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Introduction
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Different Questions to Ask

Question so far in this lecture . . .

Question: Is formula φ valid / satisfiable / unsatisfiable
(in all structures/models)

(∀x .p(x))→ p(f (x)) is valid.

x > y → y < x is not valid (uninterpreted symbols!)

New question . . .

Question: Is formula φ valid / satisfiable / unsatisfiable
in structures with certain properties
(typically: with fixed interpretation for symbols)

∃x . 2 · x2 − x − 1 = 0 ∧ x < 0 holds in R, . . .

. . . but not in Z.
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Theories

Given a FOL signature Σ
FmlΣ . . . set of closed FOL-formulas over Σ.

Definition: Theory

A theory T ⊂ FmlΣ is a set of formulas such that

1 T is closed under consequence: If T |= φ then φ ∈ T

2 T is consistent: T 6|= false

Note:
T consistent iff T has a model
T consistent iff false 6∈ T (because T closed)
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Theories: Basic Definitions

A FOL structure (D, I ) is a T -structure if
D, I |= φ for all φ ∈ T .

A T -structure (D, I ) is a T -model of ψ ∈ FmlΣ if D, I |= ψ.

ψ ∈ FmlΣ is T -satisfiable if it has a T -model.

ψ ∈ FmlΣ is T -valid if every T -structure is a T -model of ψ.
(Note: T |= ψ ⇐⇒ ψ ∈ T )

T is complete if: φ ∈ T or ¬φ ∈ T for all φ ∈ FmlΣ

|=T is used instead of T |=: S |=T φ defined as S ∪ T |= φ
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Defining Theories

Axiomatisation

A theory T may be defined by a set Ax ⊂ FmlΣ of axioms.
T is the consequential closure of Ax :

T = T (Ax) := {φ | Ax |= φ}

(T is “axiomatisable”)

Fixing a structure

Theory T may be represented by one particular structure (D, I ).
T is the set of true formulas in (D, I ):

T = T (D, I ) := {φ | (D, I ) |= φ}

Formale Systeme – Prof. Dr. Bernhard Beckert (Folien: Mattias Ulbrich) – 5/40



Discussion

Every theory T (D, I ) is complete.

If Ax is recursively enumerable,
then T (Ax) is recursively enumerable

Even if Ax is finite or decidable,
T (Ax) is, in general, not decidable.

There are (D, I ) such that T (D, I ) is not rec. enum.
(and, thus, not axiomatisable with a rec. enum. Ax)

(D, I ) is not the only T (D, I )-model.
(In general, two T (D, I )-models are not even isomorphic)
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Free variables
When dealing with theories, formulas often have free variables.

Open and closed (reminder)

φ1 = ∀x .∃y .p(x , y) is closed, has no free variables,
φ2 = ∃y .p(x , y) is open, has free variables FV (φ2) = {x}

FmloΣ ⊃ FmlΣ . . . set of open formulas

Existential closure ∃[·]
For φ ∈ FmloΣ with FV = {x1, ..., xn} define:

∃[φ] := ∃x1. . . .∃xn. φ

φ ∈ FmloΣ is called T-satisfiable if ∃[φ] is T-satisfiable.
NOTE: Therefore, free variables in T -SAT problems behave like
constants. In difference to that, so far, we treated free variables
mostly as being implicitly universally quantified
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Axioms for Equality

Theorem

Equality can be axiomatised in first order logic.

This means: Given signature Σ, there is a set EqΣ ⊂ FmlΣ that
axiomatise equality:

φ≈ is formula φ with interpreted “
.

=” replaced by uninterpred “≈”.

S |= φ ⇐⇒ S≈ |=T (EqΣ) φ
≈
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Axioms for Equality

Axioms EqΣ:

∀x . x ≈ x (Reflexivity)

∀x1, x1, . . . , xn, x
′
n.

x1 ≈ x ′1 ∧ . . . ∧ xn ≈ x ′n → f (x1, ..., xn) ≈ f (x ′1, . . . , x
′
n)

for any function f in Σ with arity n. (Congruency)

∀x1, x1, . . . , xn, x
′
n.

x1 ≈ x ′1 ∧ . . . ∧ xn ≈ x ′n → p(x1, ..., xn)↔ p(x ′1, . . . , x
′
n)

for any predicate p in Σ with arity n. (Congruency)
(This includes predicate ≈)

Symmetry and transitivity of ≈ are consequences of EqΣ

 Exercise
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Satisfiability Modulo Theories

SMT solvers

A lot of research in recent years:
(Simplify), Z3, CVC4, Yices, MathSAT, SPT, . . .
Some for many theories, others only for a single theory.

(Common input format SMT-Lib 2)

FmlQF ⊂ Fmlo . . . the set of quantifier-free formulas

Interesting questions for a theory T :

SAT: Is φ ∈ Fmlo a T -satisfiable formula?

QF-SAT: Is φ ∈ FmlQF a T -satisfiable formula?
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Decision Procedure

Decision Procedure

A decision procedure DPT for a theory T is a deterministic
algorithm that always terminates.
It takes a formula φ as input and returns SAT if φ is T -satisfiable,
UNSAT otherwise.

