holds initially and
 - whose validity is preserved by loop iteration
- *Consequence*: if *Inv* was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- If the loop terminates at all, then *Inv* holds *afterwards*
- Make Inv strong enough to entail the desired postcondition

Basic Invariant Rule

$$\begin{split} \Gamma &\Rightarrow \mathcal{U} \textit{Inv}, \Delta & \text{(initially valid)} \\ \textit{Inv}, b &\doteq \text{TRUE} \Rightarrow [p] \textit{Inv} & \text{(preserved)} \\ \textit{IoopInvariant} & \frac{\textit{Inv}, b &\doteq \text{FALSE} \Rightarrow [\pi \ \omega]\phi}{\Gamma \Rightarrow \mathcal{U}[\pi \text{ while } (b) \ p \ \omega]\phi, \Delta} & \text{(use case)} \end{split}$$

Idea behind loop invariants

- A formula Inv that
 - holds initially and
 - whose validity is preserved by loop iteration
- *Consequence*: if *Inv* was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- If the loop terminates at all, then *Inv* holds *afterwards*
- Make *Inv* strong enough to entail the desired *postcondition*

Basic Invariant Rule

$$\begin{split} \Gamma &\Rightarrow \mathcal{U} \textit{Inv}, \Delta & \text{(initially valid)} \\ \textit{Inv}, b &\doteq \text{TRUE} \Rightarrow [p] \textit{Inv} & \text{(preserved)} \\ \text{IoopInvariant} & \frac{\textit{Inv}, b &\doteq \text{FALSE} \Rightarrow [\pi \ \omega]\phi}{\Gamma \Rightarrow \mathcal{U}[\pi \text{ while (b) } p \ \omega]\phi, \Delta} & \text{(use case)} \end{split}$$

Idea behind loop invariants

- A formula Inv that
 - holds initially and
 - whose validity is preserved by loop iteration
- *Consequence*: if *Inv* was valid at start of the loop, then it still holds after arbitrarily many loop iterations
- If the loop terminates at all, then *Inv* holds *afterwards*
- Make *Inv* strong enough to entail the desired *postcondition*

Basic Invariant Rule

$$\begin{split} \Gamma &\Rightarrow \mathcal{U} \textit{Inv}, \Delta & \text{(initially valid)} \\ \textit{Inv}, b &\doteq \text{TRUE} \Rightarrow [p] \textit{Inv} & \text{(preserved)} \\ \textit{IoopInvariant} & \frac{\textit{Inv}, b &\doteq \text{FALSE} \Rightarrow [\pi \ \omega]\phi}{\Gamma \Rightarrow \mathcal{U}[\pi \texttt{while} (b) \ p \ \omega]\phi, \Delta} & \text{(use case)} \end{split}$$

Basic Invariant Rule: Problem

$$\begin{split} & \Gamma \Longrightarrow \mathcal{U} \textit{Inv}, \Delta & \text{(initially valid)} \\ & \textit{Inv}, b \doteq \text{TRUE} \Longrightarrow [p]\textit{Inv} & \text{(preserved)} \\ & \text{loopInvariant} & \frac{\textit{Inv}, b \doteq \text{FALSE} \Longrightarrow [\pi \ \omega]\phi}{\Gamma \Longrightarrow \mathcal{U}[\pi \text{ while (b) } p \ \omega]\phi, \Delta} & \text{(use case)} \end{split}$$

- Context Γ , Δ , \mathcal{U} must be omitted in 2nd and 3rd premise
- But: context contains (part of) precondition and class invariants
- Required context information must be added to loop invariant *Inv*

Basic Invariant Rule: Problem

$$\begin{split} & \Gamma \Longrightarrow \mathcal{U} \textit{Inv}, \Delta & \text{(initially valid)} \\ & \textit{Inv}, b \doteq \text{TRUE} \Longrightarrow [p] \textit{Inv} & \text{(preserved)} \\ & \text{loopInvariant} & \frac{\textit{Inv}, b \doteq \text{FALSE} \Longrightarrow [\pi \ \omega]\phi}{\Gamma \Longrightarrow \mathcal{U}[\pi \text{ while (b) } p \ \omega]\phi, \Delta} & \text{(use case)} \end{split}$$

• Context Γ , Δ , \mathcal{U} must be omitted in 2nd and 3rd premise

- But: context contains (part of) precondition and class invariants
- Required context information must be added to loop invariant *Inv*

