

Formale Systeme

Aussagenlogik: Tableaukalkül

Prof. Dr. Bernhard Beckert | WS 2010/2011

KIT - University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

- Hilbert-Kalkül
- Resolutionskalkül
- Tableaukalkül
- Sequenzenkalkül

- Hilbert-Kalkül
- 2 Resolutionskalkül
- Tableaukalkül
- Sequenzenkalkül

- 4 Hilbert-Kalkül
- 2 Resolutionskalkül
- 3 Tableaukalkül
- Sequenzenkalkül

- 4 Hilbert-Kalkül
- Resolutionskalkül
- Tableaukalkül
- Sequenzenkalkül

Wesentliche Eigenschaften

Widerlegungskalkül: Testet auf Unerfüllbarkeit

$$M \models A \Leftrightarrow M \cup \{\neg A\} \vdash_{\mathsf{T0}} \mathsf{0}.$$

- Beweis durch Fallunterscheidung
- Top-down-Analyse der gegebenen Formeln

Wesentliche Eigenschaften

Widerlegungskalkül: Testet auf Unerfüllbarkeit

$$M \models A \Leftrightarrow M \cup \{\neg A\} \vdash_{\mathsf{T0}} \mathsf{0}.$$

- Beweis durch Fallunterscheidung
- Top-down-Analyse der gegebenen Formeln

Wesentliche Eigenschaften

Widerlegungskalkül: Testet auf Unerfüllbarkeit

$$M \models A \Leftrightarrow M \cup \{\neg A\} \vdash_{\mathsf{T0}} \mathsf{0}.$$

- Beweis durch Fallunterscheidung
- Top-down-Analyse der gegebenen Formeln

Vorteile

- Intuitiver als Resolution
- Formeln müssen nicht in Normalform sein
- Falls Formelmenge erfüllbar ist (Test schlägt fehl),
 wird ein Gegenbeispiel (eine erfüllende Interpretation)
 konstruiert

Nachtei

Vorteile

- Intuitiver als Resolution
- Formeln müssen nicht in Normalform sein
- Falls Formelmenge erfüllbar ist (Test schlägt fehl), wird ein Gegenbeispiel (eine erfüllende Interpretation) konstruiert

Nachtei

Vorteile

- Intuitiver als Resolution
- Formeln müssen nicht in Normalform sein
- Falls Formelmenge erfüllbar ist (Test schlägt fehl), wird ein Gegenbeispiel (eine erfüllende Interpretation) konstruiert

Nachtei

Vorteile

- Intuitiver als Resolution
- Formeln müssen nicht in Normalform sein
- Falls Formelmenge erfüllbar ist (Test schlägt fehl), wird ein Gegenbeispiel (eine erfüllende Interpretation) konstruiert

Nachtei

Vorteile

- Intuitiver als Resolution
- Formeln müssen nicht in Normalform sein
- Falls Formelmenge erfüllbar ist (Test schlägt fehl), wird ein Gegenbeispiel (eine erfüllende Interpretation) konstruiert

Nachteil

Kleine Deutsch- und Englischsstunde

Deutsch

```
das Tableau
```

des Tableaus (Gen.)
die Tableaus (pl.)
der Tableaukalkül (*nicht* das)

Englisch

```
the tableau (sing.)
the tableaux (pl.)
the tableau calculus
```

Kleine Deutsch- und Englischsstunde

Deutsch

```
das Tableau
```

 $\begin{array}{lll} \text{des} & \text{Tableau}\underline{s} & \text{(Gen.)} \\ \text{die} & \text{Tableau}\underline{s} & \text{(pl.)} \end{array}$

der Tableaukalkül (nicht das)

Englisch

```
the tableau (sing.)
the tableaux (pl.)
the tableau calculus
```

Kleine Deutsch- und Englischsstunde

Deutsch

```
das Tableau

des Tableaus (Gen.)

die Tableaus (pl.)

der Tableaukalkül (nicht das)
```

Englisch

```
the tableau (sing.)
the tableaux (pl.)
the tableau calculus
```

Vorzeichenformel

Definition (Vorzeichenformel)

Eine Vorzeichenformel ist eine Zeichenkette der Gestalt

 $0A ext{ oder } 1A ext{ mit } A \in For 0.$

0, 1 sind neue Sonderzeichen (die Vorzeichen) im Alphabet der Objektsprache.

