

Formale Systeme

Prof. Dr. Bernhard Beckert, WS 2017/2018

Aussagenlogik: Tableaukalkül

Kalküle für die Aussagenlogik

Übersicht

- Hilbert-Kalkül
- 2. Resolutionskalkül
- 3. Tableaukalkül
- 4. Sequenzenkalkül

Der aussagenlogische Tableaukalkül

Wesentliche Eigenschaften

► Widerlegungskalkül: Testet auf Unerfüllbarkeit

$$M \models A \Leftrightarrow M \cup \{\neg A\} \vdash_{\mathsf{T0}} \mathsf{0}.$$

- ► Beweis durch Fallunterscheidung
- Top-down-Analyse der gegebenen Formeln

Der aussagenlogische Tableaukalkül

Vorteile

- Intuitiver als Resolution
- ▶ Formeln müssen nicht in Normalform sein
- Falls Formelmenge erfüllbar ist (Test schlägt fehl), wird ein Gegenbeispiel (eine erfüllende Interpretation) konstruiert

Nachteil

Mehr als eine Regel

Kleine Deutsch- und Englischsstunde

Deutsch

```
das Tableau
```

des Tableaus (Gen.) die Tableaus (pl.)

der Tableaukalkül (nicht das)

Englisch

the tableau (sing.) the tableaux (pl.)

the tableau calculus

Vorzeichenformel

Definition (Vorzeichenformel)

Eine Vorzeichenformel ist eine Zeichenkette der Gestalt

 $0A ext{ oder } 1A ext{ mit } A \in For 0.$

0, 1 sind neue Sonderzeichen (die Vorzeichen) im Alphabet der Objektsprache.

Definition

Wir setzen *val_i* fort auf die Menge aller Vorzeichenformeln durch

$$val_I(0A) = val_I(\neg A),$$

und

$$val_I(1A) = val_I(A)$$
.

Uniforme Notation

Konjunktive Formeln: Typ α

- ► 1(*A* ∧ *B*)
- ▶ $0(A \lor B)$
- **▶** 0(*A* → *B*)
- ▶ 0¬A
- ► 1¬A

Disjunktive Formeln: Typ β

- ▶ $0(A \land B)$
- ► 1(*A* ∨ *B*)
- ► 1(*A* → *B*)



Raymond Smullyan

Uniforme Notation

Zuordnungsregeln Formeln / Unterformeln

α	α_1	α_2
$1(A \wedge B)$	1 <i>A</i>	1 <i>B</i>
$0(A \vee B)$	0 <i>A</i>	0 <i>B</i>
$0(A \rightarrow B)$	1 <i>A</i>	0 <i>B</i>
0¬A	1 <i>A</i>	1 <i>A</i>
1 <i>¬A</i>	0 <i>A</i>	0 <i>A</i>

$$\begin{array}{c|cccc} & \beta & \beta_1 & \beta_2 \\ \hline 0(A \land B) & 0A & 0B \\ 1(A \lor B) & 1A & 1B \\ 1(A \to B) & 0A & 1B \\ \end{array}$$

Regeln des (aussagenlogischen) Tableaukalküls

$$\frac{\alpha}{\alpha_1}$$

 α_2

$$1(p \wedge q)$$

$$1p$$

$$1q$$

$$\frac{\beta}{\beta_1 \mid \beta_2}$$

disjunktiv

$$\begin{array}{ccc}
1(p \lor q) \\
p & 1q
\end{array}$$

<u>01</u>

10

Widerspruch

Instanzen der α - und β -Regel

Instanzen der α -Regel

$$\frac{1(P \wedge Q)}{1P}$$
1 Q

$$\frac{1(P \land Q)}{1P} \qquad \frac{0(P \lor Q)}{0P} \\
1Q \qquad 0Q$$

$$\frac{0(P \to Q)}{1P}$$

$$0Q$$

$$\frac{0\neg P}{1P}$$

$$\frac{1\neg P}{0P}$$

Instanzen der β -Regel

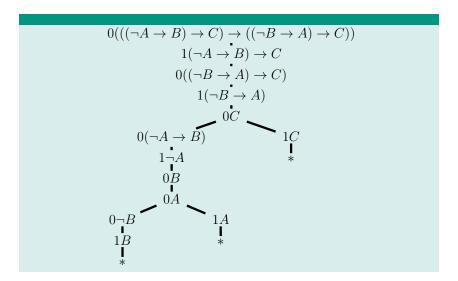
$$\frac{1(P \vee Q)}{1P \mid 1Q}$$

$$\frac{1(P \lor Q)}{1P \mid 1Q} \qquad \frac{0(P \land Q)}{0P \mid 0Q}$$

$$\frac{1(P \to Q)}{0P \mid 1Q}$$

Beispiel:

$$\models (((\neg A \to B) \to C) \to ((\neg B \to A) \to C))$$



Determinismus von Kalkül und Regeln

Determinismus

- Die Regeln sind alle deterministisch
- Der Kalkül aber nicht:
 Wahl der nächsten Formel, auf die Regel angewendet wird

Heuristik

Nicht-verzweigende Regeln zuerst: " α vor β "

Nota bene

Selbe Formel kann mehrfach (auf verschiedenen Ästen) verwendet werden – unter Umständen ist das auch notwendig!