Basic Invariant Rule: Problem

$$\begin{split} & \Gamma \Longrightarrow \mathcal{U} \textit{Inv}, \Delta & \text{(initially valid)} \\ & \textit{Inv}, b \doteq \text{TRUE} \Longrightarrow [p] \textit{Inv} & \text{(preserved)} \\ & \text{loopInvariant} & \frac{\textit{Inv}, b \doteq \text{FALSE} \Longrightarrow [\pi \ \omega]\phi}{\Gamma \Longrightarrow \mathcal{U}[\pi \text{ while (b) } p \ \omega]\phi, \Delta} & \text{(use case)} \end{split}$$

- Context Γ , Δ , \mathcal{U} must be omitted in 2nd and 3rd premise
- But: context contains (part of) precondition and class invariants
- Required context information must be added to loop invariant *Inv*

Basic Invariant Rule: Problem

$$\begin{split} & \Gamma \Longrightarrow \mathcal{U} \textit{Inv}, \Delta & \text{(initially valid)} \\ & \textit{Inv}, b \doteq \text{TRUE} \Longrightarrow [p] \textit{Inv} & \text{(preserved)} \\ & \text{IoopInvariant} & \frac{\textit{Inv}, b \doteq \text{FALSE} \Longrightarrow [\pi \, \omega]\phi}{\Gamma \Longrightarrow \mathcal{U}[\pi \, \texttt{while} \, (b) \, p \, \omega]\phi, \Delta} & \text{(use case)} \end{split}$$

- Context Γ , Δ , \mathcal{U} must be omitted in 2nd and 3rd premise
- But: context contains (part of) precondition and class invariants
- Required context information must be added to loop invariant *Inv*


```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}</pre>
```


Precondition: $a \neq null$

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}</pre>
```



```
Precondition: a \neq null
```

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}</pre>
```

Postcondition: $\forall int x$; $(0 \le x < a.length \rightarrow a[x] \doteq 1)$

Precondition: $a \neq null$

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}</pre>
```

Postcondition: $\forall int x$; $(0 \le x < a.length \rightarrow a[x] \doteq 1)$

Loop invariant: $0 \le i \land i \le a$.length


```
Precondition: a \neq null
```

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}</pre>
```

Postcondition: $\forall int x$; $(0 \le x < a.length \rightarrow a[x] \doteq 1)$

Loop invariant: $0 \le i \land i \le a$.length $\land \forall int X; (0 \le x < i \rightarrow a[x] \doteq 1)$


```
Precondition: a \neq null
```

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}</pre>
```

Postcondition: $\forall int x$; $(0 \le x < a.length \rightarrow a[x] \doteq 1)$

Loop invariant:
$$0 \le i \land i \le a$$
.length
 $\land \forall int x; (0 \le x < i \rightarrow a[x] \doteq 1)$
 $\land a \ne null$

Precondition: a \neq null & ClassInv

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}</pre>
```

Postcondition: $\forall int x$; $(0 \le x < a.length \rightarrow a[x] \doteq 1)$

Loop invariant:
$$0 \le i \land i \le a$$
.length
 $\land \forall int x; (0 \le x < i \rightarrow a[x] \doteq 1)$
 $\land a \ne null$
 $\land ClassIny'$

Keeping the Context

Want to keep part of the context that is unmodified by loop

assignable clauses for loops can tell what might be modified

```
@ assignable i, a[*];
```


- Want to keep part of the context that is unmodified by loop
- assignable clauses for loops can tell what might be modified

```
@ assignable i, a[*];
```

Example with Improved Invariant Rule


```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}</pre>
```

Example with Improved Invariant Rule


```
Precondition: a \neq null
```

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}</pre>
```


```
Precondition: a \neq null
```

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}</pre>
```

Postcondition: $\forall int x$; $(0 \le x < a.length \rightarrow a[x] \doteq 1)$


```
Precondition: a \neq null
```

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}</pre>
```

Postcondition: $\forall int x$; $(0 \le x < a.length \rightarrow a[x] \doteq 1)$

Loop invariant: $0 \leq i \land i \leq a.length$


```
Precondition: a \neq null
```

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}</pre>
```

Postcondition: $\forall int x$; $(0 \le x < a.length \rightarrow a[x] \doteq 1)$

Loop invariant: $0 \le i \land i \le a$.length $\land \forall int x; (0 \le x < i \rightarrow a[x] \doteq 1)$


```
Precondition: a \neq null
```

