

Formale Systeme

Aussagenlogik: Syntax und Semantik

Prof. Dr. Bernhard Beckert | WS 2010/2011

KIT - University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

Sudoku

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Sudoku

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Vervollständigen Sie das Sudoku so, dass

- in jeder der neun Spalten
- in jeder der neun Reihen
- und in jeder der neun Regionen

alle Zahlen von 1 bis 9 vorkommen.

Sudoku

5	3	4	6	7	8	9	1	2
6	7	2	1	9	5	3	4	8
1	9	8	3	4	2	5	6	7
8	5	9	7	6	1	4	2	3
4	2	6	8	5	3	7	9	1
7	1	3	9	2	4	8	5	6
9	6	1	5	3	7	2	8	4
2	8	7	4	1	9	6	3	5
3	4	5	2	8	6	1	7	9

Lösungsweg via Aussagenlogik

Wir führen für jede Zellenposition (i,j) des Sudoku und jede Zahl k zwischen 1 und 9 eine Boolesche Variable

$$D_{i,j}^k$$

ein, mit der Vorstellung, dass $D_{i,j}^k$ den Wert wahr hat, wenn auf dem Feld (i,j) die Zahl k steht.

Wir benutzen kartesische Koordinaten zur Notation von Positionen.

So ist z.B. $D_{9,1}^9$ wahr, wenn in der rechten unteren Ecke die Zahl 9 steht.

Lösungsweg via Aussagenlogik

Wir führen für jede Zellenposition (i,j) des Sudoku und jede Zahl k zwischen 1 und 9 eine Boolesche Variable

$$D_{i,j}^k$$

ein, mit der Vorstellung, dass $D_{i,j}^k$ den Wert wahr hat, wenn auf dem Feld (i,j) die Zahl k steht.

Wir benutzen kartesische Koordinaten zur Notation von Positionen.

So ist z.B. $D_{9,1}^9$ wahr, wenn in der rechten unteren Ecke die Zahl 9 steht.

Lösungsweg via Aussagenlogik

Wir führen für jede Zellenposition (i,j) des Sudoku und jede Zahl k zwischen 1 und 9 eine Boolesche Variable

$$D_{i,j}^k$$

ein, mit der Vorstellung, dass $D_{i,j}^k$ den Wert wahr hat, wenn auf dem Feld (i,j) die Zahl k steht.

Wir benutzen kartesische Koordinaten zur Notation von Positionen.

So ist z.B. $D_{9,1}^9$ wahr, wenn in der rechten unteren Ecke die Zahl 9 steht.

Sudoku Regeln als AL-Formeln

$$D_{1,9}^{1} \lor D_{2,9}^{1} \lor D_{3,9}^{1} \lor D_{4,9}^{1} \lor D_{5,9}^{1} \lor D_{6,9}^{1} \lor D_{7,9}^{1} \lor D_{8,9}^{1} \lor D_{9,9}^{1}$$

sagt, dass die Ziffer 1 mindestens einmal in der ersten Zeile vorkommen muß.

$$D_{1,1}^1 \vee D_{1,2}^1 \vee D_{1,3}^1 \vee D_{1,4}^1 \vee D_{1,5}^1 \vee D_{1,6}^1 \vee D_{1,7}^1 \vee D_{1,8}^1 \vee D_{1,9}^1$$

sagt, dass die Ziffer 1 mindestens einmal in der ersten Spalte vorkommen muß.

$$D_{1,1}^1 \vee D_{1,2}^1 \vee D_{1,3}^1 \vee D_{2,1}^1 \vee D_{2,2}^1 \vee D_{2,3}^1 \vee D_{3,1}^1 \vee D_{3,2}^1 \vee D_{3,3}^1$$

sagt, dass die Ziffer 1 mindestens einmal in der Region links unten vorkommen muss