N.B.:

φ is T -valid ⇐⇒ ¬φ is not T -satisfiable.

DPT can also be used to decide validity!
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Decision Procedures

Theory QF-SAT SAT
Equality YES YES
Uninterpreted functions YES co-SEMI
Integer arithmetic
Linear arithmetic
Real arithmetic
Bitvectors YES YES
Floating points YES YES
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Natural Arithmetic

Formale Systeme – Prof. Dr. Bernhard Beckert (Folien: Mattias Ulbrich) – 13/40



Natural Numbers

Standard model of natural numbers

Let ΣN = ({+, ∗, 0, 1}, {<}).

N = (N, IN ) with “obvious” meaning:

IN (
{

+
∗
<

}
)(a, b) = a

{
+
·
<

}
b, IN (0) = 0, IN (1) = 1

T (N ) is the set of all sentences over ΣN which are true in the
natural numbers.

Gödel’s Incompleteness Theorem

“Any consistent formal system F within which a certain amount of
elementary arithmetic can be carried out is incomplete.”

Natural number arithmetic is not axiomatisable
with a rec. enum. set of axioms
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Peano Arithmetic

Natural number arithmetic is not axiomatisable . . .
Let’s approximate.

The Peano Axioms PA
1 ∀x(x + 1 6 .= 0)

2 ∀x∀y(x + 1
.

= y + 1→ x
.

= y)

3 ∀x(x + 0
.

= x)

4 ∀x∀y(x + (y + 1)
.

= (x + y) + 1)

5 ∀x(x ∗ 0
.

= 0)

6 ∀x∀y(x ∗ (y + 1)
.

= (x ∗ y) + x)

7 For any φ ∈ FmlΣN

(φ(0) ∧ ∀x(φ(x)→ φ(x + 1)))→ ∀x(φ)

That’s an infinite (yet recursive) set of Axioms.
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Peano Arithmetic

Peano arithmetic approximates natural arithmetic.

More T (PA)-models than T (N )-models

T (PA) is not complete.

=⇒ There are T (N )-valid formulas that are not T (PA)-valid
formulas.

There are artificial examples in T (N ) \ T (PA),
but also actual mathematical theorems:
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Decision Procedures

Theory QF-SAT SAT
Equality YES YES
Uninterpreted functions YES co-SEMI
Integer arithmetic NO1 NO
Linear arithmetic
Real arithmetic
Bitvectors YES YES
Floating points YES YES

1 Yuri Matiyasevich. Enumerable sets are diophantine. Journal of Sovietic
Mathematics, 1970.
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Presburger Arithmetic

Let ΣP = ({0, 1,+}, {<}), the signature w/o multiplication.

The Presburger Axioms P

1 ∀x(x + 1 6 .= 0)

2 ∀x∀y(x + 1
.

= y + 1→ x
.

= y)

3 ∀x(x + 0
.

= x)

4 ∀x∀y(x + (y + 1)
.

= (x + y) + 1)

5 For any φ ∈ FmlΣN

(φ(0) ∧ ∀x(φ(x)→ φ(x + 1)))→ ∀x(φ)

A subset of the Peano axioms (w/o those for multiplication).

Conventions:
3

def
= 1 + 1 + 1, 3x

def
= x + x + x , etc.
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Presburger Arithmetic

Mojżesz Presburger. Über die Vollständigkeit eines gewissen
Systems der Arithmetik, Warsaw 1929

Theorem

He proved Presburger arithmetic to be

consistent,

complete, and

decidable.

We are interested in the 3rd property!
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Quantifier Elimination

Definition

A theory T admits quantifier elimination (QE) if any formula

Q1x1 . . .Qnxn. φ(x1, . . . , xn, y1, . . . , ym) ∈ Fmlo

is T -equivalent to a quantifier-free formula

ψ(y1, . . . , ym) ∈ Fmlo .

Qi ∈ {∀,∃}

If T -ground instances in FmlQF ∩ Fml can be decided, QE gives us
a decision procedure for T .
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Quantifier Elimination

Lemma

If T admits QE for any formula

∃x . φ1(x , y1, . . . , ym) ∧ . . . ∧ φn(x , y1, . . . , ym) ∈ Fmlo

with φi literals, then T admits QE for any formula in Fmlo .

Literal: atomic formula or a negation of one.

Proof: (Easy) exercise.
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Presburger and Quantifier Elimination

Does Presburger Arithmetic admit QE?

Almost ... However

∃x .y = x + x has no quantifier-free P-equivalent

Add predicates: {k |· : k ∈ N>0} “k divides ...”

∃x .y = x + x ↔ 2|y is P-valid

Presburger Arithmetic with divisibility admits QE.

 Cooper’s algorithm
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Real arithmetic is decidable

Σ = ({+,−, ·, 0, 1}, {≤}), ϕ ∈ FmlΣ

Reminder:

N |= ϕ is not decidable, not even recursive enumerable (Gödel).

Tarski-Seidenberg theorem (c. 1948)

R |= ϕ is decidable.
Complexity is double exponential (c. 1988).