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}</pre>
```

Postcondition: $\forall int x$; $(0 \le x < a.length \rightarrow a[x] \doteq 1)$

Loop invariant: $0 \le i \land i \le a$.length $\land \forall int x; (0 \le x < i \rightarrow a[x] \doteq 1)$

Precondition: a \neq null & ClassInv

```
int i = 0;
while(i < a.length) {
    a[i] = 1;
    i++;
}</pre>
```

Postcondition: $\forall int x$; $(0 \le x < a.length \rightarrow a[x] \doteq 1)$

Loop invariant: $0 \le i \land i \le a$.length $\land \forall int x; (0 \le x < i \rightarrow a[x] \doteq 1)$

Example in JML/Java – Loop. java


```
public int[] a;
/*@ public normal behavior
  @ ensures (\forall int x; 0<=x && x<a.length; a[x]==1);</pre>
  diverges true;
  @*/
public void m() {
  int i = 0;
  /*@ loop_invariant
    @ (0 <= i && i <= a.length &&</pre>
    Ø
         (\forall int x; 0<=x && x<i; a[x]==1));
    @ assignable i, a[*];
    @*/
  while(i < a.length) {</pre>
    a[i] = 1;
    i++;
```


How can we prove that the above formula is valid (i.e., satisfied in all states)?

Solution:

@ loop_invariant

0 i>=0 && 2*r == i*(i + 1) && i <= n;

@ assignable i, r;

File: Loop2.java

How can we prove that the above formula is valid (i.e., satisfied in all states)?

Solution:

@ loop_invariant

0 i>=0 && 2*r == i*(i + 1) && i <= n;

@ assignable i, r;

File: Loop2.java

∀ int x;
(n
$$\doteq x \land x >= 0 \rightarrow$$

[i = 0; r = 0;
while (ir=r+r-n;
]r $\doteq x * x$)

How can we prove that the above formula is valid (i.e., satisfied in all states)?

Solution:

@ loop_invariant

0 i>=0 && 2*r == i*(i + 1) && i <= n;

@ assignable i, r;

File: Loop2. java

∀ int x;
(n
$$\doteq x \land x >= 0 \rightarrow$$

[i = 0; r = 0;
while (ir=r+r-n;
]r $\doteq x * x$)

How can we prove that the above formula is valid (i.e., satisfied in all states)?

Solution:

@ loop_invariant

@ i>=0 && 2*r == i*(i + 1) && i <= n;</pre>

@ assignable i, r;

File: Loop2. java

Hints

Proving **assignable**

- The invariant rule on the slides assumes that assignable is correct. With assignable \nothing; e.g., one can prove nonsense
- The invariant rule in KeY generates proof obligation that ensures correctness of assignable

Setting in the KeY Prover when proving loops

- Loop treatment: *Invariant*
- Quantifier treatment: No Splits with Progs
- If program contains *, /: Arithmetic treatment: DefOps
- Is search limit high enough (time out, rule apps.)?
- When proving partial correctness, add diverges true;

Hints

Proving **assignable**

- The invariant rule on the slides assumes that assignable is correct. With assignable \nothing; e.g., one can prove nonsense
- The invariant rule in KeY generates proof obligation that ensures correctness of assignable

Setting in the KeY Prover when proving loops

- Loop treatment: Invariant
- Quantifier treatment: No Splits with Progs
- If program contains *, /: Arithmetic treatment: *DefOps*
- Is search limit high enough (time out, rule apps.)?
- When proving partial correctness, add diverges true;

Find a decreasing integer term v (called variant)

Add the following premisses to the invariant rule:

- $v \ge 0$ is initially valid
- $v \ge 0$ is preserved by the loop body
- v is strictly decreased by the loop body

Proving termination in JML/Java

- Remove directive diverges true;
- Add directive decreasing v; to loop invariant
- KeY creates suitable invariant rule and PO (with $\langle \ldots \rangle \phi$)

Example: The array loop

decreasing

Find a decreasing integer term v (called variant)

Add the following premisses to the invariant rule:

- $v \ge 0$ is initially valid
- $v \ge 0$ is preserved by the loop body
