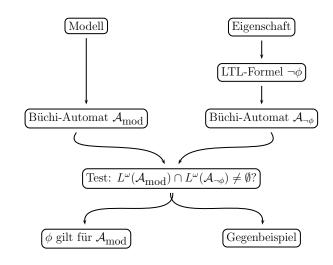
Formale Systeme

Prof. Dr. Bernhard Beckert

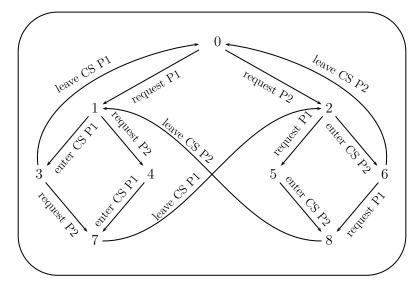
Fakultät für Informatik Universität Karlsruhe (TH)



Winter 2008/2009

Prof. Dr. Bernhard Beckert

Winter 2008/2009


$Modellpr \ddot{u} fung \ f \ddot{u} r \ LTL \ \ddot{v}_{bersicht}$

Prof. Dr. Bernhard Beckert

Winter 2008/2009

Exklusive Zugriffskontrolle $Ereignisbasiertes\ Automaten modell$

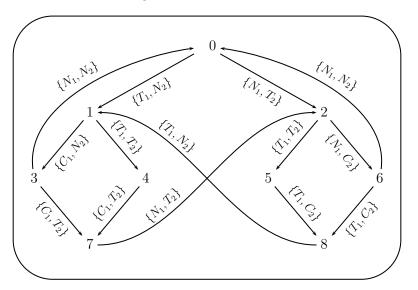
Aussagenlogische Signatur Σ

Für $i \in \{1, 2\}$:

Prozeß i befindet sich in einer nichtkritischen Region

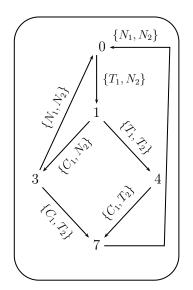
Prozeß i befindet sich in der Anmeldephase

Prozeß i befindet sich in einer kritischen Region


Automatenvokabular $V = 2^{\Sigma}$.

Ersetze die Ereignismarkierung einer Kante durch die Menge der Atome aus Σ , die im Zielzustand wahr werden.

Winter 2008/2009


Winter 2008/2009

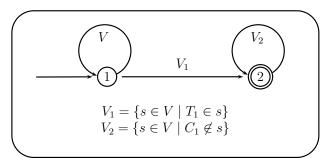
${\it Exklusive \ Zugriffskontrolle}$ $Aussagen basiertes\ Automaten modell$

Winter 2008/2009

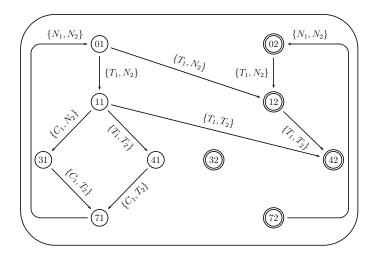
Reduzierter Automat A_{me}

Prof. Dr. Bernhard Beckert

Winter 2008/2009


Zu verifizierende Eigenschaft

Wenn Prozeß 1 sich zur exklusiven Nutzung der Ressource anmeldet, dann wird er schließlich auch den Zugang erhalten.


Als LTL-Formel: $\Box (T_1 \rightarrow \Diamond C_1)$

Negierte Formel: $\Diamond (T_1 \land \Box \neg C_1)$

Büchi-Automat \mathcal{B}_{em} dazu:

Produktautomat $\mathcal{A}_{me} \times \mathcal{B}_{me}$

Offensichtlich gilt: $L^{\omega}(\mathcal{A}_{me} \times \mathcal{B}_{me}) = \emptyset$