

Formale Systeme

Endliche Automaten

Prof. Dr. Bernhard Beckert | WS 2010/2011

KIT - University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

Endliche Automaten

Wiederholung

Definition

- eine endliche Menge S von Zuständen
- ein Alphabet *V* (terminale Zeichen)
- lacktriangle einer Übergangsfunktion $\delta: S \times V \rightarrow S$
- lacktriangle ein Anfangszustand $s_0 \in S$
- lacktriangle eine nichtleere Teilmenge $S_1 \subseteq S$ als Menge von Endzuständen

Definition

- eine endliche Menge S von Zuständen
- ein Alphabet V (terminale Zeichen)
- einer Ubergangsfunktion $\delta: S \times V \rightarrow S$
- lacksquare ein Anfangszustand $s_0 \in S$
- lacktriangle eine nichtleere Teilmenge $S_1 \subseteq S$ als Menge von Endzuständen

Definition

- eine endliche Menge S von Zuständen
- ein Alphabet V (terminale Zeichen)
- einer Übergangsfunktion $\delta: S \times V \rightarrow S$
- lacksquare ein Anfangszustand $s_0 \in S$
- eine nichtleere Teilmenge $S_1 \subseteq S$ als Menge von Endzuständen

Definition

- eine endliche Menge S von Zuständen
- ein Alphabet V (terminale Zeichen)
- einer Übergangsfunktion $\delta: S \times V \rightarrow S$
- lacktriang ein Anfangszustand $s_0 \in \mathcal{S}$
- eine nichtleere Teilmenge $S_1 \subseteq S$ als Menge von Endzuständen

Definition

- eine endliche Menge S von Zuständen
- ein Alphabet V (terminale Zeichen)
- einer Übergangsfunktion $\delta: S \times V \rightarrow S$
- lacktriang ein Anfangszustand $s_0 \in \mathcal{S}$
- eine nichtleere Teilmenge $S_1 \subseteq S$ als Menge von Endzuständen

Akzeptierte Sprachen

Die Übergangsfunktion $\delta: S \times V \to S$ wird fortgesetzt zu $\delta: S \times V^* \to S$:

$$\delta(s, \varepsilon) = s$$

 $\delta(s, aw_1) = \delta(s', w_1)$ wobei $\delta(s, a) = s'$

Definition von L(EA)

Jeder endliche Automat EA akzeptiert eine Menge von Wörtern L(EA).

$$L(EA) = \{ w \in V^* \mid \delta(s_0, w) \in S_1 \}$$

Vollständige endliche Automaten

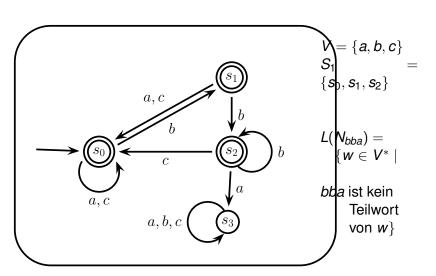
Variante

Gelegentlich wird in Beispielen die Übergangsfunktion δ nicht für alle Paare (s, a) definiert.

Wird während der Abarbeitung eines Wortes w eine Situation (s,a) erreicht, für die $\delta(s,a)$ nicht definiert ist, so gilt w als nicht akzeptiert.

Ein endlicher Automat, so daß $\delta(s, a)$ für alle $s \in S$ und $a \in V$ definiert ist, heißt ein vollständiger endlicher Automat.

Der Beispielautomat N_{bba}



Endliche Automaten

Definition

Ein nichtdeterministischer endlicher Automat wird durch die folgenden Bestimmungsstücke gegeben:

- eine endliche Menge S von Zuständen,
- ein Alphabet V,
- lacksquare ein Anfangszustand $s_0 \in S$,
- eine Übergangsfunktion $\delta : S \times V \rightarrow Pot(S)$,
- lacktriangle eine Menge $F\subseteq S$ von Finalzuständen,

Die Änderung gegenüber den deterministischen endlichen Automaten besteht also darin, daß die Übergangsfunktion δ als Werte Mengen von Zuständen annimmt:

Definition

Ein nichtdeterministischer endlicher Automat wird durch die folgenden Bestimmungsstücke gegeben:

- eine endliche Menge S von Zuständen,
- ein Alphabet V,
- ein Anfangszustand $s_0 \in S$,
- eine Übergangsfunktion $\delta : S \times V \rightarrow Pot(S)$,
- lacktriangle eine Menge $F \subseteq S$ von Finalzuständen

Die Änderung gegenüber den deterministischen endlichen Automaten besteht also darin, daß die Übergangsfunktion δ als Werte Mengen von Zuständen annimmt:

Definition

Ein nichtdeterministischer endlicher Automat wird durch die folgenden Bestimmungsstücke gegeben:

- eine endliche Menge S von Zuständen,
- ein Alphabet V,
- ein Anfangszustand $s_0 \in S$,
- eine Übergangsfunktion $\delta : S \times V \rightarrow Pot(S)$,
- lacktriangle eine Menge $F \subseteq S$ von Finalzuständen,

Die Anderung gegenüber den deterministischen endlichen Automaten besteht also darin, daß die Übergangsfunktion δ als Werte Mengen von Zuständen annimmt:

Definition

Ein nichtdeterministischer endlicher Automat wird durch die folgenden Bestimmungsstücke gegeben:

- eine endliche Menge S von Zuständen,
- ein Alphabet V,
- ein Anfangszustand $s_0 \in S$,
- eine Übergangsfunktion $\delta : S \times V \rightarrow Pot(S)$,
- lacktriangle eine Menge $F \subseteq S$ von Finalzuständen,

Die Änderung gegenüber den deterministischen endlichen Automaten besteht also darin, daß die Übergangsfunktion δ als Werte Mengen von Zuständen annimmt:

Definition

Ein nichtdeterministischer endlicher Automat wird durch die folgenden Bestimmungsstücke gegeben:

- eine endliche Menge S von Zuständen,
- ein Alphabet V,
- ein Anfangszustand $s_0 \in S$,
- eine Übergangsfunktion $\delta: S \times V \rightarrow Pot(S)$,
- eine Menge $F \subseteq S$ von Finalzuständen,

7/16

Definition

Ein nichtdeterministischer endlicher Automat wird durch die folgenden Bestimmungsstücke gegeben:

- eine endliche Menge S von Zuständen,
- ein Alphabet V,
- ein Anfangszustand $s_0 \in S$,
- eine Übergangsfunktion $\delta: S \times V \rightarrow Pot(S)$,
- eine Menge $F \subseteq S$ von Finalzuständen,

7/16

Definition

Ein nichtdeterministischer endlicher Automat wird durch die folgenden Bestimmungsstücke gegeben:

- eine endliche Menge S von Zuständen,
- ein Alphabet V,
- ein Anfangszustand $s_0 \in S$,
- eine Übergangsfunktion $\delta : S \times V \rightarrow Pot(S)$,
- eine Menge $F \subseteq S$ von Finalzuständen,

Die Änderung gegenüber den deterministischen endlichen Automaten besteht also darin, daß die Übergangsfunktion δ als Werte Mengen von Zuständen annimmt:

Nichtdeterministisch akzeptierte Sprachen

Die Fortsetzung von $\delta : S \times V \rightarrow Pot(S)$ zu $\delta : S \times V^* \rightarrow Pot(S)$ wird jetzt wie folgt definiert:

$$\begin{array}{lcl} \delta(\boldsymbol{s},\varepsilon) & = & \{\boldsymbol{s}\} \\ \delta(\boldsymbol{s},\boldsymbol{a}\boldsymbol{w}_1) & = & \{\boldsymbol{s}'\mid \text{ es gibt } \boldsymbol{s}_1\in \boldsymbol{S} \text{ mit } \boldsymbol{s}_1\in \delta(\boldsymbol{s},\boldsymbol{a}) \text{ und } \boldsymbol{s}'\in \delta(\boldsymbol{s}_1,\boldsymbol{w}_1) \} \end{array}$$

Die von einem nichtdeterministischen endlichen Automaten NEA akzeptierte Sprache L(NEA) wird jetzt durch

$$L(NEA) = \{ w \in V^* \mid \delta(s_0, w) \cap F \neq \emptyset \}$$

definiert.