Wir setzen *val*_l fort auf die Menge aller Vorzeichenformeln durch

 $val_I(0A) = val_I(\neg A)$

und

 $val_i(1A) = val_i(A).$

Vorzeichenformel

Definition (Vorzeichenformel)

Eine Vorzeichenformel ist eine Zeichenkette der Gestalt

 $0A ext{ oder } 1A ext{ mit } A \in For 0.$

0, 1 sind neue Sonderzeichen (die Vorzeichen) im Alphabet der Objektsprache.

Wir setzen *vali* fort auf die Menge aller Vorzeichenformeln durch

 $val_1(0A) = val_1(\neg A)$

und

 $val_i(1A) = val_i(A)$.

Vorzeichenformel

Definition (Vorzeichenformel)

Eine Vorzeichenformel ist eine Zeichenkette der Gestalt

 $0A ext{ oder } 1A ext{ mit } A \in For 0.$

0, 1 sind neue Sonderzeichen (die Vorzeichen) im Alphabet der Objektsprache.

Definition

Wir setzen *val_I* fort auf die Menge aller Vorzeichenformeln durch

$$val_I(0A) = val_I(\neg A),$$

und

$$val_l(1A) = val_l(A)$$
.

Konjunktive Formeln: Typ α

- 1(*A* ∧ *B*)
- \bullet 0($A \lor B$)
- **■** 0(*A* → *B*)
- 0¬A
- 1¬A

Disjunktive Formeln: Typ β

- $0(A \wedge B)$
- \blacksquare 1($A \lor B$
- $= 1(A \rightarrow F)$

Konjunktive Formeln: Typ α

- 1(*A* ∧ *B*)
- \bullet 0($A \lor B$)
- 0(*A* → *B*)
- 0¬A
- 1¬A

Disjunktive Formeln: Typ β

- $0(A \wedge B)$
- \blacksquare 1($A \lor B$
- _ 1(/

Konjunktive Formeln: Typ α

- 1(*A* ∧ *B*)
- 0(*A* ∨ *B*)
- 0(*A* → *B*)
- 0¬A
- 1¬A

Disjunktive Formeln: Typ β

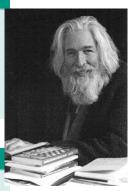
- 0(*A* ∧ *B*)
- 1(*A* ∨ *B*)
- 1(*A* → *B*)

Konjunktive Formeln: Typ α

- 1(*A* ∧ *B*)
- 0(*A* ∨ *B*)
- 0(A → B)
- 0¬A
- 1¬A

Disjunktive Formeln: Typ β

- 0(*A* ∧ *B*)
- 1(*A* ∨ *B*)
- 1(*A* → *B*)



Raymond Smullyan

Zuordnungsregeln Formeln / Unterformeln

α	α_1	$lpha_{2}$
$1(A \wedge B)$	1 <i>A</i>	1 <i>B</i>
$0(A \vee B)$	0 <i>A</i>	0 <i>B</i>
$0(A \rightarrow B)$	1 <i>A</i>	0 <i>B</i>
0 <i>¬A</i>	1 <i>A</i>	1 <i>A</i>
1 <i>¬A</i>	0 <i>A</i>	0 <i>A</i>

$$\begin{array}{c|cccc} & \beta & \beta_1 & \beta_2 \\ \hline 0(A \wedge B) & 0A & 0B \\ 1(A \vee B) & 1A & 1B \\ 1(A \rightarrow B) & 0A & 1B \end{array}$$

Zuordnungsregeln Formeln / Unterformeln

α	α_1	α_2	β		
$1(A \wedge B)$	1 <i>A</i>	1 <i>B</i>	$\overline{0(A \wedge B)}$	0 <i>A</i>	0 <i>B</i>
$0(A \vee B)$	0 <i>A</i>	0 <i>B</i>	$1(A \vee B)$	1 <i>A</i>	1 <i>B</i>
$0(A \rightarrow B)$	1 <i>A</i>	0 <i>B</i>	$1(A \rightarrow B)$	0 <i>A</i>	1 <i>B</i>
0¬A					
1 <i>¬A</i>	0 <i>A</i>	0 <i>A</i>			

