Formale Systeme

Prof. Dr. Bernhard Beckert

Fakultät für Informatik Universität Karlsruhe (TH)

Winter 2008/2009

Einführung

Definition

Sei V ein (weiterhin endliches) Alphabet.

Definition

Sei V ein (weiterhin endliches) Alphabet.

 V^{ω}

ist die Menge der unendlichen Wörter mit Buchstaben aus V.

Definition

Sei V ein (weiterhin endliches) Alphabet.

 V^{ω}

ist die Menge der unendlichen Wörter mit Buchstaben aus V.

w(n)

bezeichnet den n-ten Buchstaben in w und

Definition

Sei V ein (weiterhin endliches) Alphabet.

$$V^{\omega}$$

ist die Menge der unendlichen Wörter mit Buchstaben aus V.

bezeichnet den n-ten Buchstaben in w und

$$w \downarrow (n)$$

das endliche Anfangstück $w(0) \dots w(n)$ von w.

Definition

Sei V ein (weiterhin endliches) Alphabet.

$$V^{\omega}$$

ist die Menge der unendlichen Wörter mit Buchstaben aus V.

bezeichnet den n-ten Buchstaben in w und

$$w \downarrow (n)$$

das endliche Anfangstück $w(0) \dots w(n)$ von w.

Wir nennen ein Wort $w \in V^{\omega}$ manchmal auch ein ω -Wort über V.

Definition

Sei V ein (weiterhin endliches) Alphabet.

$$V^{\omega}$$

ist die Menge der unendlichen Wörter mit Buchstaben aus V.

bezeichnet den n-ten Buchstaben in w und

$$w \downarrow (n)$$

das endliche Anfangstück $w(0) \dots w(n)$ von w.

Wir nennen ein Wort $w \in V^{\omega}$ manchmal auch ein ω -Wort über V.

Man kann ein unendliches Wort $w \in V^{\omega}$ auch als eine Funktion $w : N \to V$, von den natürlichen Zahlen in das Alphabet auffassen.

Definition

Sei V ein (weiterhin endliches) Alphabet.

$$V^{\omega}$$

ist die Menge der unendlichen Wörter mit Buchstaben aus V.

bezeichnet den n-ten Buchstaben in w und

$$w \downarrow (n)$$

das endliche Anfangstück $w(0) \dots w(n)$ von w.

Wir nennen ein Wort $w \in V^{\omega}$ manchmal auch ein ω -Wort über V.

Man kann ein unendliches Wort $w \in V^{\omega}$ auch als eine Funktion $w : \mathbb{N} \to V$, von den natürlichen Zahlen in das Alphabet auffassen.

Das leere Wort ε kommt nicht in V^{ω} vor.

Sei $K \subseteq V^*$ und $J \subseteq V^{\omega}$:

1. K^{ω} bezeichnet die Menge der unendlichen Wörter der Form

 $w_1 \dots w_i \dots$ mit $w_i \in K$ für alle i

Sei $K \subseteq V^*$ und $J \subseteq V^{\omega}$:

1. K^{ω} bezeichnet die Menge der unendlichen Wörter der Form

$$w_1 \dots w_i \dots$$
 mit $w_i \in K$ für alle i

2.

$$KJ = \{w_1w_2 \mid w_1 \in K, w_2 \in J\}$$

Sei $K \subseteq V^*$ und $J \subseteq V^{\omega}$:

1. K^{ω} bezeichnet die Menge der unendlichen Wörter der Form

$$w_1 \dots w_i \dots$$
 mit $w_i \in K$ für alle i

2

$$KJ = \{w_1w_2 \mid w_1 \in K, w_2 \in J\}$$

3.

$$\vec{K} = \{ w \in V^{\omega} \mid w \downarrow (n) \in K \text{ für unendlich viele } n \}$$

Sei $K \subseteq V^*$ und $J \subseteq V^{\omega}$:

1. K^{ω} bezeichnet die Menge der unendlichen Wörter der Form

$$w_1 \dots w_i \dots$$
 mit $w_i \in K$ für alle i

2

$$KJ = \{w_1w_2 \mid w_1 \in K, w_2 \in J\}$$

3.

$$\vec{K} = \{ w \in V^{\omega} \mid w \downarrow (n) \in K \text{ für unendlich viele } n \}$$

Sei $K \subseteq V^*$ und $J \subseteq V^{\omega}$:

1. K^{ω} bezeichnet die Menge der unendlichen Wörter der Form

$$w_1 \dots w_i \dots$$
 mit $w_i \in K$ für alle i

2

$$KJ = \{w_1w_2 \mid w_1 \in K, w_2 \in J\}$$

3.

$$\vec{K} = \{ w \in V^{\omega} \mid w \downarrow (n) \in K \text{ für unendlich viele } n \}$$

Manche Autoren benutzen lim(K) anstelle von K.

Definition

Sei $\mathcal{A} = (S, V, s_0, \delta, F)$ ein nicht deterministischer endlicher Automat.

Definition

Sei $\mathcal{A} = (S, V, s_0, \delta, F)$ ein nicht deterministischer endlicher Automat.