- v is strictly decreased by the loop body

Proving termination in JML/Java

- Remove directive diverges true;
- Add directive decreasing v; to loop invariant
- KeY creates suitable invariant rule and PO (with $\langle \ldots \rangle \phi$)

Example: The array loop

@ decreasing

Find a decreasing integer term v (called variant)

Add the following premisses to the invariant rule:

- $v \ge 0$ is initially valid
- $v \ge 0$ is preserved by the loop body
- v is strictly decreased by the loop body

Proving termination in JML/Java

- Remove directive diverges true;
- Add directive decreasing v; to loop invariant
- KeY creates suitable invariant rule and PO (with $\langle \ldots \rangle \phi$)

Example: The array loop

@ decreasing

Find a decreasing integer term v (called variant)

Add the following premisses to the invariant rule:

- $v \ge 0$ is initially valid
- $v \ge 0$ is preserved by the loop body
- v is strictly decreased by the loop body

Proving termination in JML/Java

- Remove directive diverges true;
- Add directive decreasing v; to loop invariant
- KeY creates suitable invariant rule and PO (with $\langle \ldots \rangle \phi$)

Example: The array loop

@ decreasing a.length - i;

Find a decreasing integer term v (called variant)

Add the following premisses to the invariant rule:

- $v \ge 0$ is initially valid
- $v \ge 0$ is preserved by the loop body
- v is strictly decreased by the loop body

Proving termination in JML/Java

- Remove directive diverges true;
- Add directive decreasing v; to loop invariant
- KeY creates suitable invariant rule and PO (with $\langle \dots \rangle \phi$)

Example: The array loop

@ decreasing a.length - i;

Files:

- LoopT.java
- Loop2T.java

Find a postcondition:

int x, y;
// ...
while(x-- != ++y);

Note: Loop guards may have side effects. **Hence:** Evaluate them in a modality.

Find a postcondition:

int x, y;
// ...
while(x-- != ++y);

Note: Loop guards may have side effects. **Hence:** Evaluate them in a modality.

$$\Gamma \Rightarrow \mathcal{U} lnv, \Delta \qquad \text{(initian initial or equation of the set of t$$

Find a postcondition:

int x, y;
// ...
while(x-- != ++y);

Note: Loop guards may have side effects. **Hence:** Evaluate them in a modality.

$$\begin{split} & \Gamma \Longrightarrow \mathcal{U} \textit{Inv}, \Delta & \text{(initial} \\ & \textit{Inv}, b \doteq \texttt{TRUE} < 4 > [\texttt{x}=\texttt{b};]\texttt{x} \doteq \texttt{TRUE} \Longrightarrow [p]\textit{Inv} & \text{(present inv}, b \doteq \texttt{FALSE} \Longrightarrow [\pi \ \omega]\phi & \text{(use of the second se$$

Find a postcondition:

int x, y;
// ...
while(x-- != ++y);

Note: Loop guards may have side effects. **Hence:** Evaluate them in a modality.

$$\begin{split} & \Gamma \Longrightarrow \mathcal{U} \textit{Inv}, \Delta & \text{(initially valid)} \\ & \textit{Inv}, [x=b;] x \doteq \text{TRUE} \Longrightarrow [p] \textit{Inv} & \text{(preserved)} \\ & \text{sideEffectLI} & \frac{\textit{Inv}, [x=b;] x \doteq \text{FALSE} \Longrightarrow [\pi \ \omega] \phi}{\Gamma \Longrightarrow \mathcal{U}[\pi \text{ while } (b) \ p \ \omega] \phi, \Delta} & \text{(use case)} \end{split}$$

Find a postcondition:

int x, y;
// ...
while(x-- != ++y);

Note: Loop guards may have side effects. **Hence:** Evaluate them in a modality.

$$\begin{split} & \Gamma \Longrightarrow \mathcal{U} \textit{Inv}, \Delta & \text{(initially valid)} \\ & \textit{Inv}, [x=b;] x \doteq \text{TRUE} \Longrightarrow [x=b;p] \textit{Inv} & \text{(preserved)} \\ & \text{sideEffectLI} & \frac{\textit{Inv}, [x=b;] x \doteq \text{FALSE} \Longrightarrow [\pi \ \omega] \phi}{\Gamma \Longrightarrow \mathcal{U}[\pi \text{ while } (b) \ p \ \omega] \phi, \Delta} & \text{(use case)} \end{split}$$