Definition

- eine endliche Menge S von Zuständen,
- ein Alphabet V,
- ein Anfangszustand $s_0 \in S$,
- lacktriangle eine Menge $F\subseteq S$ von Finalzuständen,
- eine Übergangsfunktion $\delta : S \times (V \cup \{\varepsilon\}) \rightarrow Pot(S)$

Definition

- eine endliche Menge S von Zuständen,
- ein Alphabet V,
- lacksquare ein Anfangszustand $s_0 \in S$,
- lacksquare eine Menge $F\subseteq S$ von Finalzuständen,
- eine Übergangsfunktion $\delta : S \times (V \cup \{\varepsilon\}) \rightarrow Pot(S)$

Definition

- eine endliche Menge S von Zuständen,
- ein Alphabet V,
- lacktriang ein Anfangszustand $s_0 \in S$,
- lacksquare eine Menge $F\subseteq S$ von Finalzuständen,
- eine Übergangsfunktion $\delta : S \times (V \cup \{\varepsilon\}) \rightarrow Pot(S)$

Definition

- eine endliche Menge S von Zuständen,
- ein Alphabet V,
- lacktriang ein Anfangszustand $s_0 \in S$,
- eine Menge $F \subseteq S$ von Finalzuständen,
- lack eq eine Übergangsfunktion $\delta: S \times (V \cup \{\varepsilon\}) \rightarrow Pot(S)$

Definition

- eine endliche Menge S von Zuständen,
- ein Alphabet V,
- lacksquare ein Anfangszustand $s_0 \in \mathcal{S}$,
- eine Menge $F \subseteq S$ von Finalzuständen,
- eine Übergangsfunktion $\delta : S \times (V \cup \{\varepsilon\}) \rightarrow Pot(S)$

Sei $A=(S,V,s_0,\delta,F)$ ein endlicher Automat mit spontanen Übergängen, dann ist die Funktion

$$\varepsilon$$
-cl : $Pot(S) \rightarrow Pot(S)$

für $I \subseteq S$ definiert als:

 ε -cl ist die kleinste Teilmenge $J \subseteq S$ mit

- **1 1** ⊆ **J**
- ② für alle $s \in J$ gilt $\delta(s, \varepsilon) \subseteq J$.

Die Bezeichnung ε -cl soll an ε -closure erinnern

Sei $A=(S,V,s_0,\delta,F)$ ein endlicher Automat mit spontanen Übergängen, dann ist die Funktion

$$\varepsilon$$
-cl : $Pot(S) \rightarrow Pot(S)$

für $I \subseteq S$ definiert als:

 ε -cl ist die kleinste Teilmenge $J \subseteq S$ mit

- **1 1** ⊆ **J**
- ② für alle $s \in J$ gilt $\delta(s, \varepsilon) \subseteq J$.

Die Bezeichnung $\varepsilon\text{-}cl$ soll an $\varepsilon\text{-}closure$ erinnern

Sei $A=(S,V,s_0,\delta,F)$ ein endlicher Automat mit spontanen Übergängen, dann ist die Funktion

$$\varepsilon$$
-cl : $Pot(S) \rightarrow Pot(S)$

für $I \subseteq S$ definiert als:

 ε -cl ist die kleinste Teilmenge $J \subseteq S$ mit

- **1 1** ⊆ **J**
- ② für alle $s \in J$ gilt $\delta(s, \varepsilon) \subseteq J$.

Die Bezeichnung $\varepsilon\text{-}cl$ soll an $\varepsilon\text{-}closure$ erinnern

Sei $A = (S, V, s_0, \delta, F)$ ein endlicher Automat mit spontanen Übergängen, dann ist die Funktion

$$\varepsilon$$
-cl : $Pot(S) \rightarrow Pot(S)$

für $I \subseteq S$ definiert als:

 ε -cl ist die kleinste Teilmenge $J \subseteq S$ mit

- **1 1** ⊆ **J**
- 2 für alle $s \in J$ gilt $\delta(s, \varepsilon) \subseteq J$.

Die Bezeichnung ε -cl soll an ε -closure erinnern.