Für ein ω -Wort $w \in V^{\omega}$ nennen wir eine Folge s_0, \ldots, s_n, \ldots eine Berechnungsfolge (Englisch run) für w, wenn für alle $0 \le n$ gilt

$$s_{n+1} \in \delta(s_n, w(n))$$

Definition

Sei $\mathcal{A} = (S, V, s_0, \delta, F)$ ein nicht deterministischer endlicher Automat.

Für ein ω -Wort $w \in V^{\omega}$ nennen wir eine Folge s_0, \ldots, s_n, \ldots eine Berechnungsfolge (Englisch run) für w, wenn für alle $0 \le n$ gilt

$$s_{n+1} \in \delta(s_n, w(n))$$

Die von ${\mathcal A}$ akzeptierte $\omega ext{-Sprache}$ wird definiert durch

 $L^{\omega}(\mathcal{A})=\{w\in V^{\omega}\mid \text{es gibt eine Berechnungsfolge für } w \text{ mit unendlich vielen Finalzuständen } \}$

Definition

Sei $\mathcal{A} = (S, V, s_0, \delta, F)$ ein nicht deterministischer endlicher Automat.

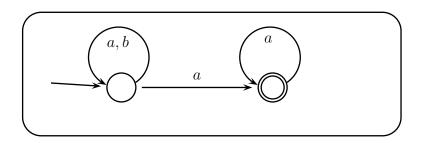
Für ein ω -Wort $w \in V^{\omega}$ nennen wir eine Folge s_0, \ldots, s_n, \ldots eine Berechnungsfolge (Englisch run) für w, wenn für alle $0 \le n$ gilt

$$s_{n+1} \in \delta(s_n, w(n))$$

Die von ${\mathcal A}$ akzeptierte $\omega ext{-Sprache}$ wird definiert durch

 $L^{\omega}(\mathcal{A}) = \{ w \in V^{\omega} \mid \text{es gibt eine Berechnungsfolge für } w \text{ mit unendlich vielen Finalzuständen } \}$

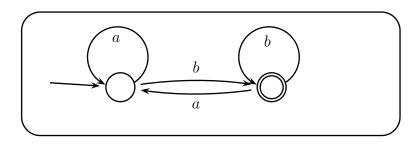
Der einzige Unterschied zwischen Büchi-Automaten und (normalen) endlichen Automaten liegt in der Akzeptanzdefinition.

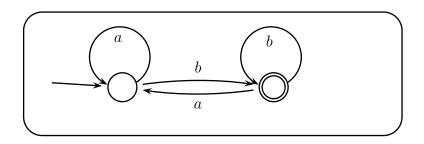




Die akzeptierte Sprache ist

$$\{a,b\}^*a^\omega$$





Die akzeptierte Sprache ist

$$(a^*b^+a)^{\omega} + (a^*b^+a)^*b^{\omega}$$

Die Frage, ob für einen Büchi-Automaten $\mathcal B$ die Menge der akzeptierten Wörter nicht leer ist, d.h.

$$L^{\omega}(\mathcal{B}) \neq \emptyset$$
,

ist entscheidbar.

Die Frage, ob für einen Büchi-Automaten $\mathcal B$ die Menge der akzeptierten Wörter nicht leer ist, d.h.

$$L^{\omega}(\mathcal{B}) \neq \emptyset$$
,

ist entscheidbar.

Beweis:

Die Frage, ob für einen Büchi-Automaten $\mathcal B$ die Menge der akzeptierten Wörter nicht leer ist, d.h.

$$L^{\omega}(\mathcal{B}) \neq \emptyset$$
,

ist entscheidbar.

Beweis:

Um $L^{\omega}(\mathcal{B}) \neq \emptyset$ zu zeigen muß man nur einen erreichbaren Endzustand $q_f \in F$ finden, der auf einer Schleife liegt.

Die Frage, ob für einen Büchi-Automaten $\mathcal B$ die Menge der akzeptierten Wörter nicht leer ist, d.h.

$$L^{\omega}(\mathcal{B}) \neq \emptyset$$
,

ist entscheidbar.

Beweis:

Um $L^{\omega}(\mathcal{B}) \neq \emptyset$ zu zeigen muß man nur einen erreichbaren Endzustand $q_f \in F$ finden, der auf einer Schleife liegt.

Wir nennen eine Menge L von ω -Wörtern ω -regulär, wenn es einen Büchi-Automaten $\mathcal A$ gibt mit $L^\omega(\mathcal A)=L$.

Lemma

Sei A ein endlicher Automat und K = L(A). Dann gilt

1.
$$L^{\omega}(\mathcal{A}) \subseteq \vec{K}$$

Lemma

Sei A ein endlicher Automat und K = L(A). Dann gilt

- 1. $L^{\omega}(\mathcal{A}) \subseteq \vec{K}$
- 2. Falls \mathcal{A} deterministisch ist gilt sogar $L^{\omega}(\mathcal{A}) = \vec{K}$

Lemma

Sei A ein endlicher Automat und K = L(A). Dann gilt

- 1. $L^{\omega}(\mathcal{A}) \subseteq \vec{K}$
- 2. Falls \mathcal{A} deterministisch ist gilt sogar $L^{\omega}(\mathcal{A}) = \vec{K}$

Lemma

Sei A ein endlicher Automat und K = L(A). Dann gilt

- 1. $L^{\omega}(\mathcal{A}) \subseteq \vec{K}$
- 2. Falls \mathcal{A} deterministisch ist gilt sogar $L^{\omega}(\mathcal{A}) = \vec{K}$

Beweis zu 1:

Lemma

Sei A ein endlicher Automat und K = L(A). Dann gilt

- 1. $L^{\omega}(\mathcal{A}) \subseteq \vec{K}$
- 2. Falls \mathcal{A} deterministisch ist gilt sogar $L^{\omega}(\mathcal{A}) = \vec{K}$

Beweis zu 1:

Für $w \in L^{\omega}(\mathcal{A})$ gibt es eine Berechnungsfolge $\rho_w = s_0, s_1 \dots s_n \dots$, so daß $F_w = \{n \in \mathbb{N} \mid s_n \in F\}$ unendlich ist.

