Formale Systeme II: Theorie

Dynamic Logic:
Propositional Dynamic Logic

SS 2022

Prof. Dr. Bernhard Beckert · Dr. Mattias Ulbrich
Slides partially by Prof. Dr. Peter H. Schmitt
Requirements for this topic

- Fundamental knowledge of discrete structures (graphs, (equivalence) relations)
- General understanding of syntax and semantics of propositional and first order Logic
- General understanding of semantical concepts like satisfiability, decidability of logics

for instance from lecture “Formale Systeme I’
Dynamic Logic(s)

Overview – a family of logics

Modal Logics

→ Propositional Dynamic Logic

→ Dynamic Logic

- Hybrid DL
- Java DL

Modal Logics: → Formal Systems I (recap here)
Java DL: Logic used in KeY
→ lecture “Formal Systems II – Applications”
Goals

We get to know **Dynamic Logic** as . . .

- abstract reasoning framework for descriptions of actions
Goals

We get to know Dynamic Logic as ...

- abstract reasoning framework for descriptions of actions
- means to formalise and reason about semantics of programs
Goals

We get to know **Dynamic Logic** as . . .

- abstract reasoning framework for descriptions of actions
- means to formalise and reason about semantics of programs
- vehicle for examining/proving theoretical results on program reasoning
Goals

We get to know Dynamic Logic as . . .

- abstract reasoning framework for descriptions of actions
- means to formalise and reason about semantics of programs
- vehicle for examining/proving theoretical results on program reasoning
 - what is decidable, what is not?
Goals

We get to know **Dynamic Logic** as . . .

- abstract reasoning framework for descriptions of actions
- means to formalise and reason about semantics of programs
- vehicle for examining/proving theoretical results on program reasoning
 - what is decidable, what is not?
 - relative completeness
Goals

We get to know Dynamic Logic as . . .

- abstract reasoning framework for descriptions of actions
- means to formalise and reason about semantics of programs
- vehicle for examining/proving theoretical results on program reasoning
 - what is decidable, what is not?
 - relative completeness
- concept of program verification on a while language
Goals

We get to know Dynamic Logic as . . .

- abstract reasoning framework for descriptions of actions
- means to formalise and reason about semantics of programs
- vehicle for examining/proving theoretical results on program reasoning
 - what is decidable, what is not?
 - relative completeness
- concept of program verification on a while language
- logic for verification engines for realworld programming languages
- *Formale Systeme II*
 Vorlesungsskript
 Peter H. Schmitt
 → Website

- *Dynamic Logic*
 Series: Foundations of Computing
 David Harel, Dexter Kozen and Jerzy Tiuryn
 MIT Press
 → Department Library
Still an Active Field . . .

From the table of contents

- A Dynamic Logic for Learning Theory (Baltag et al.)
- Axiomatization and Computability of a Variant of Iteration-Free PDL with Fork (Balbiani et al.)
- Dynamic Preference Logic as a Logic of Belief Change (Souza et al.)
- Dynamic Logic: A Personal Perspective (*Vaughan Pratt*)
- . . .
Motivating Example
Introductory Example
Introductory Example

The Towers of Hanoi
The Instructions

1. Move alternatingly the smallest disk and another one.
The Instructions

1. Move alternatingly the smallest disk and another one.
2. If moving the smallest disk put it on the stack it did not come from in its previous move.
The Instructions

1. Move alternatingly the smallest disk and another one.
2. If moving the smallest disk put it on the stack it did not come from in its previous move.
3. If not moving the smallest disk do the only legal move,
The Instructions

1. Move alternatingly the smallest disk and another one.
2. If moving the smallest disk put it on the stack it did not come from in its previous move.
3. If not moving the smallest disk do the only legal move,

More formally:
sequence of actions

\[\text{moveS} ; \text{moveO} ; \text{moveS} ; \text{moveO} ; \ldots \]
The Instructions

1. Move alternatingly the smallest disk and another one.
2. If moving the smallest disk put it on the stack it did not come from in its previous move.
3. If not moving the smallest disk do the only legal move,

More formally:
sequence of actions

\[\text{moveS ; moveO ; moveS ; moveO ; \ldots} \]

more concisely:

\[(\text{moveS ; moveO})^*\]
The Instructions

1. Move alternatingly the smallest disk and another one.
2. If moving the smallest disk put it on the stack it did not come from in its previous move.
3. If not moving the smallest disk do the only legal move,

More formally:
sequence of actions

\[\text{moveS ; moveO ; moveS ; moveO ; \ldots} \]

more concisely:

\[(\text{moveS ; moveO})^* \]

improved:

\[\text{moveS ; testForStop ; (moveO ; moveS ; testForStop)}^* \]
Properties

Atomic statement: S_1 true iff smallest piece on first stack
Properties

Atomic statement: S_1 true iff smallest piece on first stack

Moving away

(1) $S_1 \rightarrow \langle \text{moveS} \rangle \neg S_1$

... after moving the smallest, it is no longer on the first stack
Properties

Atomic statement: S_1 true iff smallest piece on first stack

Moving away

(1) $S_1 \rightarrow \langle moveS \rangle \neg S_1$
... after moving the smallest, it is no longer on the first stack

Moving other

(2) $S_1 \rightarrow \langle moveO \rangle S_1$
... after moving something else, it is still on the first stack
Properties

Atomic statement: S_1 true iff smallest piece on first stack

Moving away

(1) $S_1 \rightarrow \langle moveS \rangle \neg S_1$
... after moving the smallest, it is no longer on the first stack

Moving other

(2) $S_1 \rightarrow \langle moveO \rangle S_1$
... after moving something else, it is still on the first stack

Conclusions from (1) and (2)

$S_1 \rightarrow \langle moveO \ ; \ moveS \rangle \neg S_1$
$S_1 \rightarrow \langle (moveO)^* \ ; \ moveS \rangle \neg S_1$
Properties

Atomic statement: S_1 true iff smallest piece on first stack

<table>
<thead>
<tr>
<th>Moving away</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) $S_1 \rightarrow \langle moveS \rangle \neg S_1$</td>
</tr>
<tr>
<td>... after moving the smallest, it is no longer on the first stack</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Moving other</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) $S_1 \rightarrow \langle moveO \rangle S_1$</td>
</tr>
<tr>
<td>... after moving something else, it is still on the first stack</td>
</tr>
</tbody>
</table>

Conclusions from (1) and (2)

$S_1 \rightarrow \langle moveO ; moveS \rangle \neg S_1$
$S_1 \rightarrow \langle (moveO)^* ; moveS \rangle \neg S_1$

THAT IS DYNAMIC LOGIC
Recap: Modal Logic
Recap: Modal Logic

Syntax/semantics of dynamic logic build on top of modal logic.

Syntax:
Recap: Modal Logic

Syntax/semantics of dynamic logic build on top of modal logic.

Syntax:
- Signature Σ: set of propositional variables
Recap: Modal Logic

Syntax/semantics of dynamic logic build on top of modal logic.

Syntax:
- Signature Σ: set of propositional variables
- Fml_Σ^{mod} smallest set with:
 - $\text{true}, \text{false} \in \text{Fml}_\Sigma^{mod}$
 - $A, B \in \text{Fml}_\Sigma^{mod} = \Rightarrow A \land B, A \lor B, A \rightarrow B \in \text{Fml}_\Sigma^{mod}$
 - $A \in \text{Fml}_\Sigma^{mod} = \Rightarrow \Box A, \Diamond A \in \text{Fml}_\Sigma^{mod}$
 - Pronounced “Box” and “Diamond”
Recap: Modal Logic

Syntax/semantics of dynamic logic build on top of modal logic.

Syntax:
- Signature Σ: set of propositional variables
- Fml_Σ^{mod} smallest set with:
 - $\Sigma \subseteq Fml_\Sigma^{mod}$
Recap: Modal Logic

Syntax/semantics of dynamic logic build on top of modal logic.

Syntax:
- Signature Σ: set of propositional variables
- Fml^mod_Σ smallest set with:
 - $\Sigma \subseteq Fml^\text{mod}_\Sigma$
 - $true, false \in Fml^\text{mod}_\Sigma$
Recap: Modal Logic

Syntax/semantics of dynamic logic build on top of modal logic.

Syntax:

- **Signature** Σ: set of propositional variables
- Fml_{Σ}^{mod} smallest set with:
 - $\Sigma \subseteq Fml_{\Sigma}^{mod}$
 - $true, false \in Fml_{\Sigma}^{mod}$
 - $A, B \in Fml_{\Sigma}^{mod} \implies A \land B, A \lor B, A \rightarrow B, \neg A \in Fml_{\Sigma}^{mod}$
Recap: Modal Logic

Syntax/semantics of dynamic logic build on top of modal logic.

Syntax:
- Signature \(\Sigma \): set of propositional variables
- \(Fml^\text{mod}_\Sigma \): smallest set with:
 - \(\Sigma \subseteq Fml^\text{mod}_\Sigma \)
 - \(\text{true}, \text{false} \in Fml^\text{mod}_\Sigma \)
 - \(A, B \in Fml^\text{mod}_\Sigma \implies A \land B, A \lor B, A \rightarrow B, \neg A \in Fml^\text{mod}_\Sigma \)
 - \(A \in Fml^\text{mod}_\Sigma \implies \Box A, \Diamond A \in Fml^\text{mod}_\Sigma \)
Recap: Modal Logic

Syntax/semantics of dynamic logic build on top of modal logic.

Syntax:

- Signature Σ: set of propositional variables

- Fml^mod_Σ smallest set with:
 - $\Sigma \subseteq Fml^\text{mod}_\Sigma$
 - $true, false \in Fml^\text{mod}_\Sigma$
 - $A, B \in Fml^\text{mod}_\Sigma \implies A \land B, A \lor B, A \rightarrow B, \neg A \in Fml^\text{mod}_\Sigma$
 - $A \in Fml^\text{mod}_\Sigma \implies \Box A, \Diamond A \in Fml^\text{mod}_\Sigma$

- pronounced “Box” and “Diamond”
Kripke Semantics

Modal logic formulas are interpreted in a system of multiple possible *worlds* and an *accessibility relation* between them.
Recap: Modal Logic – Semantics

Kripke Semantics
Modal logic formulas are interpreted in a system of multiple possible **worlds** and an **accessibility relation** between them.

Kripke Frame (S, R):
- Set S of **worlds** (or **states**)
- Relation $R \subseteq S \times S$, the **accessibility relation**
Recap: Modal Logic – Semantics

Kripke Semantics

Modal logic formulas are interpreted in a system of multiple possible worlds and an accessibility relation between them.

Kripke Frame \((S, R)\):
- Set \(S\) of worlds (or states)
- Relation \(R \subseteq S \times S\), the accessibility relation

Kripke Structure \((S, R, I)\):
- Given a signature \(\Sigma\)
- Kripke Frame \((S, R)\)
- Interpretation \(I : S \rightarrow 2^\Sigma\)
Recap: Modal Logic – Semantics

For a signature Σ and Kripke structure (S, R, I)

$I, s \models \varphi \iff$ Formula φ holds in state $s \in S$

$I \models \varphi \iff$ Formula φ holds in all states $s \in S$

$I, s \models p \iff p \in I(s)$ for $p \in \Sigma$
Recap: Modal Logic – Semantics

For a signature Σ and Kripke structure (S, R, I)

$I, s \models \varphi \iff$ Formula φ holds in state $s \in S$
$I \models \varphi \iff$ Formula φ holds in all states $s \in S$

$I, s \models p \iff p \in I(s)$ for $p \in \Sigma$

\models is as expected for $\land, \lor, \rightarrow, \neg$.