Loops and Abrupt Completion

Rule loopInvariant requires normal, structural control flow (loop body always fully executed; run continues after loop)

Non-structural control flow in Java					
	return	break	continue	throw	
make loop body terminate abruptly.					

Solution

Transform non-standard control flow into standard control-flow and with marker variables.

Loops and Abrupt Completion

Original loop body p	
	loopBody: { try { Break = Return = false;
if (x == 0) break;	<pre>if(x == 0) { BREAK=true; hereb hereBute</pre>
if (x == 1) return 42;	<pre>break loopBody; } if(x == 1) { res=42; RETURN=true:</pre>
if(x - 2) continuo:	break loopBody; }
if(x == 3) throw e;	if (x == 3) throw e;
if (x == 4) x = -1;	<pre>if(x == 4) x = -1; } catch(Throwable e) { Exc = e; }}</pre>

Loops and Abrupt Completion

Original loop body p	Encoded loop body \widehat{p}
	loopBody: { try {
	BREAK = RETURN = false;
	EXCEPTION = null;
if(x == 0) break;	if (x == 0) { BREAK= true;
	break loopBody; }
if (x == 1) return 42;	if (x == 1) { res=42;
	Return =true;
	break loopBody; }
<pre>if(x == 2) continue;</pre>	<pre>if(x == 2) break loopBody;</pre>
<pre>if(x == 3) throw e;</pre>	<pre>if(x == 3) throw e;</pre>
if(x == 4) x = -1;	if(x == 4) x = -1;
	<pre>} catch(Throwable e) { Exc = e; }}</pre>

Loops and Abrupt Termination

Invariant rule with abrupt termination (using translation $\hat{\cdot}$)

$$\begin{split} \Gamma &\Rightarrow \mathcal{U} \textit{Inv}, \Delta & \text{(initially valid)} \\ \textit{Inv}, b &\doteq \text{TRUE} \Rightarrow [p]\textit{Inv} & \text{(preserved)} \\ \textit{IoopInvariant} & \frac{\textit{Inv}, b &\doteq \text{FALSE} \Rightarrow [\pi \ \omega]\phi}{\Gamma \Rightarrow \mathcal{U}[\pi \text{ while } (b) \ p \ \omega]\phi, \Delta} & \text{(use case)} \end{split}$$

where ψ is the formula

$$\begin{array}{ll} (\mathsf{EXC} \neq \mathsf{null} \rightarrow & [\pi \text{ throw Exception}; \omega]\varphi) \\ \wedge & (\mathsf{BREAK} \doteq \mathsf{TRUE} \rightarrow & [\pi \, \omega]\phi) \\ \wedge & (\mathsf{RETURN} = \mathsf{TRUE} \rightarrow & [\pi \text{ return res}; \, \omega]\phi) \\ \wedge & (\mathsf{NORMAL} \rightarrow & & \mathit{Inv}) \end{array}$$

with Normal \equiv Break \doteq false \land Return \doteq false \land Exc \doteq null

Loops and Abrupt Termination

Invariant rule with abrupt termination (using translation $\hat{\cdot}$)

$$\begin{split} \Gamma &\Rightarrow \mathcal{U} \textit{Inv}, \Delta & \text{(initially valid)} \\ \textit{Inv}, b &\doteq \text{TRUE} \Rightarrow [\widehat{p}]\psi & \text{(preserved)} \\ \textit{IoopInvariant} & \frac{\textit{Inv}, b &\doteq \text{FALSE} \Rightarrow [\pi \ \omega]\phi}{\Gamma \Rightarrow \mathcal{U}[\pi \texttt{while} (b) \ p \ \omega]\phi, \Delta} & \text{(use case)} \end{split}$$

where ψ is the formula

$$\begin{array}{ll} (\mathsf{ExC} \neq \mathsf{null} \rightarrow & [\pi \text{ throw Exception}; \omega]\varphi) \\ \wedge & (\mathsf{BREAK} \doteq \mathsf{TRUE} \rightarrow & [\pi \, \omega]\phi) \\ \wedge & (\mathsf{RETURN} = \mathsf{TRUE} \rightarrow & [\pi \text{ return res}; \, \omega]\phi) \\ \wedge & (\mathsf{NORMAL} \rightarrow & & \mathit{Inv}) \end{array}$$

with Normal \equiv Break \doteq False \land Return \doteq False \land Exc \doteq null

Loop Invariant – Conclusion

Is a difficult subject. shows that real prog language is a challenge Many technical non-trivial tricks. A rule that puts together

- Considering assignable clauses
- Side effects in loop guards
- abrupt termination

is in chapter 3.

Further reading: KeY book Ch. 15 ??

New developments: Loop scope rule, Loop contracts