

Formale Systeme

Prof. Dr. Bernhard Beckert, WS 2016/2017

Prädikatenlogik: Sequenzenkalkül

Sequenzen

Definition

Eine Sequenz ist ein Paar endlicher Formelmengen und wird notiert in der Form

$$\Gamma \Rightarrow \Delta$$
.

 Γ wird Antezedent und Δ Sukzedent genannt.

Sowohl Γ als auch Δ kann die leere Menge sein.

Sei \mathcal{D} eine prädikatenlogische Struktur und β eine Variablenbelegung:

$$\mathit{val}_{\mathcal{D},\beta}(\Gamma\Rightarrow\Delta)=\mathit{val}_{\mathcal{D},\beta}(\bigwedge\Gamma\to\bigvee\Delta)$$

Es gelten die üblichen Vereinbarungen für leere Disjunktionen und Konjunktionen.

Aussagenlogische Axiome und Regeln

axiom
$$\frac{\Gamma, F \Rightarrow F, \Delta}{\Gamma, F \Rightarrow F, \Delta}$$
 and-left $\frac{\Gamma, F, G \Rightarrow \Delta}{\Gamma, F \land G \Rightarrow \Delta}$
not-left $\frac{\Gamma, \Rightarrow F, \Delta}{\Gamma, \neg F \Rightarrow \Delta}$ and-right $\frac{\Gamma, F \Rightarrow \Delta}{\Gamma, \neg F, \Delta}$ or-left $\frac{\Gamma, F \Rightarrow \Delta}{\Gamma, F \Rightarrow G, \Delta}$ $\frac{\Gamma, F \Rightarrow \Delta}{\Gamma, F \Rightarrow G, \Delta}$ or-right $\frac{\Gamma, F \Rightarrow \Delta}{\Gamma, F \Rightarrow G, \Delta}$ or-right $\frac{\Gamma, F \Rightarrow G, \Delta}{\Gamma, F \Rightarrow G, \Delta}$ or-right $\frac{\Gamma, F \Rightarrow G, \Delta}{\Gamma, F \Rightarrow G, \Delta}$

Prädikatenlogische Regeln

all-left

$$\frac{\Gamma, \forall x F, \{x/X\}F \Rightarrow \Delta}{\Gamma, \forall x F \Rightarrow \Delta}$$

$$\frac{\Gamma \Rightarrow \exists xF, \{x/X\}F, \Delta}{\Gamma, \Rightarrow \exists xF, \Delta}$$

X neue Variable.

X neue Variable.

all-right

$$\frac{\Gamma \Rightarrow \{x/f(\bar{x})\}F, \Delta}{\Gamma \Rightarrow \forall xF, \Delta}$$

$$\frac{\Gamma, \{x/f(\bar{x})\}F \Rightarrow \Delta}{\Gamma, \exists xF \Rightarrow \Delta}$$

f neues Funktionssymbol, $\bar{X} = X_1, \dots, X_n$ alle freien Variablen in $\forall x F$. f neues Funktionssymbol $\bar{x} = x_1, \dots, x_n$ alle freien

Variablen in $\exists xF$.

Axiome und Regeln für Gleichheit

identity-right

$$\Gamma \Rightarrow s \doteq s, \Delta$$

$$\frac{\Gamma, s \doteq t \Rightarrow F(t), \Delta}{\Gamma, s \doteq t \Rightarrow F(s), \Delta}$$

symmetry-right

$$\frac{\Gamma \Rightarrow s \doteq t, \Delta}{\Gamma \Rightarrow t \doteq s, \Delta}$$

eq-subst-left

symmetry-left

$$\frac{\Gamma, s \doteq t \Rightarrow \Delta}{\Gamma, t \doteq s \Rightarrow \Delta}$$

$$\frac{\Gamma, F(t), s \doteq t \Rightarrow \Delta}{\Gamma, F(s), s \doteq t \Rightarrow \Delta}$$

Ableitungsbaum in S

Definition

Ein Ableitungsbaum ist ein Baum, dessen Knoten mit Sequenzen markiert sind und:

1. hat ein Knoten n (nur) einen Nachfolgerknoten n_1 und sind $\Gamma \Rightarrow \Delta$ und $\Gamma_1 \Rightarrow \Delta_1$ die Markierungen von n und n_1 , dann gibt es eine Sequenzenregel

$$\frac{\Gamma_1 \Rightarrow \Delta_1}{\Gamma \Rightarrow \Delta}$$

2. hat ein Knoten n zwei Nachfolgerknoten n_1 und n_2 und sind $\Gamma \Rightarrow \Delta$, $\Gamma_1 \Rightarrow \Delta_1$ und $\Gamma_2 \Rightarrow \Delta_2$ die Sequenzen an den Knoten n, n_1 und n_2 dann gibt es eine Sequenzenregel

$$\frac{\Gamma_1 \Rightarrow \Delta_1 \quad \Gamma_2 \Rightarrow \Delta_2}{\Gamma \Rightarrow \Delta}$$

Geschlossener Ableitungsbaum

Definition

Wir nennen einen Beweisbaum *geschlossen* oder *vollständig* wenn er zusätzlich noch die folgende Bedingung erfüllt:

3. es gibt eine Substitution σ , so daß für die Markierung A jedes Knoten n, der keinen Nachfolgerknoten hat, $\sigma(A)$ ein Axiom ist. Dazu zählen auch die beiden Gleichheitsaxiome.

Man beachte daß zunächst $A \equiv p(s) \Rightarrow p(t)$ kein Axiom zu sein braucht.

Ist σ aber ein Unifikator von s und t dann ist $\sigma(A) \equiv p(\sigma(s)) \Rightarrow p(\sigma(t))$ zu einem Axiom wird.

Korrektheit und Vollständigkeit des Sequenzenkalküls

Theorem

Es seien $M \subseteq For_{\Sigma}$, $A \in For_{\Sigma}$. Dann gilt

$$M \vdash_{\mathcal{S}} A \Rightarrow M \models A$$

Theorem

Es seien $M \subseteq For_{\Sigma}$, $A \in For_{\Sigma}$. Dann gilt

$$M \models A \Rightarrow M \vdash_S A$$