This means:
$I, s \models \varphi \land \psi \iff I, s \models \varphi$ and $I, s \models \psi$
$I, s \models \varphi \lor \psi \iff I, s \models \varphi$ or $I, s \models \psi$
$I, s \models \varphi \rightarrow \psi \iff I, s \models \varphi$ implies $I, s \models \psi$
$I, s \models \neg \varphi \iff$ not $I, s \models \varphi$
Recap: Modal Logic – Semantics

For a signature Σ and Kripke structure (S, R, I)

$I, s \models \varphi \iff$ Formula φ holds in state $s \in S$

$I \models \varphi \iff$ Formula φ holds in all states $s \in S$

$I, s \models p \iff p \in I(s)$ for $p \in \Sigma$

\models is as expected for $\land, \lor, \rightarrow, \neg$.
Recap: Modal Logic – Semantics

For a signature Σ and Kripke structure (S, R, I)

$I, s \models \varphi \iff$ Formula φ holds in state $s \in S$
$I \models \varphi \iff$ Formula φ holds in all states $s \in S$

$I, s \models p \iff p \in I(s) \quad \text{for } p \in \Sigma$

\models is as expected for $\land, \lor, \rightarrow, \neg$.

$I, s \models \Box \varphi \iff I, s' \models \varphi$ for all $s' \in S$ with $(s, s') \in R$
Recap: Modal Logic – Semantics

For a signature Σ and Kripke structure (S, R, I)

- $I, s \models \varphi \iff$ Formula φ holds in state $s \in S$
- $I \models \varphi \iff$ Formula φ holds in all states $s \in S$

- $I, s \models p \iff p \in I(s)$ for $p \in \Sigma$

\models is as expected for $\land, \lor, \rightarrow, \neg$.

- $I, s \models \Box \varphi \iff I, s' \models \varphi$ for all $s' \in S$ with $(s, s') \in R$
- $I, s \models \Diamond \varphi \iff I, s' \models \varphi$ for some $s' \in S$ with $(s, s') \in R$
Recap: Modal Logic – Semantics

For a signature Σ and Kripke structure (S, R, I)

| $I, s \models \varphi$ | \iff | Formula φ holds in state $s \in S$ |
| $I \models \varphi$ | \iff | Formula φ holds in all states $s \in S$ |

$I, s \models p$ \iff $p \in I(s)$ for $p \in \Sigma$

\models is as expected for $\wedge, \vee, \rightarrow, \neg$.

| $I, s \models \Box \varphi$ | \iff | $I, s' \models \varphi$ for all $s' \in S$ with $(s, s') \in R$ |
| $I, s \models \Diamond \varphi$ | \iff | $I, s' \models \varphi$ for some $s' \in S$ with $(s, s') \in R$ |
Recap: Modal Logic – Semantics

Applications of modal logics

Logics of *necessity* and *possibility* – philosophy.
Recap: Modal Logic – Semantics

Applications of modal logics

Logics of necessity and possibility – philosophy.

Meaning of Modalities:

Modal

□A It is necessary that . . .

♦A It is possible that . . .
Recap: Modal Logic – Semantics

Applications of modal logics

Logics of *necessity* and *possibility* – philosophy.

Meaning of Modalities:

Modal

□A It is necessary that . . .

◊A It is possible that . . .

Deontic (from Greek for duty)

□A It is obligatory that . . .

◊A It is permitted that . . .
Recap: Modal Logic – Semantics

Applications of modal logics

Logics of necessity and possibility – philosophy.

Meaning of Modalities:

Modal

$\Box A$ It is necessary that . . .

$\Diamond A$ It is possible that . . .

Deontic (from Greek for duty)

$\Box A$ It is obligatory that . . .

$\Diamond A$ It is permitted that . . .

Epistemic (logic of knowledge)

$\Box A$ I know that . . .

$\Diamond A$ I consider it possible that . . .
Recap: Modal Logic – Semantics

Applications of modal logics

Logics of *necessity* and *possibility* – philosophy.

Meaning of Modalities:

Modal
- □A \(\text{It is necessary that . . .} \)
- ◊A \(\text{It is possible that . . .} \)

Deontic (from Greek for duty)
- □A \(\text{It is obligatory that . . .} \)
- ◊A \(\text{It is permitted that . . .} \)

Epistemic (logic of knowledge)
- □A \(\text{I know that . . .} \)
- ◊A \(\text{I consider it possible that . . .} \)
Dynamic Logic
Dynamic Logic

- “Dynamic”: systematically changing evaluation context (by programs)
Dynamic Logic

- “Dynamic”: systematically changing evaluation context (by programs)
- “Programs” are composite actions

State change descriptions are explicit part of the logical language. There are two interdependent “sublanguages”:

1. Formulas
2. Programs

Extends modal logic
Dynamic Logic

- “Dynamic”: systematically changing evaluation context (by programs)
- “Programs” are composite actions
- State change descriptions are explicit part of the logical language.
 There are two interdependent “sublanguages”:
Dynamic Logic

- “Dynamic”: systematically changing evaluation context (by programs)
- “Programs” are composite actions
- State change descriptions are explicit part of the logical language.
 There are two interdependent “sublanguages”:
 1. Formulas
Dynamic Logic

- “Dynamic”: systematically changing evaluation context (by programs)
- “Programs” are composite actions
- State change descriptions are explicit part of the logical language.

There are two interdependent “sublanguages”:
1. Formulas
2. Programs
Dynamic Logic

- “Dynamic”: systematically changing evaluation context (by programs)
- “Programs” are composite actions
- State change descriptions are explicit part of the logical language.
 There are two interdependent “sublanguages”:
 1. Formulas
 2. Programs
- Extends modal logic
More than one modality

Multi-modal logic

Have different Box operators with different accessibility relations:

\[\Box_\alpha, \Box_\beta, \Box_\gamma, \ldots \]

(→ basic actions ins “Towers of Hanoi”)
More than one modality

Multi-modal logic

Have different Box operators with different accessibility relations:

$$\Box_\alpha, \Box_\beta, \Box_\gamma, \ldots$$

(\rightarrow basic actions ins “Towers of Hanoi”)

Propositional Dynamic Logic (PDL):

- Signature Σ of propositional variables
- Set $A = \{\alpha, \beta, \ldots\}$ of atomic actions/programs
- We write $[\alpha]$ instead of \Box_α
Compose Programs

Atomic programs can be composed into larger programs
Compose Programs

Atomic programs can be into composed into larger programs

For a given signature Σ and atomic programs A, the set of programs $\Pi_{\Sigma,A}$ is the smallest set such that

1. $\mathcal{A} \subseteq \Pi_{\Sigma,A}$, atomic programs
2. $p, q \in \Pi_{\Sigma,A} \Rightarrow (p; q) \in \Pi_{\Sigma,A}$, sequential composition
3. $p, q \in \Pi_{\Sigma,A} \Rightarrow (p \cup q) \in \Pi_{\Sigma,A}$, nondeterministic choice
4. $p \in \Pi_{\Sigma,A} \Rightarrow p^* \in \Pi_{\Sigma,A}$, indeterminate iteration
5. $F \in \text{Fml}_{\text{PDL},A} \Rightarrow ?F \in \Pi_{\Sigma,A}$, tests

Regular Programs = Regular Expressions over atomic programs and tests
Compose Programs

Atomic programs can be composed into larger programs

For a given signature Σ and atomic programs A, the set of programs $\Pi_{\Sigma,A}$ is the smallest set such that

1. $A \subseteq \Pi_{\Sigma,A}$

atomic programs
Compose Programs

Atomic programs can be composed into larger programs

For a given signature Σ and atomic programs A, the set of programs $\Pi_{\Sigma,A}$ is the smallest set such that

1. $A \subseteq \Pi_{\Sigma,A}$
2. $p, q \in \Pi_{\Sigma,A} \implies (p ; q) \in \Pi_{\Sigma,A}$
Compose Programs

Atomic programs can be composed into larger programs.

For a given signature Σ and atomic programs A, the set of programs $\Pi_{\Sigma,A}$ is the smallest set such that:

1. $A \subseteq \Pi_{\Sigma,A}$ \hspace{1cm} \text{atomic programs}
2. $p, q \in \Pi_{\Sigma,A} \implies (p ; q) \in \Pi_{\Sigma,A}$ \hspace{1cm} \text{sequential composition}
3. $p, q \in \Pi_{\Sigma,A} \implies (p \cup q) \in \Pi_{\Sigma,A}$ \hspace{1cm} \text{nondeterministic choice}
Composability of Programs

Atomic programs can be composed into larger programs.

For a given signature Σ and atomic programs A, the set of programs Π_{Σ,A} is the smallest set such that:

1. \(A \subseteq \Pi_{Σ,A} \)
2. \(p, q \in \Pi_{Σ,A} \implies (p ; q) \in \Pi_{Σ,A} \)
3. \(p, q \in \Pi_{Σ,A} \implies (p \cup q) \in \Pi_{Σ,A} \)
4. \(p \in \Pi_{Σ,A} \implies p^* \in \Pi_{Σ,A} \)

- \(\Pi_{Σ,A} \) is the set of programs.
- Atomic programs:
- Sequential composition
- Nondeterministic choice
- Indeterminant iteration
Compose Programs

Atomic programs can be composed into larger programs.

For a given signature Σ and atomic programs A, the set of programs $\Pi_{\Sigma,A}$ is the smallest set such that:

1. $A \subseteq \Pi_{\Sigma,A}$
2. $p, q \in \Pi_{\Sigma,A} \implies (p ; q) \in \Pi_{\Sigma,A}$ (sequential composition)
3. $p, q \in \Pi_{\Sigma,A} \implies (p \cup q) \in \Pi_{\Sigma,A}$ (nondeterministic choice)
4. $p \in \Pi_{\Sigma,A} \implies p^* \in \Pi_{\Sigma,A}$ (indeterminate iteration)
5. $F \in \mathsf{Fml}_{\Sigma,A}^{PDL} \implies \mathsf{?F} \in \Pi_{\Sigma,A}$ (tests)
Composing Programs

Atomic programs can be composed into larger programs. For a given signature \(\Sigma \) and atomic programs \(A \), the set of programs \(\Pi_{\Sigma,A} \) is the smallest set such that:

1. \(A \subseteq \Pi_{\Sigma,A} \)
 - **atomic programs**

2. \(p, q \in \Pi_{\Sigma,A} \implies (p ; q) \in \Pi_{\Sigma,A} \)
 - **sequential composition**

3. \(p, q \in \Pi_{\Sigma,A} \implies (p \cup q) \in \Pi_{\Sigma,A} \)
 - **nondeterministic choice**

4. \(p \in \Pi_{\Sigma,A} \implies p^* \in \Pi_{\Sigma,A} \)
 - **indeterminate iteration**

5. \(F \in \text{Fml}_{PDL}^{\Sigma,A} \implies ?F \in \Pi_{\Sigma,A} \)
 - **tests**