Idea: Quantifier elimination

Find formula ψ such that (∃x .ϕ(x , y))↔ ψ(y).
Computer algebra systems do this: Redlog, Mathematica, (Z3)
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Tarski-Seidenberg theorem (c. 1948)

R |= ϕ is decidable.
Complexity is double exponential (c. 1988).

Idea: Quantifier elimination

Find formula ψ such that (∃x .ϕ(x , y))↔ ψ(y).
Computer algebra systems do this: Redlog, Mathematica, (Z3)
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Decision Procedures

Theory QF-SAT SAT
Equality YES YES
Uninterpreted functions YES co-SEMI
Integer arithmetic NO NO
Linear arithmetic YES YES
Real arithmetic YES YES
Bitvectors YES YES
Floating points YES YES
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Combining Theories
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Combining Theories

What if we have two (or more) theories within one formula?

f (a) = g(a + 1) ∧ g(a + b) > f (a) satisfiable?

Decision procedures exist for linear integers, and for uninterpreted
functions.

Goal

Find decision procedures for combinations of theories.

Combinations of theories
Let T1 ⊆ FmlΣ1 and T2 ⊆ FmlΣ2 be theories.
The combined theory T1,2 ∈ FmlΣ1∪Σ2 is defined as:

T1,2
def
= T (T1 ∪ T2)
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Purification

f (a) = g(a + 1) ∧ g(a + b) > f (a) (1)

Purification

Extract expressions using fresh constants and equalities.
Make each atomic formula belong to one theory only.

f (a) = g(y) ∧ y = a + 1 ∧
z = g(u) ∧ u = a + b ∧ w = f (a) ∧ z > w

is equisatisfiable to (1).

Note: This resembles the construction of the “short CNF”.
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Convex Theories

Definition

A Σ theory T is convex if for every conjunctive ϕ ∈ FmlΣ

(ϕ→
⋃

i=1 xi = yi ) is T -valid for some finite n > 1
implies that

(ϕ→ xi = yi ) is T -valid for some i ∈ {1, . . . , n}

where xi , yi , for i ∈ {1, . . . , n}, are variables.

Examples:

Linear arithmetic over R is convex.

Linear arithmetic over N is not convex:

x1 = 1 ∧ x2 = 2 ∧ 1 ≤ x3 ∧ x3 ≤ 2→ (x3 = x1 ∨ x3 = x2)
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Nelson-Oppen Combination Procedure

In order for the Nelson–Oppen procedure to be applicable, the
theories T1,T2 must comply with the following restrictions:

1 T1,T2 are quantifier-free first-order theories with equality.

2 There is a decision procedure for each of the theories

3 The signatures are disjoint, i.e., for all Σ1 ∩ Σ2 = ∅
4 T1,T2 are theories are stably infinite: Every T -satisfiable

formula has an infinite model (e.g., linear arithmetic over R,
but not the theory of finite-width bit vectors).

(Generalisation to more than two theories: simple, see literature)
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Example

from: D. Kröning, O.Strichman: Decision Procedures, Springer Verlag
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Example
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Nelsson-Oppen Algorithm – convex case

T1,T2 convex theories with with the Nelsson-Oppen properties.
Assume convex (conjunctive) problem.

τ bridges between T1 and T2 and is a conjunction of equalities
over variables

After purification: ϕ1 ∈ Fml1, ϕ2 ∈ Fml2, τ ⊆ Fml=

1 If ϕ1 ∧
∧
τ is T1-unsatisfiable, return UNSAT

2 If ϕ2 ∧
∧
τ is T2-unsatisfiable, return UNSAT

3 “learn” new equalities:
τ := τ ∪

⋃
{x = y | ϕ1 ∧ τ → x = y is T1-valid}

∪
⋃
{x = y | ϕ2 ∧ τ → x = y is T2-valid}

4 If nothing was “learnt”, return SAT

5 Go to 1

Beckert, Ulbrich – Formale Systeme II: Theorie 45/47



Soundness

This algorithm is a decision procedure for T1/2.

To show: ϕ1 ∧ ϕ2 is satisfiable ⇐⇒ algorithm returns SAT .

Proof sketch on blackboard

see also: D. Kröning, O. Strichman: Decision Procedures, Springer
Verlag. Section 10.3.3.
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Non-convex theories

1 If ϕ1 ∧ τ is T1-unsatisfiable, return UNSAT

2 If ϕ2 ∧ τ is T2-unsatisfiable, return UNSAT

3 “learn” new equalities:
τ := τ ∧

∧
{x = y | ϕ1 ∧ τ → x = y is T1-valid}

∧
∧
{x = y | ϕ2 ∧ τ → x = y is T2-valid}

4 If nothing was “learnt”, split: If there exists i such that

ϕi → (x1 = y1 ∨ . . . ∨ xk = yk) and
ϕi 6→ (xj = yj)

then apply Nelson–Oppen recursively to adding xi = yi to the
different τ .
If any of these subproblems is satisfiable, return “Satisfiable”.
Otherwise, return “Unsatisfiable”.
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