Sudoku Regeln als AL-Formeln

$$\textit{D}_{1,9}^{1} \lor \textit{D}_{2,9}^{1} \lor \textit{D}_{3,9}^{1} \lor \textit{D}_{4,9}^{1} \lor \textit{D}_{5,9}^{1} \lor \textit{D}_{6,9}^{1} \lor \textit{D}_{7,9}^{1} \lor \textit{D}_{8,9}^{1} \lor \textit{D}_{9,9}^{1}$$

sagt, dass die Ziffer 1 mindestens einmal in der ersten Zeile vorkommen muß.

$$D_{1,1}^1 \vee D_{1,2}^1 \vee D_{1,3}^1 \vee D_{1,4}^1 \vee D_{1,5}^1 \vee D_{1,6}^1 \vee D_{1,7}^1 \vee D_{1,8}^1 \vee D_{1,9}^1$$

sagt, dass die Ziffer 1 mindestens einmal in der ersten Spalte vorkommen muß.

$$D_{1,1}^1 \vee D_{1,2}^1 \vee D_{1,3}^1 \vee D_{2,1}^1 \vee D_{2,2}^1 \vee D_{2,3}^1 \vee D_{3,1}^1 \vee D_{3,2}^1 \vee D_{3,3}^1$$

sagt, dass die Ziffer 1 mindestens einmal in der Region links unten vorkommen muss

Sudoku Regeln als AL-Formeln

$$D_{1,9}^1 \lor D_{2,9}^1 \lor D_{3,9}^1 \lor D_{4,9}^1 \lor D_{5,9}^1 \lor D_{6,9}^1 \lor D_{7,9}^1 \lor D_{8,9}^1 \lor D_{9,9}^1$$

sagt, dass die Ziffer 1 mindestens einmal in der ersten Zeile vorkommen muß.

$$D_{1,1}^1 \vee D_{1,2}^1 \vee D_{1,3}^1 \vee D_{1,4}^1 \vee D_{1,5}^1 \vee D_{1,6}^1 \vee D_{1,7}^1 \vee D_{1,8}^1 \vee D_{1,9}^1$$

sagt, dass die Ziffer 1 mindestens einmal in der ersten Spalte vorkommen muß.

$$\textit{D}_{1,1}^{1} \lor \textit{D}_{1,2}^{1} \lor \textit{D}_{1,3}^{1} \lor \textit{D}_{2,1}^{1} \lor \textit{D}_{2,2}^{1} \lor \textit{D}_{2,3}^{1} \lor \textit{D}_{3,1}^{1} \lor \textit{D}_{3,2}^{1} \lor \textit{D}_{3,3}^{1}$$

sagt, dass die Ziffer 1 mindestens einmal in der Region links unten vorkommen muss.

Die bisherigen Formeln beschreiben Sudoku noch nicht genau.

Man muss noch sagen, dass auf jeder Zelle höchstens eine Zahl stehen kann.

$$\neg (D_{1,1}^{1} \wedge D_{1,1}^{2}), \ \neg (D_{1,1}^{1} \wedge D_{1,1}^{3}), \ \neg (D_{1,1}^{1} \wedge D_{1,1}^{4}), \ \neg (D_{1,1}^{1} \wedge D_{1,1}^{5}), \ \neg (D_{1,1}^{1} \wedge D_{1,1}^{6}), \ \neg (D_{1,1}^{2} \wedge D_{1,1}^{5}), \ \neg (D_{1,1}^{2} \wedge D_{1,1}^{5}), \ \neg (D_{1,1}^{2} \wedge D_{1,1}^{6}), \ \neg (D_{1,1}^{3} \wedge D_{1,1}^{4}), \ \neg (D_{1,1}^{2} \wedge D_{1,1}^{6}), \ \neg (D_{1,1}^{3} \wedge D_{1,1}^{4}), \ \neg (D_{1,1}^{3} \wedge D_{1,1}^{4}),$$

Die bisherigen Formeln beschreiben Sudoku noch nicht genau.