Regular Programs

Regular Expressions over atomic programs and tests
PDL – Formulae

For a given signature Σ and atomic programs A, the set of formulae $\textit{Fml}_{\Sigma,A}^{\textit{PDL}}$ is the smallest set such that

1. $\textit{true}, \textit{false} \in \textit{Fml}_{\Sigma,A}^{\textit{PDL}}$
PDL – Formulae

For a given signature Σ and atomic programs A, the set of formulae $Fml_{\Sigma,A}^{PDL}$ is the smallest set such that

1. $true, false \in Fml_{\Sigma,A}^{PDL}$
2. $\Sigma \subseteq Fml_{\Sigma,A}^{PDL}$
PDL – Formulae

For a given signature Σ and atomic programs A, the set of formulae $Fml_{\Sigma, A}^{PDL}$ is the smallest set such that

1. $\text{true}, \text{false} \in Fml_{\Sigma, A}^{PDL}$
2. $\Sigma \subseteq Fml_{\Sigma, A}^{PDL}$
3. $A, B \in Fml_{\Sigma, A}^{PDL} \implies A \land B, A \lor B, A \rightarrow B, \neg A \in Fml_{\Sigma, A}^{PDL}$
For a given signature Σ and atomic programs A, the set of formulae $Fml^{PDL}_{\Sigma,A}$ is the smallest set such that

1. $true, false \in Fml^{PDL}_{\Sigma,A}$
2. $\Sigma \subseteq Fml^{PDL}_{\Sigma,A}$
3. $A, B \in Fml^{PDL}_{\Sigma,A} \implies A \land B, A \lor B, A \rightarrow B, \neg A \in Fml^{PDL}_{\Sigma,A}$
4. $P \in \Pi_{\Sigma,A}, \varphi \in Fml^{PDL}_{\Sigma,A} \implies [P]\varphi, \langle P \rangle \varphi \in Fml^{PDL}_{\Sigma,A}$
PDL – Formulae

For a given signature Σ and atomic programs A, the set of formulae $Fml_{\Sigma,A}^{PDL}$ is the smallest set such that

1. $\text{true}, \text{false} \in Fml_{\Sigma,A}^{PDL}$
2. $\Sigma \subseteq Fml_{\Sigma,A}^{PDL}$
3. $A, B \in Fml_{\Sigma,A}^{PDL} \implies A \land B, A \lor B, A \rightarrow B, \neg A \in Fml_{\Sigma,A}^{PDL}$
4. $P \in \Pi_{\Sigma,A}, \varphi \in Fml_{\Sigma,A}^{PDL} \implies [P]\varphi, \langle P \rangle \varphi \in Fml_{\Sigma,A}^{PDL}$

Programs and Formulae are mutually dependent definitions and must be seen simultaneously.
PDL Formulas – Examples

→ Towers of Hanoi

\[A = \{ \text{moveS, moveO} \}, \quad \Sigma = \{ S1 \} \]

\[S1 \rightarrow ((\text{moveO})^* ; \text{moveS}) \neg S1 \]
→ Towers of Hanoi

\[A = \{ \text{moveS, moveO} \}, \quad \Sigma = \{ S1 \} \]

\[S1 \rightarrow \langle (\text{moveO})^* ; \text{moveS} \rangle \neg S1 \]

multi-level and nested modalities

\[A = \{ \alpha, \beta \}, \quad \Sigma = \{ P, Q \} \]

\[
\begin{align*}
[\alpha \cup (\text{?}P ; \beta)^*]Q \\
[\alpha]P \rightarrow [\alpha^*]P \\
[\alpha]\langle \beta \rangle (P \rightarrow [\alpha^*]Q) \\
[\alpha ; \text{?}\langle \beta \rangle P ; \beta]Q
\end{align*}
\]
PDL – Semantics

Given a signature Σ and atomic programs A

(multi-modal propositional) Kripke frame (S, ρ)

- set of states S
- function $\rho : A \rightarrow 2^{S \times S}$ accessibility relations for atomic programs
PDL – Semantics

Given a signature Σ and atomic programs A

(multi-modal propositional) Kripke frame (S, ρ)
- set of states S
- function $\rho : A \rightarrow 2^{S \times S}$ accessibility relations for atomic programs

Kripke structure (S, ρ, I)
- Kripke frame (S, ρ)
- interpretation $I : S \rightarrow 2^\Sigma$

\Rightarrow same as for modal logic
Extension of ρ

from $\rho : A \rightarrow 2^{S^2}$ to $\rho : \Pi_{\Sigma,A} \rightarrow 2^{S^2}$
Extension of ρ

from $\rho : A \rightarrow 2^{S^2}$ to $\rho : \Pi_{\Sigma,A} \rightarrow 2^{S^2}$

- $\rho(\alpha)$ base case for $\alpha \in A$
- $\rho(\pi_1 \cup \pi_2) = \rho(\pi_1) \cup \rho(\pi_2)$
Extension of ρ

from $\rho : A \rightarrow 2^{S^2}$ to $\rho : \Pi_{\Sigma,A} \rightarrow 2^{S^2}$

<table>
<thead>
<tr>
<th>Expression</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho(\alpha)$</td>
<td>base case for $\alpha \in A$</td>
</tr>
<tr>
<td>$\rho(\pi_1 \cup \pi_2)$</td>
<td>$= \rho(\pi_1) \cup \rho(\pi_2)$</td>
</tr>
<tr>
<td>$\rho(\pi_1 ; \pi_2)$</td>
<td>$= \rho(\pi_1) ; \rho(\pi_2)$</td>
</tr>
<tr>
<td></td>
<td>$= {(s, s') \mid \text{ex. } t \text{ with } (s, t) \in \rho(\pi_1) \text{ and } (t, s') \in \rho(\pi_2)}$</td>
</tr>
</tbody>
</table>
PDL – Program Semantics

Extension of \(\rho \)

from \(\rho : A \to 2^{S^2} \) to \(\rho : \Pi_{\Sigma, A} \to 2^{S^2} \)

\[
\begin{align*}
\rho(\alpha) & \quad \text{base case for } \alpha \in A \\
\rho(\pi_1 \cup \pi_2) & = \rho(\pi_1) \cup \rho(\pi_2) \\
\rho(\pi_1 ; \pi_2) & = \rho(\pi_1) \cdot \rho(\pi_2) \\
& = \{(s, s') \mid \text{ex. } t \text{ with } (s, t) \in \rho(\pi_1) \text{ and } (t, s') \in \rho(\pi_2)\} \\
\rho(\pi^*) & = \text{rtcl}(\rho(\pi)) = \bigcup_{n=0}^{\infty} \rho(\pi)^n \quad \text{refl. transitive closure} \\
& = \{(s_0, s_n) \mid \text{ex. } n \text{ with } (s_i, s_{i+1}) \in \rho(\pi) \text{ for } 0 \leq i < n\}
\end{align*}
\]
Extension of ρ

from $\rho : A \rightarrow 2^{S^2}$ to $\rho : \Pi_{\Sigma,A} \rightarrow 2^{S^2}$

$$\rho(\alpha) \quad \text{base case for } \alpha \in A$$

$$\rho(\pi_1 \cup \pi_2) = \rho(\pi_1) \cup \rho(\pi_2)$$

$$\rho(\pi_1 ; \pi_2) = \rho(\pi_1) ; \rho(\pi_2)$$

$$= \{(s, s') \mid \text{ex. } t \text{ with } (s, t) \in \rho(\pi_1) \text{ and } (t, s') \in \rho(\pi_2)\}$$

$$\rho(\pi^*) = \text{rtcl}(\rho(\pi)) = \bigcup_{n=0}^{\infty} \rho(\pi)^n \quad \text{refl. transitive closure}$$

$$= \{(s_0, s_n) \mid \text{ex. } n \text{ with } (s_i, s_{i+1}) \in \rho(\pi) \text{ for } 0 \leq i < n\}$$

$$\rho(?F) = \{(s, s) \mid I, s \models F\}$$
For a signature Σ, basic programs A and Kripke structure (S, ρ, I)
For a signature Σ, basic programs A and Kripke structure (S, ρ, I)

$$I, s \models p \iff p \in I(s) \quad \text{for } p \in \Sigma$$
PDL – Semantics

For a signature Σ, basic programs A and Kripke structure (S, ρ, I)

\[
l, s \models p \iff p \in I(s) \quad \text{for } p \in \Sigma
\]

\models is as expected for $\land, \lor, \rightarrow, \neg$.
For a signature Σ, basic programs A and Kripke structure (S, ρ, I)

$l, s \vDash p \iff p \in l(s)$ for $p \in \Sigma$

\vDash is as expected for $\land, \lor, \rightarrow, \neg$.

$l, s \vDash [\pi] \varphi \iff l, s' \vDash \varphi$ for all $s' \in S$ with $(s, s') \in \rho(\pi)$
PDL – Semantics

For a signature Σ, basic programs A and Kripke structure (S, ρ, I)

$I, s \models p \iff p \in I(s)$ for $p \in \Sigma$

\models is as expected for $\land, \lor, \rightarrow, \neg$.

$I, s \models [\pi] \varphi \iff I, s' \models \varphi$ for all $s' \in S$ with $(s, s') \in \rho(\pi)$

$I, s \models \langle \pi \rangle \varphi \iff I, s' \models \varphi$ for some $s' \in S$ with $(s, s') \in \rho(\pi)$
Tautologies

Dual operators

\[[\pi] \varphi \leftrightarrow \neg \langle \pi \rangle \neg \varphi \]
Tautologies

Dual operators

<table>
<thead>
<tr>
<th>[π]φ</th>
<th>⇔</th>
<th>¬⟨π⟩¬φ</th>
</tr>
</thead>
</table>

[π₁ ∪ π₂]φ	⇔	[π₁]φ ∧ [π₂]φ
⟨?ψ⟩φ	⇔	ψ → φ
⟨π∗⟩φ	⇔	φ ∨ ⟨π;π∗⟩φ

All tautologies for modal logic \mathcal{K}

Beckert, Ulbrich – Formale Systeme II: Theorie 25/61
Tautologies

Dual operators

$$[\pi] \phi \iff \neg \langle \pi \rangle \neg \phi$$

- $$[\pi_1 ; \pi_2] \phi \iff [\pi_1][\pi_2] \phi$$
Tautologies

Dual operators

\[[\pi] \varphi \iff \neg \langle \pi \rangle \neg \varphi \]

- \[[\pi_1 ; \pi_2] \varphi \iff [\pi_1][\pi_2] \varphi \]
- \[[\pi_1 \cup \pi_2] \varphi \iff [\pi_1] \varphi \land [\pi_2] \varphi \]
Tautologies

Dual operators

\([\pi] \varphi \iff \neg \langle \pi \rangle \neg \varphi\)

- \([\pi_1 ; \pi_2] \varphi \iff [\pi_1][\pi_2] \varphi\)
- \([\pi_1 \cup \pi_2] \varphi \iff [\pi_1] \varphi \land [\pi_2] \varphi\)
- \([?\psi] \varphi \iff \psi \rightarrow \varphi\)
Tautologies

Dual operators

\[[\pi]\varphi \leftrightarrow \neg(\pi)\neg\varphi\]