Regeln des (aussagenlogischen) Tableaukalküls

$$\frac{\alpha}{\alpha_1}$$

konjunktiv

$$1(p \wedge q)$$

$$1p$$

$$1q$$

$$\frac{\beta}{\beta_1 \mid \beta_2}$$

disjunktiv

$$\begin{array}{ccc}
1F \\
0F \\
* & \frac{01}{*} & \frac{10}{*}
\end{array}$$

Widerspruch

Regeln des (aussagenlogischen) Tableaukalküls

$$\frac{\alpha}{\alpha_1}$$

konjunktiv

$$1(p \wedge q)$$

$$1p$$

$$1q$$

$$\frac{\beta}{\beta_1 \mid \beta_2}$$

disjunktiv

$$1(p \lor q)$$

$$1p \quad 1q$$

$$\begin{array}{cccc}
1F \\
0F \\
* & \frac{01}{*} & \frac{10}{*}
\end{array}$$

Widerspruch

Regeln des (aussagenlogischen) Tableaukalküls

$$lpha_{2}$$

 α_1

konjunktiv

$$1(p \wedge q)$$

$$1p$$

$$1q$$

_ 2 disjunktiv

$$(p \lor q)$$
 $p \quad 1q$

* *

1*F*

10 * Widerspruch

Aussagenlogik: Tableaukalkül

10

Instanzen der α - und β -Regel

Instanzen der α -Regel

$1(P \wedge Q)$	$0(P \lor Q)$	0(P o Q)	0 <i>¬P</i>	1 <i>¬P</i>
1 <i>P</i>	0 <i>P</i>	1 <i>P</i>	1 <i>P</i>	0 <i>P</i>
1 <i>Q</i>	0 <i>Q</i>	0 <i>Q</i>		

Instanzen der β -Regel

$$\frac{1(P \lor Q)}{1P \mid 1Q} \qquad \frac{0(P \land Q)}{0P \mid 0Q} \qquad \frac{1(P \to Q)}{0P \mid 1Q}$$

Instanzen der α - und β -Regel

Instanzen der α -Regel

$1(P \wedge Q)$	$0(P \lor Q)$	$0(P \rightarrow Q)$	<u>0¬P</u>	<u>1</u> ¬ <i>P</i>
1 <i>P</i>	0 <i>P</i>	1 <i>P</i>	1 <i>P</i>	0 <i>P</i>
1 <i>Q</i>	0 <i>Q</i>	0 <i>Q</i>		

Instanzen der β -Regel

$$\frac{1(P \lor Q)}{1P \mid 1Q} \qquad \frac{0(P \land Q)}{0P \mid 0Q} \qquad \frac{1(P \to Q)}{0P \mid 1Q}$$

Beispiel:

$$\models (((\neg A \to B) \to C) \to ((\neg B \to A) \to C))$$

$$0(((\neg A \to B) \to C) \to ((\neg B \to A) \to C))$$

$$1(\neg A \to B) \to C$$

$$0((\neg B \to A) \to C)$$

$$1(\neg B \to A)$$

$$1(\neg A \to B)$$

$$0C$$

$$1C$$

$$1 \to A$$

$$0B$$

$$0A$$

$$0A$$

$$1A$$

$$1B$$

$$1B$$

$$1$$

Determinismus

- Die Regeln sind alle deterministisch
- Der Kalkül aber nicht: Wahl der nächsten Formel, auf die Regel angewendet wird

Heuristik

Nicht-verzweigende Regeln zuerst: " α vor β "

Nota bene

Selbe Formel kann mehrfach (auf verschiedenen Ästen) verwendet werden – unter Umständen ist das auch notwendig

Determinismus

- Die Regeln sind alle deterministisch
- Der Kalkül aber nicht:
 Wahl der nächsten Formel, auf die Regel angewendet wird

Heuristik

Nicht-verzweigende Regeln zuerst: " α vor β

Nota bene

Selbe Formel kann mehrfach (auf verschiedenen Ästen) verwendet werden – unter Umständen ist das auch notwendig

Determinismus

- Die Regeln sind alle deterministisch
- Der Kalkül aber nicht: Wahl der nächsten Formel, auf die Regel angewendet wird

Heuristik

Nicht-verzweigende Regeln zuerst: " α vor β

Nota bene

Selbe Formel kann mehrfach (auf verschiedenen Ästen) verwendet werden – unter Umständen ist das auch notwendig