Man muss noch sagen, dass auf jeder Zelle höchstens eine Zahl stehen kann.

$$\neg (D_{1,1}^{1} \wedge D_{1,1}^{2}), \neg (D_{1,1}^{1} \wedge D_{1,1}^{3}), \neg (D_{1,1}^{1} \wedge D_{1,1}^{4}), \neg (D_{1,1}^{1} \wedge D_{1,1}^{5})
\neg (D_{1,1}^{1} \wedge D_{1,1}^{6}), \neg (D_{1,1}^{1} \wedge D_{1,1}^{7}), \neg (D_{1,1}^{1} \wedge D_{1,1}^{8}), \neg (D_{1,1}^{1} \wedge D_{1,1}^{9})
\neg (D_{1,1}^{2} \wedge D_{1,1}^{3}), \neg (D_{1,1}^{2} \wedge D_{1,1}^{4}), \neg (D_{1,1}^{2} \wedge D_{1,1}^{5}), \neg (D_{1,1}^{2} \wedge D_{1,1}^{6})
\neg (D_{1,1}^{2} \wedge D_{1,1}^{7}), \neg (D_{1,1}^{2} \wedge D_{1,1}^{8}), \neg (D_{1,1}^{2} \wedge D_{1,1}^{9}), \neg (D_{1,1}^{3} \wedge D_{1,1}^{4})
USW$$

Die bisherigen Formeln beschreiben Sudoku noch nicht genau.

Man muss noch sagen, dass auf jeder Zelle höchstens eine Zahl stehen kann.

$$\begin{split} \neg(D_{1,1}^1 \wedge D_{1,1}^2), \ \neg(D_{1,1}^1 \wedge D_{1,1}^3), \ \neg(D_{1,1}^1 \wedge D_{1,1}^4), \ \neg(D_{1,1}^1 \wedge D_{1,1}^5), \\ \neg(D_{1,1}^1 \wedge D_{1,1}^6), \ \neg(D_{1,1}^1 \wedge D_{1,1}^7), \ \neg(D_{1,1}^1 \wedge D_{1,1}^8), \ \neg(D_{1,1}^1 \wedge D_{1,1}^8), \ \neg(D_{1,1}^2 \wedge D_{1,1}^4), \ \neg(D_{1,1}^2 \wedge D_{1,1}^5), \ \neg(D_{1,1}^2 \wedge D_{1,1}^6), \ \neg(D_{1,1}^2 \wedge D_{1,1}^7), \ \neg(D_{1,1}^2 \wedge D_{1,1}^8), \ \neg(D_{1,1}^2 \wedge D_{1,1}^8), \ \neg(D_{1,1}^2 \wedge D_{1,1}^8), \ \neg(D_{1,1}^2 \wedge D_{1,1}^8), \ \neg(D_{1,1}^3 \wedge D_{1,1}^4), \ \text{usw.} \end{split}$$

Allgemein:

$$\neg (D_{i,j}^s \wedge D_{i,j}^t)$$

für alle $1 \le i, j, s, t \le 9$ mit s < t.

Ergibt 81 * 36 = 2916 Formeln

Allgemein:

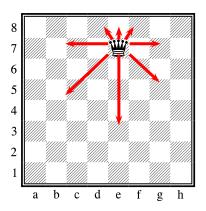
$$\neg (D_{i,j}^s \wedge D_{i,j}^t)$$

für alle $1 \le i, j, s, t \le 9$ mit s < t.

Ergibt 81 * 36 = 2916 Formeln.

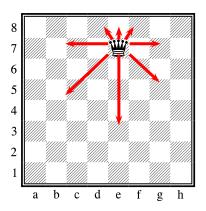
Das 8-Damen-Problem

Man plaziere acht Damen so auf einem Schachbrett, dass sie sich gegenseitig nicht bedrohen.

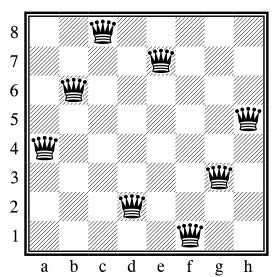


Das 8-Damen-Problem

Man plaziere acht Damen so auf einem Schachbrett, dass sie sich gegenseitig nicht bedrohen.