Definition: Tableau

Binärer Baum, dessen Knoten mit Vorzeichenformeln markiert sind

Definition: Tableauast

Maximaler Pfad in einem Tableau (von Wurzel zu Blatt)

Erweiterung

- ▶ T ein Tableau für A über M
- ▶ B ein Ast von T
- ▶ F eine Formel auf B, die kein Atom ist

T' entstehe durch Erweiterung von B gemäß der auf F anwendbaren Regel (α oder β) Dann ist T' ein Tableau für A über M

Voraussetzungsregel

- ► T ein Tableau für A über M
- ► F eine Formel in M

T' entstehe durch Erweiterung eines beliebigen Astes durch 1F Dann ist T' ein Tableau für A über M

Definition: Geschlossener Ast

Ast B eines Tableaus ist geschlossen, wenn

 $1F, 0F \in B$ oder $10 \in B$ oder $01 \in B$

Definition: Geschlossenes Tableau

Ein Tableau ist geschlossen, wenn jeder seiner Äste geschlossen ist

Definition: Tableaubeweis

Ein Tableau für A über M, das geschlossen ist, ist ein Tableaubeweis für $M \cup \{\neg A\} \vdash_{T0} \mathbf{0}$ und damit für $M \models A$

Korrektheit und Vollständigkeit des Tableaukalküls

Theorem

Es gilt $M \models A$ genau dann, wenn es einen Tableaubeweis für A über M gibt

Kern des Korrektheitsbeweises

Definition: Erfüllbares Tableau

Tableauast ist erfüllbar, wenn die Menge seiner Formeln erfüllbar ist

Tableau ist erfüllbar, wenn es (mindestens) einen erfüllbaren Ast hat

Lemma

Jedes Tableau für A über M ist erfüllbar, falls $M \cup \{\neg A\}$ erfüllbar ist.

Lemma

Ein geschlossenes Tableau ist nicht erfüllbar

Korrektheitslemma

Initialisierung: *I* ist Modell von $M \cup \{\neg A\}$, also von 0*A*.

Voraussetzung: I ist Modell von $M \cup \{\neg A\}$, also von 1F für alle $F \in M$.

α -Fall (β -Fall analog):

- Nach Ind.-Ann. erfüllt / einen Ast π in T.
- ▶ Zur Anwendung der α -Regel wird ein Ast π_1 in T und eine α -Formel α auf π_1 gewählt, π_1 wird verlängert um α_1 , α_2 .
- ▶ Wenn $\pi_1 \neq \pi$, ist π ein Ast in T', und damit (trivial) auch T' erfüllt.
- ▶ Wenn $\pi_1 = \pi$, haben wir aus $val_l(\pi) = W$, dass $val_l(\alpha) = W$, also $val_l(\alpha_1) = W$ und $val_l(\alpha_2) = W$.
- ► Somit $val_I(\pi') = W$ für den neu entstehenden Pfad π' , d.h. T' ist erfüllbar

Kern des Vollständigkeitsbeweises

Definition: Voll expandiertes Tableau

Ein Tableau heißt voll expandiert, wenn

- ▶ jede Regel
- auf jede passende Formel
- ▶ auf jedem offenen Ast

angewendet worden ist und

- ▶ für jedes $F \in M$ (hierfür muss M endlich sein)
- ▶ für jeden Ast B

1F auf B vorkommt

Kern des Vollständigkeitsbeweises

Lemma

Ist *B* ein offener Ast in einem voll expandierten Tableau, dann ist *B* erfüllbar.

Also

Ist $M \cup \{\neg A\}$ unerfüllbar,

also jeder Ast jedes vollexpandierten Tableaus für *A* über *M* unerfüllbar.

dann ist jedes voll expandierte Tableau für A über M geschlossen

(denn sonst wäre er wegen des Lemmas erfüllbar)

Kern des Vollständigkeitsbeweises

Beweis

Sei B ein offener Ast eines voll expandierten Tableaus

Wir definieren

$$I(P) := \left\{ egin{array}{ll} W & ext{falls } 1P \in B \\ F & ext{falls } 0P \in B \\ ext{bel.} & ext{sonst} \end{array}
ight.$$

Durch Induktion zeigt man leicht: $val_I(F) = W$ für jedes F auf B.

Es folgt, dass *I* Modell von $M \cup \{\neg A\}$ ist.

Allgemeine Tableauregel

$$\begin{array}{c|cccc} \phi \\ \hline \psi_{1,1} & \cdots & \psi_{n,1} \\ \vdots & & \vdots \\ \vdots & & \ddots & \vdots \\ \psi_{1,K_1} & \cdots & \psi_{n,K_n} \end{array}$$

Um die Teilformeleigenschaft des Tableaukalküls zu gewährleisten, wird gefordert, dass alle Vorzeichenformeln $\psi_{i,j}$ Teilformeln der Vorzeichenformel ϕ sind.

Korrektheit und Vollständigkeit einer Regel

Eine allgemeine Tableauregel

$$\begin{array}{c|cccc}
 & \phi \\
\hline
 & \psi_{1,1} & \cdots & \psi_{n,1} \\
\vdots & & \cdots & \vdots \\
 & \vdots & & \vdots \\
 & \psi_{1,K_1} & \cdots & \psi_{n,K_n}
\end{array}$$

heißt vollständig und korrekt, wenn für jede Interpretation I gilt $val_I(\phi) = W$ gdw es gibt ein i, $1 \le i \le n$, so dass für alle j, $1 \le j \le k_i$ gilt $val_I(\psi_{i,j}) = W$

Tableauregel für den logischen Äquivalenzoperator

\leftrightarrow	W	F
W	W	F
F	F	W

$$\begin{array}{c|c}
1(A \leftrightarrow B) & 0(A \leftrightarrow B) \\
1A & 0A & 1A & 0A \\
1B & 0B & 0B & 1B
\end{array}$$