Determinismus

- Die Regeln sind alle deterministisch
- Der Kalkül aber nicht: Wahl der nächsten Formel, auf die Regel angewendet wird

Heuristik

Nicht-verzweigende Regeln zuerst: " α vor β "

Nota bene

Selbe Formel kann mehrfach (auf verschiedenen Ästen) verwendet werden – unter Umständen ist das auch notwendig

Determinismus

- Die Regeln sind alle deterministisch
- Der Kalkül aber nicht: Wahl der nächsten Formel, auf die Regel angewendet wird

Heuristik

Nicht-verzweigende Regeln zuerst: " α vor β "

Nota bene

Selbe Formel kann mehrfach (auf verschiedenen Ästen) verwendet werden – unter Umständen ist das auch notwendig!

Definition: Tableau

Binärer Baum, dessen Knoten mit Formeln markiert sind

Definition: Tableauast

Maximaler Pfad in Einem Tableau (von Wurzel zu Blatt)

Definition: Tableau

Binärer Baum, dessen Knoten mit Formeln markiert sind

Definition: Tableauast

Maximaler Pfad in Einem Tableau (von Wurzel zu Blatt)

Sei M eine Formelmenge, sei A eine Formel

Initialisierung

Das Tableau, das nur aus dem Knoten 0A besteht, ist ein Tableau für A über M (d.h., für $M \models A$)

Erweiterung

- T ein Tableau für A über M
- B ein Ast von T
- F eine Formel auf B, die kein Literal ist

T' entstehe durch Erweiterung von B gemäß der auf F anwendbaren Regel (α oder β) Dann ist T' ein Tableau für A über M

Sei M eine Formelmenge, sei A eine Formel

Initialisierung

Das Tableau, das nur aus dem Knoten 0A besteht, ist ein Tableau für A über M (d.h., für $M \models A$)

Erweiterung

- T ein Tableau für A über M
- B ein Ast von 7
- F eine Formel auf B, die kein Literal ist

T' entstehe durch Erweiterung von B gemäß der auf F anwendbaren Regel (α oder β)
Dann ist T' ein Tableau für A über M

Sei M eine Formelmenge, sei A eine Formel

Initialisierung

Das Tableau, das nur aus dem Knoten 0A besteht, ist ein Tableau für A über M (d.h., für $M \models A$)

Erweiterung

- T ein Tableau für A über M
- B ein Ast von T
- F eine Formel auf B, die kein Literal ist

T' entstehe durch Erweiterung von B gemäß der auf F anwendbaren Regel (α oder β)

Sei M eine Formelmenge, sei A eine Formel

Initialisierung

Das Tableau, das nur aus dem Knoten 0A besteht, ist ein Tableau für A über M (d.h., für $M \models A$)

Erweiterung

- T ein Tableau für A über M
- B ein Ast von T
- F eine Formel auf B, die kein Literal ist

T' entstehe durch Erweiterung von B gemäß der auf F anwendbaren Regel (α oder β) Dann ist T' ein Tableau für A über M

Sei M eine Formelmenge, sei A eine Formel

Initialisierung

Das Tableau, das nur aus dem Knoten 0A besteht, ist ein Tableau für A über M (d.h., für $M \models A$)

Erweiterung

- T ein Tableau für A über M
- B ein Ast von T
- F eine Formel auf B, die kein Literal ist

T' entstehe durch Erweiterung von B gemäß der auf F anwendbaren Regel (α oder β)

Sei M eine Formelmenge, sei A eine Formel

Initialisierung

Das Tableau, das nur aus dem Knoten 0*A* besteht, ist ein Tableau für *A* über M (d.h., für $M \models A$)

Erweiterung

- T ein Tableau für A über M
- B ein Ast von T
- F eine Formel auf B, die kein Literal ist

T' entstehe durch Erweiterung von B gemäß der auf F anwendbaren Regel (α oder β) Dann ist T' ein Tableau für A über M

Voraussetzungsregel

- T ein Tableau für A über M
- F eine Formel in M

T' entstehe durch Erweiterung eines beliebigen Astes durch 1F Dann ist T' ein Tableau für A über M

Voraussetzungsregel

- T ein Tableau für A über M
- F eine Formel in M

T' entstehe durch Erweiterung eines beliebigen Astes durch 1F Dann ist T' ein Tableau für A über M