Eine Lösung des 8-Damen-Problems



Wiederholung

Syntax und Semantik der Aussagenlogik

- 1 Symbol für den Wahrheitswert "wahr"
- O Symbol für den Wahrheitswert "falsch"
- Negationssymbol ("nicht")
- ∧ Konjunktionssymbol ("und")
- ∨ Disjunktionssymbol ("oder")
- ightarrow Implikationssymbol ("wenn \dots dann")
- → Symbol für beiderseitige Implikation ("genau dann, wenn")
- (,) die beiden Klammern

- 1 Symbol für den Wahrheitswert "wahr"
- O Symbol für den Wahrheitswert "falsch"
- Negationssymbol ("nicht")
- ∧ Konjunktionssymbol ("und")
- ∨ Disjunktionssymbol ("oder")
- ightarrow Implikationssymbol ("wenn \dots dann")
- → Symbol für beiderseitige Implikation ("genau dann, wenn")
- (,) die beiden Klammern

- 1 Symbol für den Wahrheitswert "wahr"
- 0 Symbol für den Wahrheitswert "falsch"
- Negationssymbol ("nicht")
- ∧ Konjunktionssymbol ("und")
- Disjunktionssymbol ("oder")
- ightarrow Implikationssymbol ("wenn \dots dann")
- Symbol für beiderseitige Implikation ("genau dann, wenn")
- (,) die beiden Klammern

- 1 Symbol für den Wahrheitswert "wahr"
- 0 Symbol für den Wahrheitswert "falsch"
- Negationssymbol ("nicht")
- ∧ Konjunktionssymbol ("und")
- Disjunktionssymbol ("oder")
- → Implikationssymbol ("wenn ... dann")
- (,) die beiden Klammern

- 1 Symbol für den Wahrheitswert "wahr"
- 0 Symbol für den Wahrheitswert "falsch"
- ¬ Negationssymbol ("nicht")
- ∧ Konjunktionssymbol ("und")
- Disjunktionssymbol ("oder")
- ightarrow Implikationssymbol ("wenn \dots dann")
- → Symbol f
 ür beiderseitige Implikation ("genau dann, wenn")
- (,) die beiden Klammern

- 1 Symbol für den Wahrheitswert "wahr"
- 0 Symbol für den Wahrheitswert "falsch"
- Negationssymbol ("nicht")
- ∧ Konjunktionssymbol ("und")
- ∨ Disjunktionssymbol ("oder")
- ightarrow Implikationssymbol ("wenn \dots dann")
- → Symbol f
 ür beiderseitige Implikation ("genau dann, wenn")
- (,) die beiden Klammerr

- 1 Symbol für den Wahrheitswert "wahr"
- 0 Symbol für den Wahrheitswert "falsch"
- Negationssymbol ("nicht")
- ∧ Konjunktionssymbol ("und")
- Disjunktionssymbol ("oder")
- → Implikationssymbol ("wenn ... dann")
- (,) die beiden Klammerr

- 1 Symbol für den Wahrheitswert "wahr"
- 0 Symbol für den Wahrheitswert "falsch"
- Negationssymbol ("nicht")
- ∧ Konjunktionssymbol ("und")
- ∨ Disjunktionssymbol ("oder")
- → Implikationssymbol ("wenn ... dann")
- → Symbol für beiderseitige Implikation ("genau dann, wenn")
- (,) die beiden Klammern

- 1 Symbol für den Wahrheitswert "wahr"
- 0 Symbol für den Wahrheitswert "falsch"
- Negationssymbol ("nicht")
- ∧ Konjunktionssymbol ("und")
- ∨ Disjunktionssymbol ("oder")
- → Implikationssymbol ("wenn ... dann")
- → Symbol für beiderseitige Implikation ("genau dann, wenn")
- (,) die beiden Klammern

Signatur

Eine (aussagenlogische) Signatur ist eine abzählbare Menge Σ von Symbolen, etwa

$$\Sigma = \{P_0, \ldots, P_n\}$$

oder

$$\Sigma = \{P_0, P_1, \ldots\}.$$

Die Elemente von Σ heißen auch *atomare Aussagen*, *Atome* oder *Aussagevariablen*.