- \[[\pi_1 ; \pi_2]\varphi \leftrightarrow [\pi_1][\pi_2]\varphi\]
- \[[\pi_1 \cup \pi_2]\varphi \leftrightarrow [\pi_1]\varphi \land [\pi_2]\varphi\]
- \[[?\psi]\varphi \leftrightarrow \psi \rightarrow \varphi\]
- \[[\pi^*]\varphi \leftrightarrow \varphi \land [\pi ; \pi^*]\varphi\]
Tautologies

Dual operators

\[[\pi] \varphi \iff \neg \langle \pi \rangle \neg \varphi \]

- \([\pi_1 ; \pi_2] \varphi \iff [\pi_1][\pi_2] \varphi\]
- \([\pi_1 \cup \pi_2] \varphi \iff [\pi_1] \varphi \land [\pi_2] \varphi\]
- \([?\psi] \varphi \iff \psi \to \varphi\]
- \([\pi^*] \varphi \iff \varphi \land [\pi ; \pi^*] \varphi\]
- \(\langle \pi_1 ; \pi_2 \rangle \varphi \iff \langle \pi_1 \rangle \langle \pi_2 \rangle \varphi\]
Tautologies

Dual operators

\[[\pi]\varphi \iff \neg \langle \pi \rangle \neg \varphi\]

- \[[\pi_1 ; \pi_2]\varphi \iff [\pi_1][\pi_2]\varphi\]
- \[[\pi_1 \cup \pi_2]\varphi \iff [\pi_1]\varphi \land [\pi_2]\varphi\]
- \[[?\psi]\varphi \iff \psi \to \varphi\]
- \[[\pi^*]\varphi \iff \varphi \land [\pi ; \pi^*]\varphi\]

- \langle \pi_1 ; \pi_2 \rangle \varphi \iff \langle \pi_1 \rangle \langle \pi_2 \rangle \varphi\]
- \langle \pi_1 \cup \pi_2 \rangle \varphi \iff \langle \pi_1 \rangle \varphi \lor \langle \pi_2 \rangle \varphi\]
Tautologies

Dual operators

\[
[\pi]\varphi \iff \neg\langle\pi\rangle\neg\varphi
\]

- \([\pi_1 ; \pi_2]\varphi \iff [\pi_1][\pi_2]\varphi\)
- \([\pi_1 \cup \pi_2]\varphi \iff [\pi_1]\varphi \land [\pi_2]\varphi\)
- \([?\psi]\varphi \iff \psi \rightarrow \varphi\)
- \([\pi^*]\varphi \iff \varphi \land [\pi ; \pi^*]\varphi\)

- \(\langle\pi_1 ; \pi_2\rangle\varphi \iff \langle\pi_1\rangle\langle\pi_2\rangle\varphi\)
- \(\langle\pi_1 \cup \pi_2\rangle\varphi \iff \langle\pi_1\rangle\varphi \lor \langle\pi_2\rangle\varphi\)
- \(\langle?\psi\rangle\varphi \iff \psi \land \varphi\)
Tautologies

Dual operators

\[[\pi] \varphi \iff \neg \langle \pi \rangle \neg \varphi \]

- \[[\pi_1 ; \pi_2] \varphi \iff [\pi_1][\pi_2] \varphi \]
- \[[\pi_1 \cup \pi_2] \varphi \iff [\pi_1] \varphi \land [\pi_2] \varphi \]
- \[[\psi] \varphi \iff \psi \rightarrow \varphi \]
- \[[\pi^*] \varphi \iff \varphi \land [\pi ; \pi^*] \varphi \]
- \[\langle \pi_1 ; \pi_2 \rangle \varphi \iff \langle \pi_1 \rangle \langle \pi_2 \rangle \varphi \]
- \[\langle \pi_1 \cup \pi_2 \rangle \varphi \iff \langle \pi_1 \rangle \varphi \lor \langle \pi_2 \rangle \varphi \]
- \[\langle \psi \rangle \varphi \iff \psi \land \varphi \]
- \[\langle \pi^* \rangle \varphi \iff \varphi \lor \langle \pi ; \pi^* \rangle \varphi \]
Tautologies

Dual operators

\([\pi] \varphi \iff \neg \langle \pi \rangle \neg \varphi\)

- \([\pi_1 ; \pi_2] \varphi \iff [\pi_1][\pi_2] \varphi\)
- \([\pi_1 \cup \pi_2] \varphi \iff [\pi_1] \varphi \wedge [\pi_2] \varphi\)
- \([?\psi] \varphi \iff \psi \to \varphi\)
- \([\pi^*] \varphi \iff \varphi \wedge [\pi ; \pi^*] \varphi\)

- \(\langle \pi_1 ; \pi_2 \rangle \varphi \iff \langle \pi_1 \rangle \langle \pi_2 \rangle \varphi\)
- \(\langle \pi_1 \cup \pi_2 \rangle \varphi \iff \langle \pi_1 \rangle \varphi \lor \langle \pi_2 \rangle \varphi\)
- \(\langle ?\psi \rangle \varphi \iff \psi \land \varphi\)
- \(\langle \pi^* \rangle \varphi \iff \varphi \lor \langle \pi ; \pi^* \rangle \varphi\)

- all tautologies for modal logic \(K\)
A Calculus for Propositional Dynamic Logic

Axioms

All propositional tautologies

\[[\pi](\varphi \rightarrow \psi) \rightarrow ([\pi]\varphi \rightarrow [\pi]\psi) \]
\[([\pi]\varphi \wedge [\pi]\psi) \leftrightarrow [\pi_1][\pi_2]\varphi \]
\[[\pi_1; \pi_2]\varphi \leftrightarrow [\pi_1][\pi_2]\varphi \]
\[[\pi_1 \cup \pi_2]\varphi \leftrightarrow [\pi_1]\varphi \wedge [\pi_2]\varphi \]
\[[\pi^*]\varphi \leftrightarrow \varphi \wedge [\pi][\pi^*]\varphi \]
\[\varphi \wedge [\pi^*](\varphi \rightarrow [\pi]\varphi) \rightarrow [\pi^*]\varphi \]

Rules

\[\varphi, \varphi \rightarrow \psi \]
\[\frac{\varphi}{[\pi]\varphi} \]
\[\frac{\varphi}{\psi} \]

(MP)
(GEN)
The presented calculus is sound and complete.
Theorem

The presented calculus is sound and complete.

Proof

or
Theorem

The presented calculus is sound and complete.

Proof

See e.g., pp. 559-560 in David Harel’s article *Dynamic Logic* in the *Handbook of Philosophical Logic, Volume II*, published by D. Reidel in 1984.
Theorem

The presented calculus is sound and complete.

Proof

See e.g., pp. 559-560
in David Harel’s article *Dynamic Logic*
in the *Handbook of Philosophical Logic, Volume II*,

or

D. Harel, D. Kozen and J. Tiuryn
Dynamic Logic
in *Handbook of Philosophical Logic, 2nd edition, volume 4*
Higher level program constructors

Syntactic Sugar

- PDL syntax has elementary program operators
- Enrich it by defining new operators ("macros")
Higher level program constructors

Syntactic Sugar

- PDL syntax has elementary program operators
- Enrich it by defining new operators ("macros")

\[
\text{skip} := \ ?\text{true}
\]
Higher level program constructors

Syntactic Sugar

- PDL syntax has elementary program operators
- Enrich it by defining new operators ("macros")

```plaintext
skip := ?true
fail := ?false
```
Higher level program constructors

Syntactic Sugar

- PDL syntax has elementary program operators
- Enrich it by defining new operators ("macros")

\[
\text{skip} := \ ?true \\
\text{fail} := \ ?false \\
\text{if } \varphi \text{ then } \alpha \text{ else } \beta := (\ ?\varphi ; \alpha) \cup (\neg \varphi ; \beta)
\]
Higher level program constructors

Syntactic Sugar

- PDL syntax has elementary program operators
- Enrich it by defining new operators ("macros")

\[
\begin{align*}
\text{skip} & := \ ?true \\
\text{fail} & := \ ?false \\
\text{if } \varphi \text{ then } \alpha \text{ else } \beta & := (?\varphi ; \alpha) \cup (?\neg \varphi ; \beta) \\
\text{while } \varphi \text{ do } \alpha & := (?\varphi ; \alpha)^* ; ?\neg \varphi
\end{align*}
\]
More PDL Tautologies

\[\text{[skip]} \varphi \iff \varphi\]
More PDL Tautologies

\[[\text{skip}] \varphi \iff \varphi \]

\[\langle \text{skip} \rangle \varphi \iff \varphi \]
More PDL Tautologies

\[[\text{skip}] \varphi \iff \varphi \]

\[\langle \text{skip} \rangle \varphi \iff \varphi \]

\[[\text{fail}] \varphi \iff \text{true} \]
More PDL Tautologies

\[[\text{skip}] \varphi \iff \varphi \]
\[\langle \text{skip} \rangle \varphi \iff \varphi \]
\[[\text{fail}] \varphi \iff \text{true} \]
\[\langle \text{fail} \rangle \varphi \iff \text{false} \]
More PDL Tautologies

\[
\begin{align*}
\text{[skip]} \varphi & \leftrightarrow \varphi \\
\langle \text{skip} \rangle \varphi & \leftrightarrow \varphi \\
\text{[fail]} \varphi & \leftrightarrow \text{true} \\
\langle \text{fail} \rangle \varphi & \leftrightarrow \text{false} \\
\text{[if } \varphi \text{ then } \alpha \text{ else } \beta \text{]} \psi & \leftrightarrow (\varphi \rightarrow [\alpha] \psi) \land (\neg \varphi \rightarrow [\beta] \psi)
\end{align*}
\]
More PDL Tautologies

\[
\begin{align*}
[\text{skip}] \varphi & \iff \varphi \\
⟨\text{skip}⟩ \varphi & \iff \varphi \\
[\text{fail}] \varphi & \iff \text{true} \\
⟨\text{fail}⟩ \varphi & \iff \text{false} \\
[\text{if } \varphi \text{ then } \alpha \text{ else } \beta] \psi & \iff (\varphi \rightarrow [\alpha] \psi) \land (\neg \varphi \rightarrow [\beta] \psi) \\
⟨\text{if } \varphi \text{ then } \alpha \text{ else } \beta⟩ \psi & \iff (\varphi \rightarrow ⟨\alpha⟩ \psi) \land (\neg \varphi \rightarrow ⟨\beta⟩ \psi)
\end{align*}
\]
More PDL Tautologies

\[[\text{skip}] \varphi \iff \varphi \]
\[\langle \text{skip} \rangle \varphi \iff \varphi \]
\[[\text{fail}] \varphi \iff \text{true} \]
\[\langle \text{fail} \rangle \varphi \iff \text{false} \]
\[[\text{if } \varphi \text{ then } \alpha \text{ else } \beta] \psi \iff (\varphi \rightarrow [\alpha] \psi) \land (\neg \varphi \rightarrow [\beta] \psi) \]
\[\langle \text{if } \varphi \text{ then } \alpha \text{ else } \beta \rangle \psi \iff (\varphi \rightarrow \langle \alpha \rangle \psi) \land (\neg \varphi \rightarrow \langle \beta \rangle \psi) \]
Decidability
Decidability

Is PDL decidable?

\[\iff \]

Is there an algorithm that terminates on every input and computes whether a PDL-formula \(\phi \in Fml_{\Sigma,A}^{PDL} \) is satisfiable.