Akzeptierte Sprache

Die Fortsetzung von $\delta: S \times (V \cup \{\varepsilon\}) \rightarrow Pot(S)$ zu $\bar{\delta}: S \times V^* \rightarrow Pot(S)$ kann jetzt definiert werden als:

$$\begin{array}{lcl} \delta(\boldsymbol{s},\varepsilon) & = & \varepsilon\text{-}\boldsymbol{c}\boldsymbol{l}(\{\boldsymbol{s}\}) \\ \delta(\boldsymbol{s},\boldsymbol{a}\boldsymbol{w}_1) & = & \{\boldsymbol{s}' \mid \text{es gibt } \boldsymbol{s}_1,\boldsymbol{s}_2 \text{ mit } \boldsymbol{s}_1 \in \varepsilon\text{-}\boldsymbol{c}\boldsymbol{l}(\{\boldsymbol{s}\}),\boldsymbol{s}_2 \in \delta(\boldsymbol{s}_1,\boldsymbol{a}), \\ & & \boldsymbol{s}' \in \delta(\boldsymbol{s}_2,\boldsymbol{w}_1)\}) \end{array}$$

Die von einem nichtdeterministischen endlichen Automaten NEA mit spontanen Übergängen akzeptierte Sprache L(NEA) wird wieder durch

$$L(NEA) = \{ w \in V^* \mid \bar{\delta}(s_0, w) \cap F \neq \emptyset \}$$

definiert

Akzeptierte Sprache

Die Fortsetzung von $\delta: S \times (V \cup \{\varepsilon\}) \rightarrow Pot(S)$ zu $\bar{\delta}: S \times V^* \rightarrow Pot(S)$ kann jetzt definiert werden als:

$$\begin{array}{lcl} \delta(\boldsymbol{s},\varepsilon) & = & \varepsilon\text{-}\boldsymbol{c}\boldsymbol{l}(\{\boldsymbol{s}\}) \\ \delta(\boldsymbol{s},\boldsymbol{a}\boldsymbol{w}_1) & = & \{\boldsymbol{s}' \mid \text{es gibt } \boldsymbol{s}_1,\boldsymbol{s}_2 \text{ mit } \boldsymbol{s}_1 \in \varepsilon\text{-}\boldsymbol{c}\boldsymbol{l}(\{\boldsymbol{s}\}),\boldsymbol{s}_2 \in \delta(\boldsymbol{s}_1,\boldsymbol{a}), \\ & & \boldsymbol{s}' \in \delta(\boldsymbol{s}_2,\boldsymbol{w}_1)\}) \end{array}$$

Die von einem nichtdeterministischen endlichen Automaten NEA mit spontanen Übergängen akzeptierte Sprache L(NEA) wird wieder durch

$$L(\textit{NEA}) = \{ w \in \textit{V}^* \mid \bar{\delta}(\textit{s}_0, \textit{w}) \cap \textit{F} \neq \emptyset \}$$

definiert.

Satz von Myhill und Büchi

Satz

Zu jedem nichtdeterministischen endlichen Automaten

$$A = (S, V, s_0, \delta, F)$$

gibt es einen deterministischen endlichen Automaten

$$B = (Q, V, q_0, \Delta, G)$$

mit

$$L(A) = L(B)$$

Dabei kann A spontane Übergänge enthalten und muß auch nicht vollständig sein.

Satz von Myhill und Büchi

Satz

Zu jedem nichtdeterministischen endlichen Automaten

$$A = (S, V, s_0, \delta, F)$$

gibt es einen deterministischen endlichen Automaten

$$B = (Q, V, q_0, \Delta, G)$$

mit

$$L(A) = L(B)$$

Dabei kann A spontane Übergänge enthalten und muß auch nicht vollständig sein.

