Karlsruher Institut für Technologie Institut für Theoretische Informatik

Prof. Dr. Bernhard Beckert

Thorsten Bormer, Dr. Vladimir Klebanov, Dr. Mattias Ulbrich

Formale Systeme, WS 2014/2015

Übungsblatt 11

Dieses Übungsblatt wird in der Übung am 23.01.2015 besprochen.

Aufgabe 1

Gegeben sei die Relation $\succ = \{(a, b), (b, d), (c, b), (d, a), (d, e)\}.$

- (a) Bestimmen Sie
 - (i) \rightarrow (die reflexive, transitive Hülle von \succ),
 - (ii) $\stackrel{+}{\rightarrow}$ (die transitive Hülle von \succ) und
 - (iii) \leftrightarrow (die reflexive, transitive, symmetrische Hülle von \succ).
- (b) Zeigen Sie, dass \succ lokal konfluent sowie konfluent ist.
- (c) Erweitern Sie die Relation ≻ um ein Tupel, so dass sie zwar lokal konfluent bleibt, aber nicht mehr konfluent ist.

Aufgabe 2

Seien $N := \mathbb{N} \setminus \{1,0\}$ und $N' := \mathbb{N} \setminus \{0\}$ Teilmengen der natürlichen Zahlen. Die Relation $\succ \subseteq \mathbb{N} \times \mathbb{N}$ ist definiert als

```
a \succ b : \iff b teilt a und a \neq b (a, b \in \mathbb{N}).
```

Betrachten Sie nun die Reduktionssysteme (N, \succ) und (N', \succ) :

- (a) Ist (N, \succ) lokal konfluent? Ist (N', \succ) lokal konfluent?
- (b) Ist (N, \succ) konfluent? Ist (N', \succ) konfluent?
- (c) Ist (N, \succ) noethersch? Ist (N', \succ) noethersch?
- (d) Besitzt (N, \succ) irreduzible Elemente? Besitzt (N, \succ) irreduzible Elemente? Wenn ja, welche? Wenn ja, welche?

Begründen Sie Ihre Antworten kurz.

Bemerkung: Mit \succ ist jeweils die Einschränkung auf $N \times N$ bzw. $N' \times N'$ gemeint.

Aufgabe 3

Die Ackermann-Funktion ist eine rekursive Funktion, die für ihr außergewöhnlich schnelles Wachstum bekannt ist. Man könnte sie so programmieren:

```
nat A(nat x, nat y) {
   if (x==0) return y+1;
   else if (y==0) return A(x-1,1);
      else return A(x-1, A(x,y-1));
}
```

Finden Sie eine geeignete Ordnung auf $\mathbb{N} \times \mathbb{N}$, um mit Noetherscher Induktion zu zeigen, dass die Ackermann-Funktion für alle Eingaben terminiert.