Answer: \text{YES}, PDL is decidable!
Decidability

Is PDL decidable?

⇐⇒

Is there an algorithm that terminates on every input and computes whether a PDL-formula $\phi \in Fml_{\Sigma,A}^{PDL}$ is satisfiable.

⇐⇒

Is there an algorithm that terminates on every input and computes whether a PDL-formula $\phi \in Fml_{\Sigma,A}^{PDL}$ is valid.

Answer: YES, PDL is decidable!
Decidability

Is PDL decidable?

⇐⇒

Is there an algorithm that terminates on every input and computes whether a PDL-formula \(\phi \in Fml_{\Sigma,A}^{PDL} \) is satisfiable.

⇐⇒

Is there an algorithm that terminates on every input and computes whether a PDL-formula \(\phi \in Fml_{\Sigma,A}^{PDL} \) is valid.

Answer:

YES, PDL is decidable!
General Idea:

\(\varphi \in Fml^{PDL} \) has a model \(\iff \) \(\varphi \) has a model of bounded size.

For every Kripke structure, a bounded Kripke structure can be defined which is indistinguishable for \(\varphi \).
Fischer and Ladner (1979)

General Idea:
\(\varphi \in Fml^{PDL} \) has a model \(\iff \varphi \) has a model of bounded size.

For every Kripke structure, a bounded Kripke structure can be defined which is indistinguishable for \(\varphi \).

Preliminary lemma: Decidability for modal logic
The proof idea is the same, yet simpler.
Fischer-Ladner Closure

<table>
<thead>
<tr>
<th>Reduced syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only connectors \rightarrow, $false$, \Box are allowed \Rightarrow simplifies proofs.</td>
</tr>
</tbody>
</table>
Fischer-Ladner Closure

Reduced syntax
Only connectors \rightarrow, $false$, \square are allowed \Rightarrow simplifies proofs.

Operator

$$FL^{mod} : Fml^{mod} \rightarrow 2^{Fml^{mod}}$$

assigns to φ the set of subformulas of φ.
Fischer-Ladner Closure

Reduced syntax
Only connectors \rightarrow, \textit{false}, \Box are allowed \Rightarrow simplifies proofs.

Operator

\[FL^{\text{mod}} : Fml^{\text{mod}} \rightarrow 2^{Fml^{\text{mod}}} \]

assigns to φ the set of subformulas of φ.

\[
FL^{\text{mod}}(\varphi \rightarrow \psi) = \{\varphi \rightarrow \psi\} \cup FL^{\text{mod}}(\varphi) \cup FL^{\text{mod}}(\psi)
\]

\[
FL^{\text{mod}}(\text{false}) = \{\text{false}\}
\]

\[
FL^{\text{mod}}(p) = \{p\} \quad p \in \Sigma
\]

\[
FL^{\text{mod}}(\Box \varphi) = \{\Box \varphi\} \cup FL^{\text{mod}}(\varphi)
\]
Fischer-Ladner Closure

Reduced syntax

Only connectors \rightarrow, \textit{false}, \square are allowed \Rightarrow simplifies proofs.

Operator

$$FL^{mod} : Fml^{mod} \rightarrow 2^{Fml^{mod}}$$

assigns to φ the set of subformulas of φ.

$$FL^{mod}(\varphi \rightarrow \psi) = \{\varphi \rightarrow \psi\} \cup FL^{mod}(\varphi) \cup FL^{mod}(\psi)$$

$$FL^{mod}(\textit{false}) = \{\textit{false}\}$$

$$FL^{mod}(p) = \{p\} \quad p \in \Sigma$$

$$FL^{mod}(\square \varphi) = \{\square \varphi\} \cup FL^{mod}(\varphi)$$

Observation

$$|FL^{mod}(\varphi)| \leq |\varphi|$$
For a Kripke structure \(S, R, I \) define a bounded structure \(\tilde{S}, \tilde{R}, \tilde{I} \) with

\[
S, R, I, s \models \varphi \iff \tilde{S}, \tilde{R}, \tilde{I}, \tilde{s} \models \varphi
\]
Filtration for modal logic

Filtration

For a Kripke structure S, R, I define a bounded structure $\tilde{S}, \tilde{R}, \tilde{I}$ with

$$S, R, I, s \models \varphi \iff \tilde{S}, \tilde{R}, \tilde{I}, \tilde{s} \models \varphi$$

Central Idea

States are undistinguishable for φ if they are equal on $FL^{mod}(\varphi)$.
Filtration for modal logic

Filtration

For a Kripke structure S, R, I define a bounded structure $\tilde{S}, \tilde{R}, \tilde{I}$ with

$$S, R, I, s \models \varphi \iff \tilde{S}, \tilde{R}, \tilde{I}, \tilde{s} \models \varphi$$

Central Idea

States are **undistinguishable** for φ if they are equal on $FL^{\text{mod}}(\varphi)$.

$$s \equiv t \iff (I, s \models \psi \iff I, t \models \psi \text{ for all } \psi \in FL^{\text{mod}}(\varphi))$$
Filtration for modal logic

Filtration

For a Kripke structure S, R, I define a bounded structure $\tilde{S}, \tilde{R}, \tilde{I}$ with

$$S, R, I, s \models \varphi \iff \tilde{S}, \tilde{R}, \tilde{I}, \tilde{s} \models \varphi$$

Central Idea

States are **undistinguishable** for φ if they are equal on $FL^{mod}(\varphi)$.

$$s \equiv t \iff (I, s \models \psi \iff I, t \models \psi \text{ for all } \psi \in FL^{mod}(\varphi))$$

$$\tilde{s} := \{s' \mid s' \equiv s\} \quad \ldots \quad \text{equivalence classes}$$

$$\tilde{S} := \{\tilde{s} \mid s \in S\}$$

$$\tilde{R} := \{(\tilde{s}, \tilde{s'}) \mid (s, s') \in R\}$$

$$\tilde{I}(\tilde{s}) := I(s)$$
Fischer-Ladner Filtration

\[\tilde{s} := \{ s' \mid s' \equiv s \} \]
\[\tilde{S} := \{ \tilde{s} \mid s \in S \} \]
\[\tilde{R} := \{ (\tilde{s}, \tilde{t}) \mid (s, t) \in R \} \]
\[\tilde{l}(s) := l(s) \]

Lemma (proved by structural induction)

\[|\tilde{S}| \leq 2|FL| \mod (\varphi) \leq 2|\varphi| \]

Theorem (small model property)

For any PDL formula \(\varphi \) it can be decided if \(\varphi \) is satisfiable by inspecting a finite number (those up to size \(2|\varphi| \)) of models.
Fischer-Ladner Filtration

\[\tilde{s} := \{ s' \mid s' \equiv s \} \]
\[\tilde{S} := \{ \tilde{s} \mid s \in S \} \]
\[\tilde{R} := \{ (\tilde{s}, \tilde{t}) \mid (s, t) \in R \} \]
\[\tilde{I}(\tilde{s}) := I(s) \]

Lemma

\[|\tilde{S}| \leq 2^{|FL^{\text{mod}}(\varphi)|} \leq 2^{|\varphi|} \]
Fischer-Ladner Filtration

\[\tilde{s} := \{ s' \mid s' \equiv s \} \]
\[\tilde{S} := \{ \tilde{s} \mid s \in S \} \]
\[\tilde{R} := \{ (\tilde{s}, \tilde{t}) \mid (s, t) \in R \} \]
\[\tilde{I}(\tilde{s}) := I(s) \]

Lemma

\[|\tilde{S}| \leq 2^{|FL^\text{mod}(\phi)|} \leq 2^{|\phi|} \]

Lemma (proved by structural induction)

\[S, R, I, s \models \phi \iff \tilde{S}, \tilde{R}, \tilde{I}, \tilde{s} \models \phi \]
Fischer-Ladner Filtration

\[\tilde{s} := \{s' \mid s' \equiv s\} \]

\[\tilde{S} := \{\tilde{s} \mid s \in S\} \]

\[\tilde{R} := \{(\tilde{s}, \tilde{t}) \mid (s, t) \in R\} \]

\[\tilde{I}(\tilde{s}) := I(s) \]

Lemma

\[|\tilde{S}| \leq 2^{|FL^{mod}(\varphi)|} \leq 2^{|\varphi|} \]

Lemma (proved by structural induction)

\[S, R, I, s \models \varphi \iff \tilde{S}, \tilde{R}, \tilde{I}, \tilde{s} \models \varphi \]

Theorem (small model property)

For any PDL formula \(\varphi \) it can be decided if \(\varphi \) is satisfiable by inspecting a finite number (those up to size \(2^{|\varphi|} \)) of models.
Fischer-Ladner Closure for PDL

Operator

\[FL : \mathcal{Fml}^{PDL} \rightarrow 2^{\mathcal{Fml}^{PDL}} \]

\(FL(\varphi) \) smallest set satisfying

1. \(\varphi \in FL(\varphi) \)
2. \((\psi_1 \rightarrow \psi_2) \in FL(\varphi) \) \(\Rightarrow \) \(\psi_1 \in FL(\varphi) \) and \(\psi_2 \in FL(\varphi) \)
3. \([\pi]\psi \in FL(\varphi) \) \(\Rightarrow \) \(\psi \in FL(\varphi) \)
4. \([\pi_1; \pi_2]\psi \in FL(\varphi) \) \(\Rightarrow \) \([\pi_1][\pi_2]\psi \in FL(\varphi) \)
5. \([\pi_1 \cup \pi_2]\psi \in FL(\varphi) \) \(\Rightarrow \) \([\pi_1]\psi \in FL(\varphi) \) and \([\pi_2]\psi \in FL(\varphi) \)
6. \([\pi^*]\psi \in FL(\varphi) \) \(\Rightarrow \) \([\pi][\pi^*]\psi \in FL(\varphi) \)
7. \([?\psi_1]\psi_2 \in FL(\varphi) \) \(\Rightarrow \) \(\psi_1 \in FL(\varphi) \)

Lemma (not obvious)

\[|FL(\varphi)| \leq |\varphi| \]
Fischer-Ladner Filtration

Same construction as for modal logic

extended:

\[\tilde{\rho}(a) := \{(\tilde{s}, \tilde{t}) \mid (s, t) \in \rho(a)\} \quad \text{for all } a \in A \]
Fischer-Ladner Filtration

Same construction as for modal logic

extended: \(\tilde{\rho}(a) := \{ (\tilde{s}, \tilde{t}) \mid (s, t) \in \rho(a) \} \) for all \(a \in A \)

Lemma

\[S, R, I, s \models \varphi \iff \tilde{S}, \tilde{R}, \tilde{I}, \tilde{s} \models \varphi \]
Fischer-Ladner Filtration

Same construction as for modal logic extended:

\[\tilde{\rho}(a) := \{(\tilde{s}, \tilde{t}) \mid (s, t) \in \rho(a)\} \quad \text{for all } a \in A \]

Lemma

\[S, R, I, s \models \varphi \iff \tilde{S}, \tilde{R}, \tilde{I}, \tilde{s} \models \varphi \]

Prove by structural induction: \(\leadsto\) lec. notes or [Harel et al., 6.4]