Lemma

Sei A ein endlicher Automat und K = L(A). Dann gilt

- 1. $L^{\omega}(A) \subseteq \vec{K}$
- 2. Falls \mathcal{A} deterministisch ist gilt sogar $L^{\omega}(\mathcal{A}) = \vec{K}$

Beweis zu 1:

Für $w \in L^{\omega}(\mathcal{A})$ gibt es eine Berechnungsfolge $\rho_w = s_0, s_1 \dots s_n \dots$, so daß $F_w = \{n \in \mathbb{N} \mid s_n \in F\}$ unendlich ist.

Für alle $n \in F_w$ gilt $s_n \in F$

Lemma

Sei A ein endlicher Automat und K = L(A). Dann gilt

- 1. $L^{\omega}(\mathcal{A}) \subseteq \vec{K}$
- 2. Falls \mathcal{A} deterministisch ist gilt sogar $L^{\omega}(\mathcal{A}) = \vec{K}$

Beweis zu 1:

Für $w \in L^{\omega}(\mathcal{A})$ gibt es eine Berechnungsfolge $\rho_w = s_0, s_1 \dots s_n \dots$, so daß $F_w = \{n \in \mathbb{N} \mid s_n \in F\}$ unendlich ist. Für alle $n \in F_w$ gilt $s_n \in F$

$$\Rightarrow w \downarrow (n) \in K$$
.

Lemma

Sei A ein endlicher Automat und K = L(A). Dann gilt

- 1. $L^{\omega}(A) \subseteq \vec{K}$
- 2. Falls \mathcal{A} deterministisch ist gilt sogar $L^{\omega}(\mathcal{A}) = \vec{K}$

Beweis zu 1:

Für $w \in L^{\omega}(\mathcal{A})$ gibt es eine Berechnungsfolge $\rho_w = s_0, s_1 \dots s_n \dots$, so daß $F_w = \{n \in \mathbb{N} \mid s_n \in F\}$ unendlich ist.

Für alle $n \in F_w$ gilt $s_n \in F$

$$\Rightarrow w \downarrow (n) \in K$$
.

Also $w \in K$.

Lemma

Sei A ein endlicher Automat und K = L(A). Dann gilt

- 1. $L^{\omega}(\mathcal{A}) \subseteq \vec{K}$
- 2. Falls $\mathcal A$ deterministisch ist gilt sogar $L^\omega(\mathcal A)=\vec K$

Beweis zu 2:

Lemma

Sei A ein endlicher Automat und K = L(A). Dann gilt

- 1. $L^{\omega}(\mathcal{A}) \subseteq \vec{K}$
- 2. Falls $\mathcal A$ deterministisch ist gilt sogar $L^\omega(\mathcal A)=\vec K$

Beweis zu 2:

Für $w \in \vec{K}$ ist $R_w = \{n \in N \mid w \downarrow (n) \in K\}$ unendlich.

Lemma

Sei A ein endlicher Automat und K = L(A). Dann gilt

- 1. $L^{\omega}(A) \subseteq \vec{K}$
- 2. Falls $\mathcal A$ deterministisch ist gilt sogar $L^\omega(\mathcal A)=\vec K$

Beweis zu 2:

Für $w \in \vec{K}$ ist $R_w = \{n \in N \mid w \downarrow (n) \in K\}$ unendlich. Für jedes $n \in R_w$ gibt es eine Berechungsfolge $s_n = s_{n,1}, s_{n,2}, \ldots, s_{n,l_n}$ für $w \downarrow (n)$.

Lemma

Sei A ein endlicher Automat und K = L(A). Dann gilt

- 1. $L^{\omega}(A) \subseteq \vec{K}$
- 2. Falls $\mathcal A$ deterministisch ist gilt sogar $L^\omega(\mathcal A)=\vec K$

Beweis zu 2:

Für $w \in \vec{K}$ ist $R_w = \{n \in N \mid w \downarrow (n) \in K\}$ unendlich.

Für jedes $n \in R_w$ gibt es eine Berechungsfolge $s_n = s_{n,1}, s_{n,2}, \dots, s_{n,l_n}$ für $w \downarrow (n)$.

Da $\mathcal A$ deterministisch ist, ist für jedes Paar $n,m\in R_w$ mit $n< m\ s_n$ Anfangsstück von s_m .