Formeln der Aussagenlogik

Zur Signatur Σ ist $For0_{\Sigma}$, die Menge der

Formeln über Σ

induktiv definiert durch

- **1** ∈ For0_Σ **0** ∈ For0_Σ Σ ⊂ For0_Σ
 - lacksquare wenn $A,B\in For 0_\Sigma$ dann sind auch

$$\neg A$$

 $(A \land B)$
 $(A \lor B)$
 $(A \to B)$
 $(A \leftrightarrow B)$

Elemente von $For0_{\Sigma}$

Formeln der Aussagenlogik

Zur Signatur Σ ist $For0_{\Sigma}$, die Menge der

Formeln über Σ

induktiv definiert durch

- $\mathbf{1} \in For0_{\Sigma}$ $\mathbf{0} \in For0_{\Sigma}$
 - $\Sigma \subseteq \textit{For} 0_{\Sigma}$
- wenn $A, B \in For0_{\Sigma}$ dann sind auch
 - $\neg A$
 - $(A \wedge B)$
 - $(A \vee B)$
 - $(A \rightarrow B)$
 - $(A \leftrightarrow B)$

Elemente von $For0_{\Sigma}$

Semantik der Aussagenlogik

Interpretation

Es sei Σ eine aussagenlogische Signatur. Eine Interpretation über Σ ist eine beliebige Abbildung

$$I: \Sigma \to \{W, F\}.$$

Semantik der Aussagenlogik

Auswertung

Zu jedem I über Σ wird eine zugehörige Auswertung der Formeln über Σ definiert

$$\textit{val}_{\textit{I}}:\textit{For}0_{\Sigma} \rightarrow \{\textit{W},\textit{F}\}$$

mit:

$$val_{I}(\mathbf{1}) = W$$

 $val_{I}(\mathbf{0}) = F$
 $val_{I}(P) = I(P)$ für jedes $P \in \Sigma$

$$val_I(\neg A) = \begin{cases} F & \text{falls} \quad val_I(A) = W \\ W & \text{falls} \quad val_I(A) = F \end{cases}$$

Semantik der Aussagenlogik

Auswertung (Forts.)

 val_I auf $(A \land B), (A \lor B), (A \to B), (A \leftrightarrow B)$ wird gemäß der folgenden Tabelle berechnet

		val _l	val _l	val _l	val _l
$val_l(A)$	val _l (B)	$(A \wedge B)$	$(A \lor B)$	$(A \rightarrow B)$	$(A \leftrightarrow B)$
W	W	W	W	W	W
W	F	F	W	F	F
F	W	F	W	W	F
F	F	F	F	W	W

Quiz

1
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$

Quiz

1
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$
 ja

1
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$
 ja
2 $\neg (A \rightarrow B) \leftrightarrow (A \land \neg B)$

1
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$
 ja
2 $\neg (A \rightarrow B) \leftrightarrow (A \land \neg B)$ ja

1
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$
 ja
2 $\neg (A \rightarrow B) \leftrightarrow (A \land \neg B)$ ja
3 $\neg (A \lor B) \rightarrow (A \lor B)$

1
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$
 ja
2 $\neg (A \rightarrow B) \leftrightarrow (A \land \neg B)$ ja
3 $\neg (A \lor B) \rightarrow (A \lor B)$ nein

1
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$
 ja
2 $\neg (A \rightarrow B) \leftrightarrow (A \land \neg B)$ ja
3 $\neg (A \lor B) \rightarrow (A \lor B)$ nein
4 $(A \rightarrow B) \rightarrow (\neg A \rightarrow \neg B)$

1
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$
 ja
2 $\neg (A \rightarrow B) \leftrightarrow (A \land \neg B)$ ja
3 $\neg (A \lor B) \rightarrow (A \lor B)$ nein
4 $(A \rightarrow B) \rightarrow (\neg A \rightarrow \neg B)$ nein

1
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$
 ja
2 $\neg (A \rightarrow B) \leftrightarrow (A \land \neg B)$ ja
3 $\neg (A \lor B) \rightarrow (A \lor B)$ nein
4 $(A \rightarrow B) \rightarrow (\neg A \rightarrow \neg B)$ nein
5 $(\neg A \lor B) \lor (A \land \neg B)$