A. If \(\psi \in FL(\varphi)\) then \(s \models \psi\) iff \(\tilde{s} \models \psi\)
Fischer-Ladner Filtration

Same construction as for modal logic

extended: $\tilde{\rho}(a) := \{(\tilde{s}, \tilde{t}) \mid (s, t) \in \rho(a)\}$ for all $a \in A$

Lemma

$S, R, I, s \models \varphi \iff \tilde{S}, \tilde{R}, \tilde{I}, \tilde{s} \models \varphi$

Prove by structural induction: \(\leadsto\) lec. notes or [Harel et al., 6.4]

A. If $\psi \in FL(\varphi)$ then $s \models \psi$ iff $\tilde{s} \models \psi$

B1. $(s, t) \in \rho(\pi)$ implies $\tilde{(s, t)} \in \tilde{\rho}(\pi)$ for $[\pi]\psi \in FL(\varphi)$
Fischer-Ladner Filtration

Same construction as for modal logic

extended: \[\tilde{\rho}(a) := \{(\tilde{s}, \tilde{t}) | (s, t) \in \rho(a)\} \quad \text{for all} \quad a \in A \]

Lemma

\[S, R, I, s \models \varphi \iff \tilde{S}, \tilde{R}, \tilde{I}, \tilde{s} \models \varphi \]

Prove by structural induction: \(\leadsto \) lec. notes or [Harel et al., 6.4]

A. If \(\psi \in FL(\varphi) \) then \(s \models \psi \) iff \(\tilde{s} \models \psi \)

B1. \((s, t) \in \rho(\pi) \) implies \((\tilde{s}, \tilde{t}) \in \tilde{\rho}(\pi) \) for \([\pi]\psi \in FL(\varphi) \)

B2. If \((\tilde{s}, \tilde{t}) \in \tilde{\rho}(\pi) \) and \(s \models [\pi]\psi \), then \(t \models \psi \) for \([\pi]\psi \in FL(\varphi) \)
Fischer-Ladner Filtration

Same construction as for modal logic

extended: \(\tilde{\rho}(a) := \{ (\tilde{s}, \tilde{t}) \mid (s, t) \in \rho(a) \} \) for all \(a \in A \)

Lemma

\[S, R, I, s \models \varphi \iff \tilde{S}, \tilde{R}, \tilde{I}, \tilde{s} \models \varphi \]

Prove by structural induction: \(\rightsquigarrow \) lec. notes or [Harel et al., 6.4]

A. If \(\psi \in FL(\varphi) \) then \(s \models \psi \) iff \(\tilde{s} \models \psi \)

B1. \((s, t) \in \rho(\pi)\) implies \((\tilde{s}, \tilde{t}) \in \tilde{\rho}(\pi)\) for \([\pi]\psi \in FL(\varphi)\)

B2. If \((\tilde{s}, \tilde{t}) \in \tilde{\rho}(\pi)\) and \(s \models [\pi]\psi\), then \(t \models \psi\) for \([\pi]\psi \in FL(\varphi)\)

Corollary

PDL has the small model property:
If \(\varphi \in Fml^{PDL} \) is satisfiable, it has a model with at most \(2^{\|\varphi\|} \) states.
Complexity

Naive approach used for proof

- $FL(\varphi) \in O(|\varphi|)$
Complexity

<table>
<thead>
<tr>
<th>Naive approach used for proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>$FL(\varphi) \in O(</td>
</tr>
<tr>
<td>$</td>
</tr>
</tbody>
</table>
Complexity

Naive approach used for proof

- $FL(\varphi) \in O(|\varphi|)$
- $|\tilde{S}| \leq 2^{FL(\varphi)} \in O(2^{|\varphi|})$ many states in filtration
- $|\text{models}| \leq (2^\Sigma)^{|S|} \in O(2^{|\varphi|})$
Complexity

Naive approach used for proof

- $FL(\varphi) \in O(|\varphi|)$
- $|\tilde{S}| \leq 2^{FL(\varphi)} \in O(2^{|\varphi|})$ many states in filtration
- $|\text{models}| \leq (2^{|\Sigma|})^{|S|} \in O(2^{2^{|\varphi|}})$

\Rightarrow double exponential complexity
Complexity

Naive approach used for proof

- $FL(\varphi) \in O(|\varphi|)$
- $|\tilde{S}| \leq 2^{FL(\varphi)} \in O(2^{|\varphi|})$ many states in filtration
- $|\text{models}| \leq (2^{|S|}) |S| \in O(2^{2^{|\varphi|}})$

\Rightarrow double exponential complexity

One can do better:

Complexity of Deciding PDL

The decision problem for PDL is in EXPTIME:
Complexity

Naive approach used for proof

- $FL(\varphi) \in O(|\varphi|)$
- $|\tilde{S}| \leq 2^{FL(\varphi)} \in O(2^{|\varphi|})$ many states in filtration
- $|\text{models}| \leq (2^\Sigma)|S| \in O(2^{2^{|\varphi|}})$

\Rightarrow double exponential complexity

One can do better:

Complexity of Deciding PDL

The decision problem for PDL is in EXPTIME: can be decided by a deterministic algorithm in $O(2^{p(n)})$ for some polynomial p.

\sim[Harel et al. Ch. 8]
Deduction Theorem and Compactness
Logical Consequence

\[M \subseteq \text{Fml}^{PDL}, \quad \varphi \in \text{Fml}^{PDL} \]

Global Consequence

\[M \models^G \varphi : \iff \]
for all Kripke structures \((S, \rho, I)\):
\[I, s \models M \text{ for all } s \in S \quad \text{implies} \quad I, s \models \varphi \text{ for all } s \in S \]

Local Consequence

\[M \models^L \varphi : \iff \]
for all Kripke structures \((S, \rho, I)\):
\[\text{for all } s \in S: \quad I, s \models M \text{ implies } I, s \models \varphi \]

Local consequence is stronger:

\[M \models^L \varphi \quad \iff \quad M \models^G \varphi \]

Recall: In propositional logic:

\[M \cup \{ \varphi \} \models \psi \iff M \models \varphi \rightarrow \psi \]
Deduction Theorem

Recall: In propositional logic:

\[
M \cup \{\varphi\} \models \psi \iff M \models \varphi \to \psi
\]

Not valid for PDL:

\[
p \models^G [\alpha]p \text{ but } \not\models^G p \to [\alpha]p
\]
Deduction Theorem

Recall: In propositional logic:

\[M \cup \{ \varphi \} \models \psi \iff M \models \varphi \rightarrow \psi \]

Not valid for PDL:

\[p \models^G [\alpha]p \quad \text{but} \quad \not\models^G p \rightarrow [\alpha]p \]

Problem:
Decidability has been shown only for \(\models \varphi \).
Recall: In propositional logic:

\[M \cup \{ \varphi \} \models \psi \iff M \models \varphi \rightarrow \psi \]

Not valid for PDL:

\[p \models^G [\alpha]p \quad \text{but} \quad \not\models^G p \rightarrow [\alpha]p \]

Problem:
Decidability has been shown only for \(\models \varphi \).

Questions

1. Is \(\psi \models^G \varphi \) decidable for PDL?
Recall: In propositional logic:
\[M \cup \{ \varphi \} \models \psi \iff M \models \varphi \rightarrow \psi \]

Not valid for PDL:
\[p \models^G [\alpha]p \quad \text{but} \quad \not\models^G p \rightarrow [\alpha]p \]

Problem:
Decidability has been shown only for \(\models \varphi \).

Questions
1. Is \(\psi \models^G \varphi \) decidable for PDL?
2. Is \(M \models^G \varphi \) decidable for PDL?
Deduction Theorem Revised

Lemma

\[\psi \models^G \varphi \iff \models ([(\beta_1 \cup \ldots \cup \beta_k)^*] \psi) \rightarrow \varphi \]

with \(B := \{\beta_1, \ldots, \beta_k\} \) the atomic programs occurring in \(\psi, \varphi \).
Deduction Theorem Revised

Lemma

\[\psi \models^G \varphi \iff \models ([(\beta_1 \cup \ldots \cup \beta_k)^*] \psi) \rightarrow \varphi \]

with \(B := \{\beta_1, \ldots, \beta_k\} \) the atomic programs occurring in \(\psi, \varphi \).

\(\iff \) simple \(\rightsquigarrow \) Exercise
Lemma

\[\psi \models^G \varphi \iff \models \left(\left[(\beta_1 \cup \ldots \cup \beta_k)^* \right] \psi \right) \rightarrow \varphi \]

with \(B := \{ \beta_1, \ldots, \beta_k \} \) the atomic programs occurring in \(\psi, \varphi \).

\hline
\[\text{simple} \iff \text{Exercise} \]
Lemma

\[\psi \models^G \varphi \iff \models ([(\beta_1 \cup \ldots \cup \beta_k)^*]\psi) \rightarrow \varphi \]

with \(B := \{\beta_1, \ldots, \beta_k\} \) the atomic programs occurring in \(\psi, \varphi \).

\(\iff \) simple \(\iff \) Exercise

\(\rightarrow \) 1 Kripke structure \((S, \rho, I), s \in S.\)
Deduction Theorem Revised

Lemma

\[\psi \models^G \varphi \iff \models ([(\beta_1 \cup \ldots \cup \beta_k)^*] \psi) \rightarrow \varphi \]

with \(B := \{\beta_1, \ldots, \beta_k\} \) the atomic programs occurring in \(\psi, \varphi \).

\(\iff \) simple \(\iff \) Exercise

\(\implies \)

1. Kripke structure \((S, \rho, I), s \in S\).
2. to show: \(\psi \models^G \varphi \implies S, s \models \lbrack B^* \rbrack \psi \rightarrow \varphi \)
Deduction Theorem Revised

Lemma

\[\psi \models^G \varphi \iff \models \left(\left[(\beta_1 \cup \ldots \cup \beta_k)^* \right] \psi \right) \rightarrow \varphi \]

with \(B := \{ \beta_1, \ldots, \beta_k \} \) the atomic programs occurring in \(\psi, \varphi \).

\[\iff \text{simple } \rightarrow \text{Exercise} \]

\[\iff \]

1. Kripke structure \((S, \rho, I), s \in S\).
2. to show: \(\psi \models^G \varphi \implies S, s \models [B^*] \psi \rightarrow \varphi \)
3. \(S^- (s) := \{ s' \mid s' \text{ reachable from } s \text{ via } B. \} \subseteq S \)
Deduction Theorem Revised

Lemma

\[\psi \models^G \varphi \iff \models ([(\beta_1 \cup \ldots \cup \beta_k)^*] \psi) \rightarrow \varphi \]

with \(B := \{\beta_1, \ldots, \beta_k\} \) the atomic programs occurring in \(\psi, \varphi \).

\[\iff \text{simple} \leadsto \text{Exercise} \]

1. Kripke structure \((S, \rho, I), s \in S\).
2. to show: \(\psi \models^G \varphi \implies S, s \models [B^*] \psi \rightarrow \varphi \)
3. \(S^{-}(s) := \{s' \mid s' \text{ reachable from } s \text{ via } B.\} \subseteq S \)
4. \(S^{-}(s), s \models \alpha \iff S, s \models \alpha \) for all formulas \(\alpha \) over \(B \)
Lemma

\[\psi \models^G \varphi \iff \models ([(\beta_1 \cup \ldots \cup \beta_k)^*] \psi) \rightarrow \varphi \]

with \(B := \{\beta_1, \ldots, \beta_k\} \) the atomic programs occurring in \(\psi, \varphi \).

