
Karlsruher Institut für Technologie
Institut für Theoretische Informatik
Prof. Dr. B. Beckert
Dr. Mattias Ulbrich

Formale Systeme II: Anwendung, SS 2019

Model Checking with Spin

The course homepage https://formal.iti.kit.edu/teaching/FormSys2SoSe2019/ lists all relevant re-
sources.

Assignment 1
Find the sources for this assignment in file 21.pml on the course homepage.

(a) Do a random simulation of the following PROMELA Programm. What are the sources of nonde-
terminism in it? Do an interactive simulation in the webfrontend and become a “Winner”.

int a = 0;

active proctype P() {

do

:: a < 21 -> a = a + 2

:: a < 21 -> a = a + 5

:: a > 21 -> printf("Loser.\n"); break

:: true -> a = 0

:: a == 21 -> printf("Winner.\n"); break

od

}

(b) Now look at the LTL properties prop1 to prop3 at the end of the file. Which of them are valid1?

ltl prop1 { [] (a >= 0) }

ltl prop2 { <> (a == 0) }

ltl prop3 { <> (a == 21) }

(c) Formulate LTL property prop4 which encodes:

“If a reaches 21 at all, then a is always less than 21 before reaching it.”

Assignment 2
Find the sources for this assignment in file critical.pml on the course homepage.

Two processes need to share an access-restricted resource. The relevant part accessing the resource is
confined to a critical section. A flag indicates that the process has entered the critical section.

The following piece of code models this situation in PROMELA.

bool flag[2]; // initialized to 0

int critical; // # of threads in CS, initialized to 0

active[2] proctype P() {

// int _pid; is an implicit variable holding the process’ id

// wait for other process to not be in CS

1and what does “valid mean”?

https://formal.iti.kit.edu/teaching/FormSys2SoSe2019/

do

:: flag[1 - _pid] == 0 -> break;

od;

// since the other process is now not in CS, I can set my flag.

flag[_pid] = 1;

// enter CS

critical ++;

printf("%d is now in critical section. (%d)\n", _pid, critical);

critical --;

flag[_pid] = 0;

// leave CS

}

// ltl { *** to do *** }

(a) Why is this problematic?

(b) Add an according LTL specification whose verification fails and thus exposes the problem.

(c) Adjust the promela code using an atomic block. Prove that mutual exclusion for the critical section
is thus ensured. What assumptions about the system did you make by changing the model?

(d) Resolve the problem without the atomic block by implementing Peterson’s algorithm. Prove that
mutual exclusion for the critical section is ensured.

Assignment 3
Find the sources for this assignment in file skeleton.pml on the course homepage.

This sorting algorithm, developed for use on parallel processors, compares all odd-indexed list elements
with their immediate successors in the list and, if a pair is in the wrong order (i.e., if the first is larger
than the second) swaps the elements. The next step repeats this for even-indexed list elements (and
their successors). The algorithms iterates between these two steps until the list is sorted.

On n
2 parallel processors that have random access to the array of n elements to be sorted, the processors

all concurrently do a compareexchange operation with their neighbours, alternating between oddeven
and evenodd pairings in each step. The algorithm has linear runtime as comparisons can be performed
in parallel. The skeleton of a PROMELA implementation that uses shared memory for synchronisation
is presented in the following. The driver code spawns n

2 processes.

#define N 5

#define M 5

byte array[N];

bit state[N];

init {

// fill the array with random numbers between 0 and M

// start the processes

i = 1;

do

:: i < N -> run sort(i); i = i + 2;

:: i == N -> break;

od;

Page 2

}

proctype sort(byte id) {

byte i = 0;

byte tmp;

// while i < N do

// if i is even and state[id-1] is 0 then

// sort id-1 and id in array

// state[id-1] = 1

// if i is odd and state[id+1] is 1 then

// sort id and id+1 in array

// state[id+1] = 0

// i++

// Local sortedness

assert(array[id-1] <= array[id] && array[id] < array[id+1]);

}

(a) Implement the sorting algorithm following this skeleton code.

(b) Verify that the result of the algorithm is a sorted array. Can the proposed assertions be used for
this purpose?

(c) Challenge: Verify that the result of thie algorithm is a permutation of the original array.

(d) Tweak your model to obtain higher numbers for N and M .

Page 3