1
$$(A \rightarrow B) \rightarrow (\neg B \rightarrow \neg A)$$
 ja
2 $\neg (A \rightarrow B) \leftrightarrow (A \land \neg B)$ ja
3 $\neg (A \lor B) \rightarrow (A \lor B)$ nein
4 $(A \rightarrow B) \rightarrow (\neg A \rightarrow \neg B)$ nein
5 $(\neg A \lor B) \lor (A \land \neg B)$ ja

- Ein Modell einer Formel $A \in For0_{\Sigma}$ ist eine Interpretation I über Σ mit $val_I(A) = W$.
- Zu einer Formelmenge $M \subseteq For0_{\Sigma}$ ist ein Modell von M eine Interpretation I, welche Modell von jedem $A \in M$ ist.
- $A \in For0_{\Sigma}$ heißt allgemeingültig gdw $val_{I}(A) = W$ für jede Interpretation I über Σ .
- and $A \in ForO_{\Sigma}$ hellst erfullbar gdw es gibt eine Interpretation I über Σ mit $val_I(A) = W$.

- Ein Modell einer Formel $A \in For0_{\Sigma}$ ist eine Interpretation I über Σ mit $val_I(A) = W$.
- Zu einer Formelmenge $M \subseteq For0_{\Sigma}$ ist ein Modell von M eine Interpretation I, welche Modell von jedem $A \in M$ ist.
- gdw $val_I(A) = W$ für jede Interpretation / über Σ
- gdw es gibt eine Interpretation I über Σ mit $val_I(A) = W$.

- Ein Modell einer Formel $A \in For0_{\Sigma}$ ist eine Interpretation I über Σ mit $val_I(A) = W$.
- Zu einer Formelmenge $M \subseteq For0_{\Sigma}$ ist ein Modell von M eine Interpretation I, welche Modell von jedem $A \in M$ ist.
- A ∈ For0_Σ heißt allgemeingültig gdw
 val_I(A) = W für jede Interpretation I über Σ.
- A ∈ For0_Σ heißt erfüllbar
 gdw
 es gibt eine Interpretation / über Σ mit val_I(A) = W.

- Ein Modell einer Formel $A \in For0_{\Sigma}$ ist eine Interpretation I über Σ mit $val_I(A) = W$.
- Zu einer Formelmenge $M \subseteq For0_{\Sigma}$ ist ein Modell von M eine Interpretation I, welche Modell von jedem $A \in M$ ist.
- A ∈ For0_Σ heißt allgemeingültig gdw
 val_I(A) = W für jede Interpretation I über Σ.
- A ∈ For0_Σ heißt erfüllbar gdw
 es gibt eine Interpretation / über Σ mit val_I(A) = W.

Logische Grundbegriffe (Forts.)

Definition

 Σ sei eine Signatur, $M \subseteq For0_{\Sigma}$, $A, B \in For0_{\Sigma}$.

- M ⊨ A lies: aus M folgt A gdw
 Jedes Modell von M ist auch Modell von A.
- $A, B \in For0_{\Sigma}$ heißen logisch äquivalent gdw $A \models_{\Sigma} B \text{ und } B \models_{\Sigma} A$

Logische Grundbegriffe (Forts.)

Definition

 Σ sei eine Signatur, $M \subseteq For0_{\Sigma}$, $A, B \in For0_{\Sigma}$.