\[\iff \text{simple} \implies \text{Exercise} \]

\[\implies \]

1. Kripke structure \((S, \rho, I), s \in S\).
2. to show: \(\psi \models^G \varphi \implies S, s \models [B^*] \psi \rightarrow \varphi \)
3. \(S^{-}(s) := \{s' \mid s' \text{ reachable from } s \text{ via } B.\} \subseteq S \)
4. \(S^{-}(s), s \models \alpha \iff S, s \models \alpha \) for all formulas \(\alpha \) over \(B \)
5. \(S^{-}(s) \models \psi \iff S^{-}(s), s \models [B^*] \psi \)
Lemma

\[\psi \models^G \varphi \iff \models \left(\left[(\beta_1 \cup \ldots \cup \beta_k)^* \right] \psi \right) \rightarrow \varphi \]

with \(B := \{ \beta_1, \ldots, \beta_k \} \) the atomic programs occurring in \(\psi, \varphi \).

\[\iff \text{simple} \implies \text{Exercise} \]

1. Kripke structure \((S, \rho, I), s \in S\).
2. to show: \(\psi \models^G \varphi \implies S, s \models [B^*] \psi \rightarrow \varphi \)
3. \(S^-(s) := \{ s' \mid s' \text{ reachable from } s \text{ via } B \} \subseteq S \)
4. \(S^-(s), s \models \alpha \iff S, s \models \alpha \text{ for all formulas } \alpha \text{ over } B \)
5. \(S^-(s) \models \psi \iff S^-(s), s \models [B^*] \psi \)
6. \(S^-(s) \models \psi \) entails \(S^-(s) \models \varphi \) by assumption
Deduction Theorem Revised

Lemma

\[\psi \models^G \varphi \iff \models \left(\left((\beta_1 \cup \ldots \cup \beta_k)^* \right) \psi \right) \rightarrow \varphi \]

with \(B := \{ \beta_1, \ldots, \beta_k \} \) the atomic programs occurring in \(\psi, \varphi \).

simple ⇔ Exercise

1. Kripke structure \((S, \rho, I), s \in S\).
2. to show: \(\psi \models^G \varphi \iff S, s \models [B^*] \psi \rightarrow \varphi \)
3. \(S^{-}(s) := \{ s' \mid s' \text{ reachable from } s \text{ via } B. \} \subseteq S \)
4. \(S^{-}(s), s \models \alpha \iff S, s \models \alpha \) for all formulas \(\alpha \) over \(B \)
5. \(S^{-}(s) \models \psi \iff S^{-}(s), s \models [B^*] \psi \)
6. \(S^{-}(s) \models \psi \) entails \(S^{-}(s) \models \varphi \) by assumption

Decidable:

The consequence problem \(\psi \models^G \varphi \) is decidable for PDL.
Compactness of PDL

Recall: Compactness Theorem

\[M \models^G \varphi \iff \exists \text{ finite } E \subseteq M \text{ with } E \models^G \varphi \]

Holds for:
Propositional Logic, First Order Logic, **not** for higher order logic

PDL is not compact because it has transitive closure "built in."
Compactness of PDL

Recall: Compactness Theorem

\[M \models^G \varphi \iff \text{exists finite } E \subseteq M \text{ with } E \models^G \varphi \]

Holds for:
Propositional Logic, First Order Logic, \textbf{not} for higher order logic

Counterexample for PDL

\[M := \{ p \rightarrow [\underbrace{\alpha ; \ldots ; \alpha}_n]q \mid n \in \mathbb{N} \}, \quad \varphi := p \rightarrow [\alpha^*]q \]

\[\text{n times} \]
Compactness of PDL

Recall: Compactness Theorem

\[M \models^G \varphi \iff \exists \text{ finite } E \subseteq M \text{ with } E \models^G \varphi \]

Holds for:
Propositional Logic, First Order Logic, \textbf{not} for higher order logic

Counterexample for PDL

\[M := \{ p \rightarrow [\alpha; \ldots; \alpha]q \mid n \in \mathbb{N} \}, \quad \varphi := p \rightarrow [\alpha^*]q \]

- \[M \models^G \varphi \quad \text{? yes} \]
Recall: Compactness Theorem

\[M \models^G \varphi \iff \exists \text{ finite } E \subseteq M \text{ with } E \models^G \varphi \]

Holds for:
Propositional Logic, First Order Logic, not for higher order logic

Counterexample for PDL

\[M := \{ p \rightarrow [\alpha; \ldots; \alpha]q \mid n \in \mathbb{N} \}, \quad \varphi := p \rightarrow [\alpha^*]q \]

- \(M \models^G \varphi \) \quad ? \quad yes
- \(E \subset M, \ E \models^G \varphi \) \quad ? \quad no
Compactness of PDL

Recall: Compactness Theorem

\[M \models^G \varphi \iff \exists \text{ finite } E \subseteq M \text{ with } E \models^G \varphi \]

Holds for:
Propositional Logic, First Order Logic, **not** for higher order logic

Counterexample for PDL

\[M := \{ p \to [\alpha; \ldots; \alpha]q \mid n \in \mathbb{N} \}, \quad \varphi := p \to [\alpha^*]q \]

- \[M \models^G \varphi \quad \text{yes} \]
- \[E \subset M, \ E \models^G \varphi \quad \text{no} \]

PDL is not compact
because it has transitive closure “built in”.

Beckert, Ulbrich – Formale Systeme II: Theorie
Deducibility Problem in PDL

Quote:

[T]he problem of whether an arbitrary PDL formula p is deducible from a single fixed axiom scheme is of extremely high degree of undecidability, namely Π^1_1-complete.

Meyer, Streett, Mirkowska:
The Deducibility Problem in Propositional Dynamic Logic, 1981
Variants and Conclusion
Variant: Converse Programs

Idea: Add actions reverting action effects

Add further program constructor \(\cdot^{-1} \):

\[
\pi \in \Pi \implies \pi^{-1} \in \Pi
\]

with \(\rho(\pi^{-1}) = \rho(\pi)^{-1} \)
Variant: Converse Programs

Idea: Add actions reverting action effects

Add further program constructor \(\cdot^{-1} \):
\[\pi \in \Pi \implies \pi^{-1} \in \Pi \]
with \(\rho(\pi^{-1}) = \rho(\pi)^{-1} \)

Axiom schemes: for all \(\phi \in Fml^{PDL} \), \(\pi \in \Pi \)

- \(\phi \to [\pi] \langle \pi^{-1} \rangle \phi \)
- \(\phi \to [\pi^{-1}] \langle \pi \rangle \phi \)
Variant: Converse Programs

Idea: Add actions reverting action effects

Add further program constructor \(\cdot^{-1} \):

\[\pi \in \Pi \implies \pi^{-1} \in \Pi \]

with \(\rho(\pi^{-1}) = \rho(\pi)^{-1} \)

Axiom schemes: for all \(\varphi \in \text{Fml}^{PDL} \), \(\pi \in \Pi \)

- \(\varphi \rightarrow [\pi] \langle \pi^{-1} \rangle \varphi \)
- \(\varphi \rightarrow [\pi^{-1}] \langle \pi \rangle \varphi \)

Complete

Adding the axioms to the known PDL calculus gives a correct and complete calculus for PDL with Converse.
Variant: Context-free Programs

Idea: Go beyond regular programs

Instead of regular programs, allow context-free grammar

Produced context-free grammar

\[X ::= \alpha X \gamma \mid \beta \]

with

\[L(X) = \{ \alpha^n \beta \gamma^n \mid n \in \mathbb{N} \} \]

Undecidability result

Validity is undecidable if instead of regular programs, context-free programs are allowed.

Expressiveness

Without fixed semantics of \(\mathbb{N} \), recursion is strictly more expressive than looping.
Variant: Context-free Programs

Idea: Go beyond regular programs
Instead of regular programs, allow context-free grammar

For example:
Produced context-free grammar $X ::= \alpha X \gamma | \beta$
with $L(X) = \{\alpha^n \beta \gamma^n | n \in \mathbb{N}\}$
Variant: Context-free Programs

Idea: Go beyond regular programs
Instead of regular programs, allow context-free grammar

For example:
Produced context-free grammar $X ::= \alpha X \gamma | \beta$
with $L(X) = \{\alpha^n \beta \gamma^n | n \in \mathbb{N}\}$

Undecidability result
Validity is undecidable if instead of regular programs, context-free programs are allowed.
Variant: Context-free Programs

Idea: Go beyond regular programs
Instead of regular programs, allow context-free grammar

For example:
Produced context-free grammar $X ::= \alpha X \gamma | \beta$
with $L(X) = \{\alpha^n \beta \gamma^n \mid n \in \mathbb{N}\}$

Undecidability result
Validity is undecidable if instead of regular programs, context-free programs are allowed.

Expressiveness
Without fixed semantics of \mathbb{N}, recursion is strictly more expressive than looping.
A propositional Kripke structure $\mathcal{K} = (S, \rho, I)$ is determined by:

- S \quad \text{the set of states}
- $\rho : A \rightarrow S \times S$ \quad \text{the accessibility relations for atomic programs}
- $I : S \rightarrow 2^\Sigma$ \quad \text{evaluation of propositional atoms in states}

Choose now: $S \subseteq 2^\Sigma$ the set of states

Strictly larger set of tautologies. Obviously decidable.

Evaluation of propositional variables fixes the state (and the accessibility of successor states)
A propositional Kripke structure $\mathcal{K} = (S, \rho, I)$ is determined by:

- S the set of states
- $\rho : A \to S \times S$ the accessibility relations for atomic programs
- $I : S \to 2^\Sigma$ evaluation of propositional atoms in states
State Vector Semantics

A propositional Kripke structure $\mathcal{K} = (S, \rho, I)$ is determined by:

- S: the set of states
- $\rho : A \rightarrow S \times S$: the accessibility relations for atomic programs
- $I : S \rightarrow 2^\Sigma$: evaluation of propositional atoms in states

Choose now: $S \subseteq 2^\Sigma$: the set of states
State Vector Semantics

A propositional Kripke structure $\mathcal{K} = (S, \rho, I)$ is determined by:

- S: the set of states
- $\rho: A \rightarrow S \times S$: the accessibility relations for atomic programs
- $I: S \rightarrow 2^\Sigma$: evaluation of propositional atoms in states

Choose now: $S \subseteq 2^\Sigma$: the set of states

We call this the state vector semantics.
State Vector Semantics

A propositional Kripke structure $\mathcal{K} = (S, \rho, I)$ is determined by:

- S: the set of states
- $\rho : A \rightarrow S \times S$: the accessibility relations for atomic programs
- $I : S \rightarrow 2^\Sigma$: evaluation of propositional atoms in states

Choose now: $S \subseteq 2^\Sigma$: the set of states

We call this the state vector semantics.

- Strictly larger set of tautologies.
A propositional Kripke structure $\mathcal{K} = (S, \rho, I)$ is determined by:

- S: the set of states
- $\rho : A \rightarrow S \times S$: the accessibility relations for atomic programs
- $I : S \rightarrow 2^\Sigma$: evaluation of propositional atoms in states

Choose now: $S \subseteq 2^\Sigma$: the set of states

We call this the state vector semantics.