Lemma

Sei A ein endlicher Automat und K = L(A). Dann gilt

- 1. $L^{\omega}(A) \subseteq \vec{K}$
- 2. Falls $\mathcal A$ deterministisch ist gilt sogar $L^\omega(\mathcal A)=\vec K$

Beweis zu 2:

Für $w \in \vec{K}$ ist $R_w = \{n \in N \mid w \downarrow (n) \in K\}$ unendlich.

Für jedes $n \in R_w$ gibt es eine Berechungsfolge $s_n = s_{n,1}, s_{n,2}, \dots, s_{n,l_n}$ für $w \downarrow (n)$.

Da \mathcal{A} deterministisch ist, ist für jedes Paar $n, m \in R_w$ mit $n < m \ s_n$ Anfangsstück von s_m .

Zusammengesetzt erhalten wir eine unendliche Berechnungsfolge s für w, die unendlich oft einen Endzustand durchläuft.

Lemma

Sei A ein endlicher Automat und K = L(A). Dann gilt

- 1. $L^{\omega}(A) \subseteq \vec{K}$
- 2. Falls $\mathcal A$ deterministisch ist gilt sogar $L^\omega(\mathcal A)=\vec K$

Beweis zu 2:

Für $w \in \vec{K}$ ist $R_w = \{n \in N \mid w \downarrow (n) \in K\}$ unendlich.

Für jedes $n \in R_w$ gibt es eine Berechungsfolge $s_n = s_{n,1}, s_{n,2}, \dots, s_{n,l_n}$ für $w \downarrow (n)$.

Da $\mathcal A$ deterministisch ist, ist für jedes Paar $n,m\in R_w$ mit $n< m\ s_n$ Anfangsstück von s_m .

Zusammengesetzt erhalten wir eine unendliche Berechnungsfolge s für w, die unendlich oft einen Endzustand durchläuft.

Also $w \in L^{\omega}(\mathcal{A})$.

Korollar

Für eine ω -Sprache $L\subseteq V^{\omega}$ sind äquivalent:

• $L = L^{\omega}(\mathcal{A})$ für einen deterministischen Büchi-Automaten

Korollar

Für eine ω -Sprache $L \subseteq V^{\omega}$ sind äquivalent:

- $L = L^{\omega}(\mathcal{A})$ für einen deterministischen Büchi-Automaten
- es eine reguläre Sprache $K \subseteq V^*$ gibt mit $L = \vec{K}$.

Korollar

Für eine ω -Sprache $L \subseteq V^{\omega}$ sind äquivalent:

- $L = L^{\omega}(\mathcal{A})$ für einen deterministischen Büchi-Automaten
- es eine reguläre Sprache $K \subseteq V^*$ gibt mit $L = \vec{K}$.

Korollar

Für eine ω -Sprache $L \subseteq V^{\omega}$ sind äquivalent:

- $L = L^{\omega}(\mathcal{A})$ für einen deterministischen Büchi-Automaten
- es eine reguläre Sprache $K \subseteq V^*$ gibt mit $L = \vec{K}$.

Beweis:

Korollar

Für eine ω -Sprache $L \subseteq V^{\omega}$ sind äquivalent:

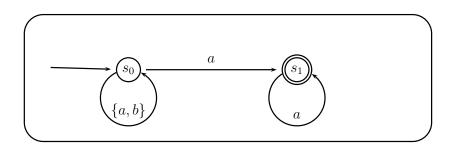
- $L = L^{\omega}(\mathcal{A})$ für einen deterministischen Büchi-Automaten
- es eine reguläre Sprache $K \subseteq V^*$ gibt mit $L = \vec{K}$.

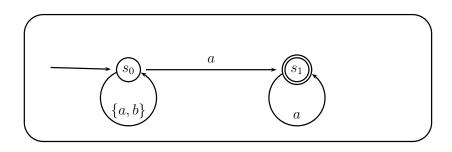
Beweis:

Folgt direkt aus der Tatsache, daß für deterministische Automaten ${\mathcal A}$

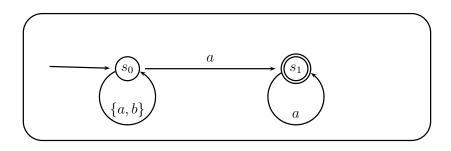
$$L^{\omega}(\mathcal{A}) = \overrightarrow{L(\mathcal{A})}$$

gilt (vorangeganges Lemma).

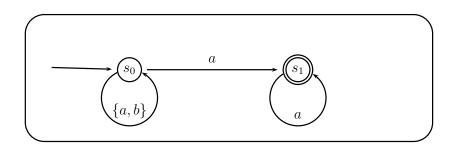




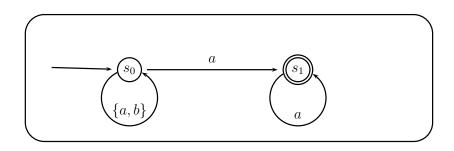
 $L^{\omega}(N_{bfin}) = \{w \in \{a,b\}^{\omega} \mid \text{ in } w \text{ kommt } b \text{ nur endlich oft vor}\}$



 $L^{\omega}(N_{bfin}) = \{ w \in \{a, b\}^{\omega} \mid \text{ in } w \text{ kommt } b \text{ nur endlich oft vor} \}$ $L(N_{bfin}) = \{ w \in \{a, b\}^* \mid w \text{ endet auf a} \}.$