- M ⊨ A lies: aus M folgt A gdw
 Jedes Modell von M ist auch Modell von A.
- $A, B \in For0_{\Sigma}$ heißen logisch äquivalent gdw $A \models_{\Sigma} B$ und $B \models_{\Sigma} A$

Beispiele allgemeingültiger Formeln

$$A \rightarrow A$$

 $\neg A \lor A$
 $A \rightarrow (B \rightarrow A)$
 $\mathbf{0} \rightarrow A$
 $(A \land (A \rightarrow B)) \rightarrow B$
 $A \land A \leftrightarrow A$
 $(\neg \neg A) \leftrightarrow A$
 $(\neg \neg A) \leftrightarrow A$
 $(A \land B) \leftrightarrow ((A \rightarrow B) \land (B \rightarrow A))$
 $A \land (B \lor C) \leftrightarrow (A \land B) \lor (A \land C)$
 $A \lor (B \land C) \leftrightarrow (A \lor B) \land (A \lor C)$

Selbstimplikation Tertium non datur Abschwächung Ex falso quodlibet Modus Ponens Idempotenz Doppelnegation Absorption Aguivalenz/Implikation Distributivität Distributivität

Beispiele allgemeingültiger Formeln (Forts.)

$$(A \rightarrow B) \leftrightarrow (\neg B \rightarrow \neg A)$$
 Kontraposition $(A \rightarrow (B \rightarrow C)) \leftrightarrow$ $((A \rightarrow B) \rightarrow (A \rightarrow C))$ Verteilen $\neg (A \lor B) \leftrightarrow \neg A \land \neg B$ De Morgan $\neg (A \land B) \leftrightarrow \neg A \lor \neg B$ De Morgan

- A erfüllbar gdw ¬A nicht allgemeingültig
- |= A gdw A ist allgemeingültig
- |= ¬A gdw A ist unerfüllbar
- $\blacksquare A \models B \quad gdw \quad \models A \rightarrow B$
- $\blacksquare M \cup \{A\} \models B \quad gdw \quad M \models A \rightarrow B$
- A, B sind logisch äquivalent gdw
 A ← B ist allgemeingültig

- A erfüllbar gdw ¬A nicht allgemeingültig
- |= A gdw A ist allgemeingültig
- $\blacksquare A \models B \quad gdw \quad \models A \rightarrow B$
- $\blacksquare M \cup \{A\} \models B \quad gdw \quad M \models A \rightarrow B$
- A, B sind logisch äquivalent gdwA ← B ist allgemeingültig

- A erfüllbar gdw ¬A nicht allgemeingültig
- |= A gdw A ist allgemeingültig
- $\blacksquare \models \neg A$ gdw A ist unerfüllbar
- $\blacksquare A \models B \quad gdw \quad \models A \rightarrow B$
- $\blacksquare \ M \cup \{A\} \models B \quad \textit{gdw} \quad M \models A \rightarrow B$
- A, B sind logisch äquivalent gdw
 A ↔ B ist allgemeingültig

- A erfüllbar gdw ¬A nicht allgemeingültig
- |= A gdw A ist allgemeingültig
- lacktriangle $\models \neg A$ gdw A ist unerfüllbar
- $\blacksquare A \models B \quad gdw \quad \models A \rightarrow B$
- $\blacksquare \ M \cup \{A\} \models B \quad \textit{gdw} \quad M \models A \rightarrow B$
- A, B sind logisch äquivalent gdwA ← B ist allgemeingültig

- A erfüllbar gdw ¬A nicht allgemeingültig
- |= A gdw A ist allgemeingültig
- $\blacksquare \models \neg A$ gdw A ist unerfüllbar
- $\blacksquare A \models B \quad gdw \quad \models A \rightarrow B$
- $\blacksquare M \cup \{A\} \models B \quad gdw \quad M \models A \rightarrow B$
- A, B sind logisch äquivalent gdwA ← B ist allgemeingültig

- A erfüllbar gdw ¬A nicht allgemeingültig
- |= A gdw A ist allgemeingültig
- |= ¬A gdw A ist unerfüllbar
- $\blacksquare A \models B \quad gdw \quad \models A \rightarrow B$
- $\blacksquare \ \ M \cup \{A\} \models B \quad \ gdw \quad \ M \models A \rightarrow B$
- A, B sind logisch äquivalent gdw
 A ← B ist allgemeingültig

Logische Umformung

Theorem

Wenn

- A und B logisch äquivalent
- A Unterformel von C
- C' entsteht aus C dadurch, dass A durch B ersetzt wird

dann

C und C' logisch äquivalent