Liste der Operationen

- ② $L^* = \{w_1 \dots w_n \mid n \ge 0, w_i \in L\}$
- ③ $L_1 \cup L_2 =$ Mengenvereinigung
- ⓐ $L_1 \cap L_2$ = Mengendurchschnitt

Liste der Operationen

- ② $L^* = \{w_1 \dots w_n \mid n \ge 0, w_i \in L\}$
- 4 $L_1 \cap L_2 = Mengendurchschnitt$

Liste der Operationen

- ② $L^* = \{w_1 \dots w_n \mid n \ge 0, w_i \in L\}$
- ④ $L_1 \cap L_2 = Mengendurchschnitt$

Liste der Operationen

- ② $L^* = \{w_1 \dots w_n \mid n \ge 0, w_i \in L\}$

Liste der Operationen

- ② $L^* = \{w_1 \dots w_n \mid n \ge 0, w_i \in L\}$

- ③ für jedes $a \in V$ ist $a \in Reg_V$,
- ④ für $t \in Reg_V$ gilt auch $(t)^* \in Reg_V$,
- für $t_1, t_2 \in Reg_V$ gilt auch $(t_1t_2) \in Reg_V$ und $(t_1 + t_2) \in Reg_V$.

- $\emptyset \in Reg_V$,
- ③ für jedes a ∈ V ist $a ∈ Reg_V$,
- ④ für $t \in Reg_V$ gilt auch $(t)^* \in Reg_V$,
- für $t_1, t_2 \in Reg_V$ gilt auch $(t_1t_2) \in Reg_V$ und $(t_1 + t_2) \in Reg_V$.

- $\emptyset \in Reg_V$,
- $\circ \in Reg_V$,
- **3** für jedes $a \in V$ ist $a \in Reg_V$,
- ④ für $t \in Reg_V$ gilt auch $(t)^* \in Reg_V$,
- in für $t_1, t_2 \in Reg_V$ gilt auch $(t_1t_2) \in Reg_V$ und $(t_1 + t_2) \in Reg_V$.

- $\emptyset \in Reg_V$,
- $\circ \in Reg_V$,
- \bullet für jedes $a \in V$ ist $a \in Reg_V$,
- **4** für $t \in Reg_V$ gilt auch $(t)^* \in Reg_V$,
- ⑤ für $t_1, t_2 \in Reg_V$ gilt auch $(t_1t_2) \in Reg_V$ und $(t_1 + t_2) \in Reg_V$.

- $\emptyset \in Reg_V$,
- $\circ \in Reg_V$,
- **3** für jedes $a \in V$ ist $a \in Reg_V$,
- **4** für $t \in Reg_V$ gilt auch $(t)^* \in Reg_V$,
- $\text{ für } t_1, t_2 \in Reg_V \text{ gilt auch } (t_1t_2) \in Reg_V \text{ und } \\ (t_1+t_2) \in Reg_V.$

- \mathbf{O} $S(\emptyset) = \emptyset$,
- $S(a) = \{a\},\$
- ⑤ $S((t_1t_2)) = S(t_1)S(t_2)$ und $S((t_1+t_2)) = S(t_1) \cup S(t_2)$

- 3 <math>5(a) $= \{a\},$
- ⑤ $S((t_1t_2)) = S(t_1)S(t_2)$ und $S((t_1+t_2)) = S(t_1) \cup S(t_2)$

- **3** $S(a) = \{a\},$
- ⑤ $S((t_1t_2)) = S(t_1)S(t_2)$ und $S((t_1+t_2)) = S(t_1) \cup S(t_2)$

- **3** $S(a) = \{a\},$
- **4** $S((t)^*) = (S(t))^*$,
- $(5) S((t_1t_2)) = S(t_1)S(t_2) und S((t_1+t_2)) = S(t_1) \cup S(t_2)$

- **3** $S(a) = \{a\},$
- **4** $S((t)^*) = (S(t))^*$,

Satz

Satz

Zu jedem endlichen Automaten *A* gibt es einen regulären Ausdruck *t* mit

$$S(t) = L(A)$$
.

Wir benutzen im folgenden stillschweigend die Assoziativität der Konkatenation und von + um in regulären Ausdrücken Klammern einzusparen, also (a+b+c) anstelle von ((a+b)+c).

Satz

Satz

Zu jedem endlichen Automaten A gibt es einen regulären Ausdruck t mit

$$S(t) = L(A)$$
.

Wir benutzen im folgenden stillschweigend die Assoziativität der Konkatenation und von + um in regulären Ausdrücken Klammern einzusparen, also (a+b+c) anstelle von ((a+b)+c).