 $L^{\omega}(N_{bfin}) = \{ w \in \{a,b\}^{\omega} \mid \text{ in } w \text{ kommt } b \text{ nur endlich oft vor} \}$ $L(N_{bfin}) = \{ w \in \{a,b\}^* \mid w \text{ endet auf a} \}.$ $Lim(L(N_{bfin})) = \{ w \in \{a,b\}^{\omega} \mid \text{in } w \text{ kommt } a \text{ unendlich of vor} \}.$



 $\begin{array}{l} L^{\omega}(N_{bfin}) = \{w \in \{a,b\}^{\omega} \mid \text{ in } w \text{ kommt } b \text{ nur endlich oft vor}\} \\ L(N_{bfin}) = \{w \in \{a,b\}^* \mid w \text{ endet auf a}\}. \\ Lim(L(N_{bfin})) = \{w \in \{a,b\}^{\omega} \mid \text{in } w \text{ kommt } a \text{ unendlich of vor}\}. \\ \text{Man sieht leicht, daß } L^{\omega}(N_{bfin}) \neq Lim(L(N_{bfin})) \end{array}$

Korollar

Es gibt Sprachen $L\subseteq V^\omega$, die von einem nicht-deterministischen Büchi-Automaten akzeptiert werden, aber von keinem deterministischen.

Korollar

Es gibt Sprachen $L\subseteq V^\omega$, die von einem nicht-deterministischen Büchi-Automaten akzeptiert werden, aber von keinem deterministischen.

Beweis:

Korollar

Es gibt Sprachen $L\subseteq V^\omega$, die von einem nicht-deterministischen Büchi-Automaten akzeptiert werden, aber von keinem deterministischen.

Beweis:

Wir wählen $V = \{a, b\}$ und

$$L = L^{\omega}(N_{bfin}) = \{ w \in V^{\omega} \mid w(n) = b \text{ nur für endlich viele } n \}$$

Angenommen $L = \vec{K}$ für eine reguläre Menge $K \subseteq V^*$.

Korollar

Es gibt Sprachen $L\subseteq V^\omega$, die von einem nicht-deterministischen Büchi-Automaten akzeptiert werden, aber von keinem deterministischen.

Beweis:

Wir wählen $V = \{a, b\}$ und

$$L = L^{\omega}(N_{bfin}) = \{ w \in V^{\omega} \mid w(n) = b \text{ nur für endlich viele } n \}$$

Angenommen $L = \vec{K}$ für eine reguläre Menge $K \subseteq V^*$.

Es gibt ein $k_1 > 0$ mit $a^{k_1} \in K$, da $a^{\omega} \in L$.

Korollar

Es gibt Sprachen $L\subseteq V^\omega$, die von einem nicht-deterministischen Büchi-Automaten akzeptiert werden, aber von keinem deterministischen.

Beweis:

Wir wählen $V = \{a, b\}$ und

$$L = L^{\omega}(N_{bfin}) = \{ w \in V^{\omega} \mid w(n) = b \text{ nur für endlich viele } n \}$$

Angenommen $L = \vec{K}$ für eine reguläre Menge $K \subseteq V^*$.

Es gibt ein $k_1 > 0$ mit $a^{k_1} \in K$, da $a^{\omega} \in L$.

Dann gibt es auch ein $k_2 > 0$ mit $a^{k_1}ba^{k_2} \in K$, weil $a^{k_1}ba^{\omega} \in L$.

Korollar

Es gibt Sprachen $L\subseteq V^\omega$, die von einem nicht-deterministischen Büchi-Automaten akzeptiert werden, aber von keinem deterministischen.

Beweis:

Wir wählen $V = \{a, b\}$ und

$$L = L^{\omega}(N_{bfin}) = \{ w \in V^{\omega} \mid w(n) = b \text{ nur für endlich viele } n \}$$

Angenommen $L = \vec{K}$ für eine reguläre Menge $K \subseteq V^*$.

Es gibt ein $k_1 > 0$ mit $a^{k_1} \in K$, da $a^{\omega} \in L$.

Dann gibt es auch ein $k_2 > 0$ mit $a^{k_1}ba^{k_2} \in K$, weil $a^{k_1}ba^{\omega} \in L$.

So fortfahrend gibt es $k_i > 0$ für alle i mit $a^{k_1}ba^{k_2}b\dots ba^{k_i} \in K$.

Korollar

Es gibt Sprachen $L\subseteq V^\omega$, die von einem nicht-deterministischen Büchi-Automaten akzeptiert werden, aber von keinem deterministischen.

Beweis:

Wir wählen $V = \{a, b\}$ und

$$L = L^{\omega}(N_{bfin}) = \{ w \in V^{\omega} \mid w(n) = b \text{ nur für endlich viele } n \}$$

Angenommen $L = \vec{K}$ für eine reguläre Menge $K \subseteq V^*$.

Es gibt ein $k_1 > 0$ mit $a^{k_1} \in K$, da $a^{\omega} \in L$.

Dann gibt es auch ein $k_2 > 0$ mit $a^{k_1}ba^{k_2} \in K$, weil $a^{k_1}ba^{\omega} \in L$.

So fortfahrend gibt es $k_i > 0$ für alle i mit $a^{k_1}ba^{k_2}b \dots ba^{k_i} \in K$.

