

Formal Systems II: Applications

Bounded Model Checking of C Programs and LLBMC

Carsten Sinz | SS 2019

Exercise 1: Get to Know LLBMC

- Using LLBMC is two-step process
 - 1. Compile C program to LLVM-IR (bitcode)
 - 2. Run LLBMC on bitcode
- Example:
 - clang -c -g -emit-llvm abs.c
 - 11bmc abs.bc
- Check options:
 - llbmc -help
 - llbmc -help-hidden
- Make some experiments:
 - Switch on/off check options
 - Display intermediate files
 - Display counterexample
 - Check 11bmc.h

```
int abs(int x)
{
    int ret;
    if (x >= 0) {
        ret = x;
    } else {
        ret = -x;
    }
    __llbmc_assert(ret >= 0);
    return ret;
}
```

Exercise 2: Triangle Classification

- Download the file https://baldur.iti.kit.edu/llbmc-ex.zip
- Unzip the file, containing C source for classification of triangles
 - Triangles are determined by 3 points in 2D space, given by (x,y)coordinates
 - The x and y coordinates are integers
- The task is to write:
 - A) Functions to classify triangles by angles and sides (see triangle.h)
 - B) Write test cases for A)

Exercise 2: Group A

- Write code to classify triangles by angles and sides.
- Check your implementation for run-time errors with LLBMC.

Exercise 2: Group B

- Write test cases for the triangle classification code.
- Also write "generalized tests", summarizing a set of test cases, using LLBMC's __llbmc_assume() and __llbmc_assert() functions.