Voraussetzungsregel

- T ein Tableau für A über M
- F eine Formel in M

T' entstehe durch Erweiterung eines beliebigen Astes durch 1F Dann ist T' ein Tableau für A über M

Definition: Geschlossener Ast

Ast B eines Tableaus ist geschlossen, wenn

 $1F.0F \in B$ oder $10 \in B$ oder $01 \in B$

Definition: Geschlossenes Tableau

Ein Tableau ist geschlossen, wenn jeder seiner Äste geschlossen ist

Definition: Tableaubeweis

Ein Tableau für A über M, das geschlossen ist, ist ein Tableaubeweis für $M \cup \{\neg A\} \vdash_{T0} \mathbf{0}$ und damit für $M \models A$

Definition: Geschlossener Ast

Ast B eines Tableaus ist geschlossen, wenn

 $1F, 0F \in B \text{ oder } 10 \in B \text{ oder } 01 \in B$

Definition: Geschlossenes Tableau

Ein Tableau ist geschlossen, wenn jeder seiner Äste geschlossen ist

Definition: Tableaubeweis

Ein Tableau für A über M, das geschlossen ist, ist ein Tableaubeweis für $M \cup \{\neg A\} \vdash_{T_0} \mathbf{0}$ und damit für $M \models A$

Definition: Geschlossener Ast

Ast B eines Tableaus ist geschlossen, wenn

$$1F.0F \in B$$
 oder $10 \in B$ oder $01 \in B$

Definition: Geschlossenes Tableau

Ein Tableau ist geschlossen, wenn jeder seiner Äste geschlossen ist

Definition: Tableaubeweis

Ein Tableau für A über M, das geschlossen ist, ist ein Tableaubeweis für $M \cup \{\neg A\} \vdash_{T0} \mathbf{0}$ und damit für $M \models A$

Korrektheit und Vollständigkeit des Tableaukalküls

Theorem

Es gilt $M \models A$ genau dann, wenn es einen Tableaubeweis für A über M gibt

Definition: Erfüllbares Tableau

Tableauast ist erfüllbar, wenn die Menge seiner Formeln erfüllbar ist

Tableau ist erfüllbar, wenn es (mindestens) einen erfüllbaren Ast hat

Lemma

Jedes Tableau für A über M ist erfüllbar, falls $M \cup \{\neg A\}$ erfüllbar ist.

Lemma

Definition: Erfüllbares Tableau

Tableauast ist erfüllbar, wenn die Menge seiner Formeln erfüllbar ist

Tableau ist erfüllbar, wenn es (mindestens) einen erfüllbaren Ast hat

Lemma

Jedes Tableau für A über M ist erfüllbar, falls $M \cup \{\neg A\}$ erfüllbar ist.

Lemma

Definition: Erfüllbares Tableau

Tableauast ist erfüllbar, wenn die Menge seiner Formeln erfüllbar ist

Tableau ist erfüllbar, wenn es (mindestens) einen erfüllbaren Ast hat

Lemma

Jedes Tableau für A über M ist erfüllbar, falls $M \cup \{\neg A\}$ erfüllbar ist.

Lemma

Definition: Erfüllbares Tableau

Tableauast ist erfüllbar, wenn die Menge seiner Formeln erfüllbar ist

Tableau ist erfüllbar, wenn es (mindestens) einen erfüllbaren Ast hat

Lemma

Jedes Tableau für A über M ist erfüllbar, falls $M \cup \{\neg A\}$ erfüllbar ist.

Lemma

Initialisierung: *I* ist Modell von $M \cup \{\neg A\}$, also von 0A.

Voraussetzung: I ist Modell von $M \cup \{\neg A\}$, also von 1F für alle $F \in M$.

- Zur Anwendung der α -Regel wird ein Ast π_1 in T und eine α -Formel α auf π_1 gewählt, π_1 wird verlängert um α_1 , α_2 .
- Wenn $\pi_1 \neq \pi$, ist π ein Ast in T', und damit (trivial) auch T' erfüllt.
- Wenn $\pi_1 = \pi$, haben wir aus $val_l(\pi) = W$, dass $val_l(\alpha) = W$, also $val_l(\alpha_1) = W$ und $val_l(\alpha_2) = W$.
- Somit $val_l(\pi') = W$ für den neu entstehenden Pfad π' , d.h. T' ist erfüllbar

Initialisierung: *I* ist Modell von $M \cup \{\neg A\}$, also von 0A.