Wegen $L = \vec{K}$ folgt daraus auch $a^{k_1}ba^{k_2}b\dots ba^{k_i}b\dots \in L$

Korollar

Es gibt Sprachen $L\subseteq V^\omega$, die von einem nicht-deterministischen Büchi-Automaten akzeptiert werden, aber von keinem deterministischen.

Beweis:

Wir wählen $V = \{a, b\}$ und

$$L = L^{\omega}(N_{bfin}) = \{ w \in V^{\omega} \mid w(n) = b \text{ nur für endlich viele } n \}$$

Angenommen $L = \vec{K}$ für eine reguläre Menge $K \subseteq V^*$.

Es gibt ein $k_1 > 0$ mit $a^{k_1} \in K$, da $a^{\omega} \in L$.

Dann gibt es auch ein $k_2 > 0$ mit $a^{k_1}ba^{k_2} \in K$, weil $a^{k_1}ba^{\omega} \in L$.

So fortfahrend gibt es $k_i > 0$ für alle i mit $a^{k_1}ba^{k_2}b \dots ba^{k_i} \in K$.

Wegen $L = \vec{K}$ folgt daraus auch $a^{k_1}ba^{k_2}b\dots ba^{k_i}b\dots \in L$ im Widerspruch zur Definition von L.

Sind L_1, L_2 ω -reguläre Sprachen und ist K eine reguläre Sprache, dann ist auch

1. $L_1 \cup L_2 \omega$ -regulär,

- 1. $L_1 \cup L_2 \omega$ -regulär,
- 2. K^{ω} ω -regulär, falls $\varepsilon \notin K$,

- 1. $L_1 \cup L_2 \omega$ -regulär,
- 2. K^{ω} ω -regulär, falls $\varepsilon \notin K$,
- 3. $KL_1 \omega$ -regulär,

- 1. $L_1 \cup L_2 \omega$ -regulär,
- 2. K^{ω} ω -regulär, falls $\varepsilon \notin K$,
- 3. $KL_1 \omega$ -regulär,
- 4. $V^{\omega} \setminus L_1 \omega$ -regulär,

- 1. $L_1 \cup L_2 \omega$ -regulär,
- 2. K^{ω} ω -regulär, falls $\varepsilon \notin K$,
- 3. $KL_1 \omega$ -regulär,
- 4. $V^{\omega} \setminus L_1 \omega$ -regulär,
- 5. $L_1 \cap L_2 \omega$ -regulär.

Seien
$$\mathcal{A}_i=(Q_i,V,s_0^i,\delta_i,F_i)$$
 für $i=1,2$ Büchi-Automaten und $L_i=L_i^\omega(\mathcal{A}_i)$.

Seien
$$\mathcal{A}_i=(Q_i,V,s_0^i,\delta_i,F_i)$$
 für $i=1,2$ Büchi-Automaten und $L_i=L_i^\omega(\mathcal{A}_i)$.

Wir können ohne Beschränkung der Allgemeinheit annehmen, daß $Q_1 \cap Q_2 = \emptyset$

Seien $\mathcal{A}_i=(Q_i,V,s_0^i,\delta_i,F_i)$ für i=1,2 Büchi-Automaten und $L_i=L_i^\omega(\mathcal{A}_i)$.

Wir können ohne Beschränkung der Allgemeinheit annehmen, daß $Q_1 \cap Q_2 = \emptyset$

Wir konstruieren einen Büchi-Automaten $\mathcal{A}=(Q,V,s_0,\delta,F)$, wobei s_0 ein neuer Zustand ist, der weder in Q_1 noch in Q_2 vorkommt.

Seien $\mathcal{A}_i=(Q_i,V,s_0^i,\delta_i,F_i)$ für i=1,2 Büchi-Automaten und $L_i=L_i^\omega(\mathcal{A}_i)$.

Wir können ohne Beschränkung der Allgemeinheit annehmen, daß $Q_1 \cap Q_2 = \emptyset$

Wir konstruieren einen Büchi-Automaten $\mathcal{A} = (Q, V, s_0, \delta, F)$, wobei s_0 ein neuer Zustand ist, der weder in Q_1 noch in Q_2 vorkommt.

$$egin{array}{lcl} Q & = & Q_1 \cup Q_2 \cup \{s_0\} \ \delta(q,a) & = & \delta_i(q,a) \ \delta(s_0,a) & = & \delta_1(s_0^1,a) \cup \delta_2(s_0^2,a) \ F & = & F_1 \cup F_2 \ \end{array} \qquad {
m falls} \ q \in Q_i$$

Seien
$$\mathcal{A}_i=(Q_i,V,s_0^i,\delta_i,F_i)$$
 für $i=1,2$ Büchi-Automaten und $L_i=L_i^\omega(\mathcal{A}_i)$.