- Strictly larger set of tautologies.
- Obviously decidable.
State Vector Semantics

A propositional Kripke structure $\mathcal{K} = (S, \rho, I)$ is determined by:

- S: the set of states
- $\rho : A \rightarrow S \times S$: the accessibility relations for atomic programs
- $I : S \rightarrow 2^\Sigma$: evaluation of propositional atoms in states

Choose now: $S \subseteq 2^\Sigma$: the set of states

We call this the state vector semantics.

- Strictly larger set of tautologies.
- Obviously decidable.
- Evaluation of propositional variables fixes the state (and the accessibility of successor states)
Lemma

Let

- $A = \{a_1, \ldots, a_k\}$
Lemma

Let

- $A = \{a_1, \ldots, a_k\}$
- π_{all} stands for the program $(a_1 \cup \ldots \cup a_k)^*$.
Lemma

Let

- \(A = \{a_1, \ldots, a_k\} \)
- \(\pi_{all} \) stands for the program \((a_1 \cup \ldots \cup a_k)^*\).
- \(U \subseteq \Sigma \) be a subset of the set of propositional atoms.
Lemma

Let

- \(A = \{a_1, \ldots, a_k\} \)
- \(\pi_{all} \) stands for the program \((a_1 \cup \ldots \cup a_k)^*\).
- \(U \subseteq \Sigma \) be a subset of the set of propositional atoms.
- \(state_U \) abbreviate \(\bigwedge_{p \in U} p \land \bigwedge_{p \notin U} \neg p \).
Lemma

Let

- $A = \{a_1, \ldots, a_k\}$
- π_{all} stands for the program $(a_1 \cup \ldots \cup a_k)^*$.
- $U \subseteq \Sigma$ be a subset of the set of propositional atoms.
- state_U abbreviate $\bigwedge_{p \in U} p \land \bigwedge_{p \notin U} \neg p$.
- F an arbitrary PDL formula.
Lemma

Let

- \(A = \{a_1, \ldots, a_k\} \)
- \(\pi_{all} \) stands for the program \((a_1 \cup \ldots \cup a_k)^*\).
- \(U \subseteq \Sigma \) be a subset of the set of propositional atoms.
- \(state_U \) abbreviate \(\bigwedge_{p \in U} p \land \bigwedge_{p \not\in U} \neg p \).
- \(F \) an arbitrary PDL formula.
Lemma

Let

- \(A = \{a_1, \ldots, a_k\} \)
- \(\pi_{all} \) stands for the program \((a_1 \cup \ldots \cup a_k)^*\).
- \(U \subseteq \Sigma \) be a subset of the set of propositional atoms.
- \(state_U \) abbreviate \(\land_{p \in U} p \land \land_{p \not\in U} \neg p \).
- \(F \) an arbitrary PDL formula.

Then

\[
\langle \pi_{all} \rangle (state_U \land F) \rightarrow [\pi_{all}](state_U \rightarrow F)
\]

is true in all state vector Kripke structures.
Theorem

Let H be the set of all formulas

$$
\langle \pi_{all} \rangle (state_U \land F) \rightarrow [\pi_{all}](state_U \rightarrow F)
$$

with the notation from the previous slide.
Theorem

Let H be the set of all formulas

$$\langle \pi_{all} \rangle (\text{state}_U \land F) \rightarrow [\pi_{all}](\text{state}_U \rightarrow F)$$

with the notation from the previous slide.

Then:

1. $\{F\} \cup H$ is satisfiable iff F is state vector satisfiable.
Theorem

Let H be the set of all formulas

$$\langle \pi_{all} \rangle (state_U \land F) \rightarrow [\pi_{all}](state_U \rightarrow F)$$

with the notation from the previous slide.

Then:

1. $\{F\} \cup H$ is satisfiable iff F is state vector satisfiable.
2. $H \models F$ iff $\models_{sv} F$.
Propositional Dynamic Logic – Summary

- extension of modal logic
- abstract notion of actions / atomic logic statements
- regular programs, with non-deterministic choice and Kleene-interation
- correct and complete calculus for tautologies
- satisfiability is decidable (in EXPTIME)
- logic is not compact
- deducibility is utterly undecidable
- deduction theorem can be rescued
Detection of dynamic execution errors in IBM system automation’s rule-based expert system

An Application of PDL
[SinzEtAl02]

Carsten Sinz, Thomas Lumpp, Jürgen Schneider, and Wolfgang Küchlin:
Detection of dynamic execution errors in IBM System Automation’s rule-based expert system.
Context
Context

IBM zSeries
IBM zSeries

- z = zero downtime
IBM zSeries

- $z = \text{zero downtime}$
- high availability: 99.999%
Context

IBM zSeries

- z = zero downtime
- high availability: 99.999%
- < 5.3 min/yr downtime
Context

IBM zSeries
- \(z = \) zero downtime
- High availability: 99.999%
- < 5.3 min/yr downtime

System Automation

Example: Flight booking center: 100s of users, many parallel apps
Context

IBM zSeries
- \(z = \) zero downtime
- high availability: 99.999%
- \(< 5.3 \text{ min/yr} \) downtime

System Automation
- full automation of a data center
Context

IBM zSeries
- **z** = zero downtime
- High availability: 99.999%
- < 5.3 min/yr downtime

System Automation
- Full automation of a data center
- Starting, stopping, migration of applications
Context

IBM zSeries
- \(z = \) zero downtime
- high availability: 99.999%
- \(< 5.3 \text{ min/yr} \) downtime

System Automation
- full automation of a data center
- starting, stopping, migration of applications
- recovery from system failures
IBM zSeries

- \(z = \) zero downtime
- high availability: 99.999%
- \(< 5.3\text{min/yr} \) downtime

System Automation

- full automation of a data center
- starting, stopping, migration of applications
- recovery from system failures
- ...
Context

IBM zSeries
- \(z = \) zero downtime
- High availability: 99.999%
- \(< \) 5.3 min/yr downtime

System Automation
- Full automation of a data center
- Starting, stopping, migration of applications
- Recovery from system failures
- \(\ldots \)
- Complex, rule-based configuration
Context

IBM zSeries
- \(z = \) zero downtime
- high availability: 99.999%
- \(< 5.3 \text{min/yr} \) downtime

System Automation
- full automation of a data center
- starting, stopping, migration of applications
- recovery from system failures
- \(\ldots \)
- complex, rule-based configuration

Example
Flight booking center: 100s of users, many parallel apps
Example Rule

```plaintext
correlation set/status/compound/satisfactory:
when status/compound NOT E {Satisfactory}
   AND status/startable E {Yes}
   AND ( ( status/observed E {Available, WasAvailable}
             AND status/desired E {Available}
             AND status/automation E {Idle, Internal}
             AND correlation/external/stop/failed E {false}
         OR
         ( status/observed E {SoftDown, StandBy}
             AND status/desired E {Unavailable}
             AND status/automation E {Idle, Internal}
         )
   )
then SetVariable status/compound = Satisfactory
   RecordVariableHistory status/compound
```

Fig. 4. Example of a correlation rule.

(taken from [SinzEtAl02])
Rules

when cond then var = d

- **AND, OR, NOT** allowed in conditions
- \(var \in \{ d_1, \ldots, d_2 \} \) – “element of”
- the **then** part can be executed if **cond** is true
Logical Encoding

- One boolean atom per var/value-pair

\[\text{Encode that } \text{var} \text{ has exactly one value (of } d_1, \ldots, d_k) \]

\[(\bigvee_{i=1}^{k} \varphi_{\text{var}, d_i}) \land \left(\bigwedge_{i,j=1}^{k} i < j \neg (\varphi_{\text{var}, d_i} \land \varphi_{\text{var}, d_j}) \right) \]

Atomic Actions: \(\text{var} = d \mapsto \alpha \)

Axiom \[\alpha_{\text{var}, d} \] \[\varphi_{\text{var}, d} \]
Logical Encoding

- One boolean atom per var/value-pair
- \(P_{\text{var}, d} = \text{true} \iff \text{var} = d \)
Logical Encoding

- One boolean atom per var/value-pair
- $P_{\text{var},d} = \text{true} \iff \text{var} = d$

- Encode that var has exactly one value (of d_1, \ldots, d_k)
Logical Encoding

- One boolean atom per var/value-pair
- \(P_{\text{var},d} = \text{true} \iff \text{var} = d \)

- Encode that \(\text{var} \) has exactly one value (of \(d_1, \ldots, d_k \))

\[
\left(\bigvee_{i=1 \ldots k} P_{\text{var},d_i} \right) \land \left(\bigwedge_{i,j=1 \ldots k} \neg (P_{\text{var},d_i} \land P_{\text{var},d_j}) \right)
\]
Logical Encoding

- One boolean atom per var/value-pair
- \(P_{\text{var},d} = \text{true} \iff \text{var} = d \)

- Encode that \(\text{var} \) has exactly one value (of \(d_1, \ldots, d_k \))

\[
\left(\bigvee_{i=1 \ldots k} P_{\text{var},d_i} \right) \land \left(\bigwedge_{i,j=1 \ldots k} \neg (P_{\text{var},d_i} \land P_{\text{var},d_j}) \right)
\]

- Atomic Actions: \(\text{var} = d \leadsto \alpha_{\text{var},d} \)
Logical Encoding

- One boolean atom per var/value-pair
- \(P_{var,d} = true \iff var = d \)

- Encode that \(var \) has exactly one value (of \(d_1, \ldots, d_k \))

\[
\left(\bigvee_{i=1 \ldots k} P_{var,d_i} \right) \land \left(\bigwedge_{i,j=1 \ldots k, i<j} \neg (P_{var,d_i} \land P_{var,d_j}) \right)
\]

- Atomic Actions: \(var = d \leadsto \alpha_{var,d} \)
- Axiom \([\alpha_{var,d}] P_{var,d}\)
Logical Encoding

Semantics of a rule as program:

\(?\text{when} \); \(\text{then} \)
Logical Encoding

Semantics of a rule as program:

\[\text{?when } ; \text{then} \]

Semantics of all rules as program:

\[R := (\text{?when}_1 ; \text{then}_1) \cup \ldots \cup (\text{?when}_r ; \text{then}_r)^* \]
Proof Obligations

Uniqueness of final state:
under assumption of a precondition \(PRE \)

\[
PRE \rightarrow (\langle R \rangle p \leftrightarrow [R]p)
\]
Proof Obligations

Uniqueness of final state:
under assumption of a precondition PRE

$$PRE \rightarrow (\langle R \rangle p \leftrightarrow [R]p)$$

Confluence:

$$PRE \rightarrow (\langle R \rangle[R]p \rightarrow [R]\langle R \rangle p)$$
Proof Obligations

Uniqueness of final state:
under assumption of a precondition PRE

\[PRE \rightarrow (\langle R \rangle p \leftrightarrow [R]p) \]

Confluence:

\[PRE \rightarrow (\langle R \rangle[R]p \rightarrow [R]\langle R \rangle p) \]

Absence of Oscillation:
modelled using an extension of PDL with non-termination operator
Verification Experiment

Verification Technique

- state vector semantics
- translation of PDL to boolean SAT
- solving using SAT solver (Davies-Putnam)

Experiment:

- ∼40 rules
- resulted in ∼1500 boolean variables
- SAT solving < 1 sec

!! violations found – before deployment