Voraussetzung: I ist Modell von $M \cup \{\neg A\}$, also von 1F für alle $F \in M$.

- Zur Anwendung der α -Regel wird ein Ast π_1 in T und eine α -Formel α auf π_1 gewählt, π_1 wird verlängert um α_1 , α_2 .
- Wenn $\pi_1 \neq \pi$, ist π ein Ast in T', und damit (trivial) auch T' erfüllt.
- Wenn $\pi_1 = \pi$, haben wir aus $val_l(\pi) = W$, dass $val_l(\alpha) = W$, also $val_l(\alpha_1) = W$ und $val_l(\alpha_2) = W$.
- Somit $val_I(\pi') = W$ für den neu entstehenden Pfad π' d.h. T' ist erfüllbar

Initialisierung: *I* ist Modell von $M \cup \{\neg A\}$, also von 0A.

Voraussetzung: I ist Modell von $M \cup \{\neg A\}$, also von 1F für alle $F \in M$.

- **Tund eine** α -Regel wird ein Ast π_1 in T und eine α -Formel α auf π_1 gewählt, π_1 wird verlängert um α_1 , α_2 .
- Wenn $\pi_1 \neq \pi$, ist π ein Ast in T', und damit (trivial) auch T' erfüllt.
- Wenn $\pi_1 = \pi$, haben wir aus $val_l(\pi) = W$, dass $val_l(\alpha) = W$, also $val_l(\alpha_1) = W$ und $val_l(\alpha_2) = W$.
- Somit $val_I(\pi') = W$ für den neu entstehenden Pfad π' d.h. T' ist erfüllbar

Initialisierung: *I* ist Modell von $M \cup \{\neg A\}$, also von 0A.

Voraussetzung: I ist Modell von $M \cup \{\neg A\}$, also von 1F für alle $F \in M$.

- Zur Anwendung der α -Regel wird ein Ast π_1 in T und eine α -Formel α auf π_1 gewählt, π_1 wird verlängert um α_1 , α_2 .
- Wenn $\pi_1 \neq \pi$, ist π ein Ast in T', und damit (trivial) auch T' erfüllt.
- Wenn $\pi_1 = \pi$, haben wir aus $val_l(\pi) = W$, dass $val_l(\alpha) = W$, also $val_l(\alpha_1) = W$ und $val_l(\alpha_2) = W$.
- Somit $val_l(\pi') = W$ für den neu entstehenden Pfad π' , d.h. T' ist erfüllbar

Initialisierung: *I* ist Modell von $M \cup \{\neg A\}$, also von 0A.

Voraussetzung: I ist Modell von $M \cup \{\neg A\}$, also von 1F für alle $F \in M$.

- Zur Anwendung der α -Regel wird ein Ast π_1 in T und eine α -Formel α auf π_1 gewählt, π_1 wird verlängert um α_1 , α_2 .
- Wenn $\pi_1 \neq \pi$, ist π ein Ast in T', und damit (trivial) auch T' erfüllt.
- Wenn $\pi_1 = \pi$, haben wir aus $val_l(\pi) = W$, dass $val_l(\alpha) = W$, also $val_l(\alpha_1) = W$ und $val_l(\alpha_2) = W$.
- Somit $val_l(\pi') = W$ für den neu entstehenden Pfad π' , d.h. T' ist erfüllbar

Initialisierung: *I* ist Modell von $M \cup \{\neg A\}$, also von 0A.

Voraussetzung: I ist Modell von $M \cup \{\neg A\}$, also von 1F für alle $F \in M$.

- Zur Anwendung der α -Regel wird ein Ast π_1 in T und eine α -Formel α auf π_1 gewählt, π_1 wird verlängert um α_1 , α_2 .
- Wenn $\pi_1 \neq \pi$, ist π ein Ast in T', und damit (trivial) auch T' erfüllt.
- Wenn $\pi_1 = \pi$, haben wir aus $val_l(\pi) = W$, dass $val_l(\alpha) = W$, also $val_l(\alpha_1) = W$ und $val_l(\alpha_2) = W$.
- Somit $val_l(\pi') = W$ für den neu entstehenden Pfad π' , d.h. T' ist erfüllbar

Initialisierung: *I* ist Modell von $M \cup \{\neg A\}$, also von 0A.