Wir können ohne Beschränkung der Allgemeinheit annehmen, daß $Q_1 \cap Q_2 = \emptyset$

Wir konstruieren einen Büchi-Automaten $\mathcal{A} = (Q, V, s_0, \delta, F)$, wobei s_0 ein neuer Zustand ist, der weder in Q_1 noch in Q_2 vorkommt.

$$egin{array}{lll} Q & = & Q_1 \cup Q_2 \cup \{s_0\} \ \delta(q,a) & = & \delta_i(q,a) & ext{falls } q \in Q_i \ \delta(s_0,a) & = & \delta_1(s_0^1,a) \cup \delta_2(s_0^2,a) \ F & = & F_1 \cup F_2 & \end{array}$$

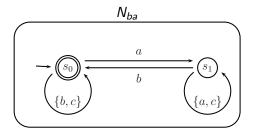
Man zeigt leicht, daß $L^{\omega}(\mathcal{A}) = L_1 \cup L_2$.

Abgeschlossenheit unter Iteration

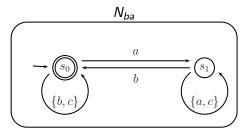
Der Automaten $\mathcal{B} = (Q_B, V, s_0^B, \delta_B, F_B)$ sei definiert durch:

$$\begin{array}{lll} Q_{B} & = & Q_{A} \\ s_{0}^{B} & = & s_{0}^{A} \\ \delta_{B}(q,a) & = & \delta_{A}(q,a) & \text{falls } q \in Q_{B} \\ \delta_{B}(q,\epsilon) & = & \{s_{0}^{B}\} & \text{falls } q \in F_{A} \\ F_{B} & = & \{s_{0}^{B}\} & \end{array}$$

$Beispiel\ zur\ Komplementbildung$

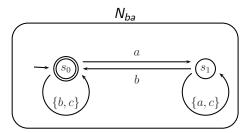


Beispiel zur Komplementbildung

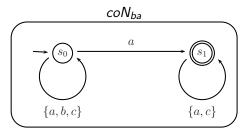


 $L^{\omega}(\textit{N}_{\textit{ba}}) = \{w \in \{\textit{a},\textit{b},\textit{c}\}^{\omega} \mid \text{ nach jedem } \textit{a} \text{ kommt ein } \textit{b}\}$

Beispiel zur Komplementbildung



 $L^{\omega}(N_{ba}) = \{ w \in \{a, b, c\}^{\omega} \mid \text{ nach jedem } a \text{ kommt ein } b \}$



Die Abgeschlossenheit ω -regulärer Mengen unter Komplementbildung muß noch bewiesen werden. (Siehe Skriptum)

Satz

 $L\subseteq V^\omega$ ist ω -regulär, genau dann, wenn L eine endliche Vereinigung von Mengen der Form

 JK^ω

für reguläre Mengen $J,K\subseteq V^*$ ist, wobei $\varepsilon\not\in K.$

Satz

 $L\subseteq V^\omega$ ist ω -regulär, genau dann, wenn L eine endliche Vereinigung von Mengen der Form

 JK^{ω}

für reguläre Mengen $J,K\subseteq V^*$ ist, wobei $\varepsilon\not\in K$.

Satz

 $L\subseteq V^\omega$ ist ω -regulär, genau dann, wenn L eine endliche Vereinigung von Mengen der Form

 JK^{ω}

für reguläre Mengen $J, K \subseteq V^*$ ist, wobei $\varepsilon \notin K$.

Beweis:

Sei $A=(Q,V,s_0,\delta,F)$ ein Büchi-Automat mit $L^{\omega}(A)=L$.

Satz

 $L\subseteq V^\omega$ ist ω -regulär, genau dann, wenn L eine endliche Vereinigung von Mengen der Form

$$JK^{\omega}$$

für reguläre Mengen $J, K \subseteq V^*$ ist, wobei $\varepsilon \notin K$.

Sei
$$A = (Q, V, s_0, \delta, F)$$
 ein Büchi-Automat mit $L^{\omega}(A) = L$.
Für $p, q \in Q$ sei

$$L_{p,q} = \{ w \in V^* \mid q \in \delta(p,w) \}$$

Satz

 $L\subseteq V^\omega$ ist ω -regulär, genau dann, wenn L eine endliche Vereinigung von Mengen der Form

$$JK^{\omega}$$

für reguläre Mengen $J, K \subseteq V^*$ ist, wobei $\varepsilon \notin K$.

Beweis:

Sei $A = (Q, V, s_0, \delta, F)$ ein Büchi-Automat mit $L^{\omega}(A) = L$. Für $p, q \in Q$ sei

$$L_{p,q} = \{ w \in V^* \mid q \in \delta(p,w) \}$$

Jedes $L_{p,q} \subseteq V^*$ ist eine reguläre Menge.

Satz

 $L\subseteq V^\omega$ ist ω -regulär, genau dann, wenn L eine endliche Vereinigung von Mengen der Form

$$JK^{\omega}$$

für reguläre Mengen $J, K \subseteq V^*$ ist, wobei $\varepsilon \notin K$.

Beweis:

Sei $A = (Q, V, s_0, \delta, F)$ ein Büchi-Automat mit $L^{\omega}(A) = L$. Für $p, q \in Q$ sei

$$L_{p,q} = \{ w \in V^* \mid q \in \delta(p,w) \}$$

Jedes $L_{p,q} \subseteq V^*$ ist eine reguläre Menge. Außerdem gilt

$$L = \bigcup_{p \in F} L_{s_0,p} L_{p,p}^{\omega}.$$

Satz

 $L\subseteq V^\omega$ ist ω -regulär, genau dann, wenn L eine endliche Vereinigung von Mengen der Form

$$JK^{\omega}$$

für reguläre Mengen $J, K \subseteq V^*$ ist, wobei $\varepsilon \notin K$.