Voraussetzung: I ist Modell von $M \cup \{\neg A\}$, also von 1F für alle $F \in M$.

- Zur Anwendung der α -Regel wird ein Ast π_1 in T und eine α -Formel α auf π_1 gewählt, π_1 wird verlängert um α_1 , α_2 .
- Wenn $\pi_1 \neq \pi$, ist π ein Ast in T', und damit (trivial) auch T' erfüllt.
- Wenn $\pi_1 = \pi$, haben wir aus $val_l(\pi) = W$, dass $val_l(\alpha) = W$, also $val_l(\alpha_1) = W$ und $val_l(\alpha_2) = W$.
- Somit $val_l(\pi') = W$ für den neu entstehenden Pfad π' , d.h. T' ist erfüllbar

Initialisierung: *I* ist Modell von $M \cup \{\neg A\}$, also von 0A.

Voraussetzung: I ist Modell von $M \cup \{\neg A\}$, also von 1F für alle $F \in M$.

- Zur Anwendung der α -Regel wird ein Ast π_1 in T und eine α -Formel α auf π_1 gewählt, π_1 wird verlängert um α_1 , α_2 .
- Wenn $\pi_1 \neq \pi$, ist π ein Ast in T', und damit (trivial) auch T' erfüllt.
- Wenn $\pi_1 = \pi$, haben wir aus $val_l(\pi) = W$, dass $val_l(\alpha) = W$, also $val_l(\alpha_1) = W$ und $val_l(\alpha_2) = W$.
- Somit $val_l(\pi') = W$ für den neu entstehenden Pfad π' , d.h. T' ist erfüllbar

Definition: Voll expandiertes Tableau

Ein Tableau heißt voll expandiert, wenn

- jede Regel
- auf jede passende Formel
- auf jedem offenen Ast

angewendet worden ist und

- für jedes $F \in M$ (hierfür muss M endlich sein)
- für jeden Ast B

1F auf B vorkommt

Lemma

B ein offener Ast in einem voll expandiertem Tableau, dann ist *B* erfüllbar

Also

Ist $M \cup \{\neg A\}$ unerfüllbar und also jeder Ast jeden vollexpandierten Tableaus für A über M unerfüllbar, dann ist jedes voll expandierte Tableau für A über M geschlossen

Lemma

B ein offener Ast in einem voll expandiertem Tableau, dann ist *B* erfüllbar

Also

Ist $M \cup \{\neg A\}$ unerfüllbar und also jeder Ast jeden vollexpandierten Tableaus für A über M unerfüllbar, dann ist jedes voll expandierte Tableau für A über M geschlossen (denn sonst wäre er wegen des Lemmas erfüllbar)

Beweis

Sei B ein offener Ast eines voll expandierten Tableaus

Wir definieren

$$I(P) := \left\{ egin{array}{ll} W & ext{falls } 1P \in B \ F & ext{falls } 0P \in B \ ext{bel.} \end{array}
ight.$$

Durch Induktion zeigt man leicht: $val_I(F) = W$ für jedes F auf B.

Beweis

Sei B ein offener Ast eines voll expandierten Tableaus

Wir definieren

$$J(P) := \left\{ egin{array}{ll} W & ext{falls } 1P \in B \\ F & ext{falls } 0P \in B \\ ext{bel.} & ext{sonst} \end{array}
ight.$$

Durch Induktion zeigt man leicht: $val_I(F) = W$ für jedes F auf B.

Beweis

Sei B ein offener Ast eines voll expandierten Tableaus

Wir definieren

$$I(P) := \left\{ egin{array}{ll} W & ext{falls } 1P \in B \\ F & ext{falls } 0P \in B \\ ext{bel.} & ext{sonst} \end{array}
ight.$$

Durch Induktion zeigt man leicht: $val_I(F) = W$ für jedes F auf B.

Beweis

Sei B ein offener Ast eines voll expandierten Tableaus

Wir definieren

$$I(P) := \left\{ egin{array}{ll} W & ext{falls } 1P \in B \\ F & ext{falls } 0P \in B \\ ext{bel.} & ext{sonst} \end{array}
ight.$$

Durch Induktion zeigt man leicht:

$$val_I(F) = W$$
 für jedes F auf B .