Beweis:

Sei $A = (Q, V, s_0, \delta, F)$ ein Büchi-Automat mit $L^{\omega}(A) = L$. Für $p, q \in Q$ sei

$$L_{p,q} = \{ w \in V^* \mid q \in \delta(p,w) \}$$

Jedes $L_{p,q} \subseteq V^*$ ist eine reguläre Menge. Außerdem gilt

$$L=\bigcup_{p\in F}L_{s_0,p}L_{p,p}^{\omega}.$$

Die umgekehrte Implikation folgt aus den Abschlusseigenschaften.

Lemma

Zu jedem Büchi-Automaten $\mathcal{C}=(S,V,S_0,\delta,F)$ mit einer Menge von Anfangszuständen gibt es einen Büchi-Automaten \mathcal{A} mit einem einzigen Anfangszustand und

$$L^{\omega}(\mathcal{C}) = L^{\omega}(\mathcal{A})$$

Lemma

Zu jedem Büchi-Automaten $\mathcal{C}=(S,V,S_0,\delta,F)$ mit einer Menge von Anfangszuständen gibt es einen Büchi-Automaten \mathcal{A} mit einem einzigen Anfangszustand und

$$L^{\omega}(\mathcal{C}) = L^{\omega}(\mathcal{A})$$

Lemma

Zu jedem Büchi-Automaten $\mathcal{C}=(S,V,S_0,\delta,F)$ mit einer Menge von Anfangszuständen gibt es einen Büchi-Automaten \mathcal{A} mit einem einzigen Anfangszustand und

$$L^{\omega}(\mathcal{C}) = L^{\omega}(\mathcal{A})$$

Sei
$$S_i = \{s_1, ..., s_k\}.$$

Lemma

Zu jedem Büchi-Automaten $\mathcal{C}=(S,V,S_0,\delta,F)$ mit einer Menge von Anfangszuständen gibt es einen Büchi-Automaten \mathcal{A} mit einem einzigen Anfangszustand und

$$L^{\omega}(\mathcal{C}) = L^{\omega}(\mathcal{A})$$

Sei
$$S_i = \{s_1, \dots, s_k\}$$
.
Wir setzen $C_i = (S, V, s_i, \delta, F)$.

Lemma

Zu jedem Büchi-Automaten $\mathcal{C}=(S,V,S_0,\delta,F)$ mit einer Menge von Anfangszuständen gibt es einen Büchi-Automaten \mathcal{A} mit einem einzigen Anfangszustand und

$$L^{\omega}(\mathcal{C}) = L^{\omega}(\mathcal{A})$$

Sei
$$S_i = \{s_1, \dots, s_k\}$$
.
Wir setzen $C_i = (S, V, s_i, \delta, F)$.
Offensichtlich gilt $L^{\omega}(C) = \bigcup_{i=1}^k L^{\omega}(C_i)$.

Lemma

Zu jedem Büchi-Automaten $\mathcal{C}=(S,V,S_0,\delta,F)$ mit einer Menge von Anfangszuständen gibt es einen Büchi-Automaten \mathcal{A} mit einem einzigen Anfangszustand und

$$L^{\omega}(\mathcal{C}) = L^{\omega}(\mathcal{A})$$

Beweis:

Sei $S_i = \{s_1, \dots, s_k\}.$

Wir setzen $C_i = (S, V, s_i, \delta, F)$.

Offensichtlich gilt $L^{\omega}(\mathcal{C}) = \bigcup_{i=1}^{k} L^{\omega}(\mathcal{C}_i)$.

Die Existenz von $\mathcal A$ folgt jetzt aus dem Beweis der Abgeschlossenheit ω -regulärer Mengen unter Vereinigung.

Erweiterte Büchi-Automaten

Ein ω -Wort w wird von dem erweiterten Büchi-Automat

$$\mathcal{A} = (S, V, s_0, \delta, F_1, \dots, F_n)$$

akzeptiert, wenn es eine Berechungsfolge s für w gibt, die für jedes j, $1 \le j \le n$ unendlich viele Zustände aus F_j enthält.

Erweiterte Büchi-Automaten

Ein ω -Wort w wird von dem erweiterten Büchi-Automat

$$\mathcal{A} = (S, V, s_0, \delta, F_1, \dots, F_n)$$

akzeptiert, wenn es eine Berechungsfolge s für w gibt, die für jedes j, $1 \le j \le n$ unendlich viele Zustände aus F_j enthält. Also

$$\begin{array}{rcl} L^\omega(A) &=& \{w \in V^\omega \mid & \text{es gibt eine Berechnungsfolge s für w,} \\ & \text{so daß für jedes $j,1 \leq j \leq n$,} \\ & \text{die Menge } \{i \mid s_i \in F_j\} \text{ unendlich ist.} \} \end{array}$$

Erweiterte Büchi-Automaten Reduktion

Lemma

Zu jedem erweiterten Büchi-Automaten \mathcal{A}_e gibt es einen einfachen Büchi-Automaten \mathcal{A} mit

$$L^{\omega}(\mathcal{A}_e) = L^{\omega}(\mathcal{A})$$

