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I Different Questions to Ask AT
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Question so far in this lecture . ..

Question: Is formula ¢ valid / satisfiable / unsatisfiable
(in all structures/models)

w (Vx.p(x)) — p(f(x)) is valid.
® x>y — y < x is not valid (uninterpreted symbols!)

New question ...

Question: Is formula ¢ valid / satisfiable / unsatisfiable
in structures with certain properties
(typically: with fixed interpretation for symbols)

e Ix.2-x2—x—1=0Ax<O0holdsinR, ...
@ ...but notin Z.
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I Theories AT
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Given a FOL signature ©
Fmls .. .set of closed FOL-formulas over X.

Definition: Theory

A theory T C Fmls is a set of formulas such that
@ T is closed under consequence: If T |=¢ then p € T
@ T is consistent: T [~ false

Note:
T consistent iff T has a model
T consistent iff false ¢ T (because T closed)
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Theories: Basic Definitions AT
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w A FOL structure (D, /) is a T-structure if
D,I =¢forallpeT.

w A T-structure (D, 1) is a T-model of » € Fmls if D, | = 1.
m ¢ € Fmly is T-satisfiable if it has a T-model.

w ) € Fmly is T-valid if every T-structure is a T-model of .
(Note: TEvY <= ¢ €T)

a T iscompleteif: ¢ &€ T or =¢p € T forall ¢ € Fmly

w =7 is used instead of T =: S |=7 ¢ defined as SU T = ¢
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I Defining Theories

A theory T may be defined by a set Ax C Fmls of axioms.
T is the consequential closure of Ax:

T=T(Ax) = {o|Ax¢}

(T is “axiomatisable")

Fixing a structure

Theory T may be represented by one particular structure (D, /).
T is the set of true formulas in (D, /):

T=T7(D,1) = {¢](D,])E ¢}
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I Discussion A“(IT

w Every theory T(D, 1) is complete.
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I Discussion A“(IT

w Every theory T(D, 1) is complete.

u If Ax is recursively enumerable,
then T (Ax) is recursively enumerable
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I Discussion AT
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w Every theory T(D, 1) is complete.

u If Ax is recursively enumerable,
then T (Ax) is recursively enumerable

a Even if Ax is finite or decidable,
T (Ax) is, in general, not decidable.
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I Discussion

w Every theory T(D, 1) is complete.

u If Ax is recursively enumerable,
then T (Ax) is recursively enumerable

a Even if Ax is finite or decidable,
T (Ax) is, in general, not decidable.

w There are (D, /) such that 7(D, /) is not rec. enum.
(and, thus, not axiomatisable with a rec. enum. Ax)
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I Discussion T
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w Every theory T(D, 1) is complete.

u If Ax is recursively enumerable,
then T (Ax) is recursively enumerable

a Even if Ax is finite or decidable,
T (Ax) is, in general, not decidable.

w There are (D, /) such that 7(D, /) is not rec. enum.
(and, thus, not axiomatisable with a rec. enum. Ax)

a (D, 1) is not the only T(D,)-model.

(In general, two T (D, I)-models are not even isomorphic)
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I Free variables
When dealing with theories, formulas often have free variables.

Open and closed (reminder)

¢1 = ¥x.3y.p(x, y) is closed, has no free variables,
¢ = Jy.p(x, y) is open, has free variables FV/(¢2) = {x}

Fml2 D Fmls .. .set of open formulas

Existential closure J[]

For ¢ € FmI2 with FV = {xi, ..., xp} define:
A[¢] :=3x1. ... 3xn. @

¢ € FmlQ is called T-satisfiable if 3[¢] is T-satisfiable.

NOTE: Therefore, free variables in T-SAT problems behave like
constants. In difference to that, so far, we treated free variables
mostly as being implicitly universally quantified
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I Axioms for Equality AT
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Theorem
Equality can be axiomatised in first order logic.

This means: Given signature X, there is a set Eqy C Fmly that
axiomatise equality:

"

¢~ is formula ¢ with interpreted “=" replaced by uninterpred "~".

SE¢ = S¥ Fr(Ey) ¢©
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I Axioms for Equality

m Vx. x & x (Reflexivity)
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I Axioms for Equality AT
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m Vx. x & x (Reflexivity)

® VX1, X1, - ey Xny XD
XIRX|A . AXp R X = F(X1,y ey Xn) & F(X], ..., X))
for any function f in X with arity n. (Congruency)
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I Axioms for Equality
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e Vx. X~ x

/
® VX1, X1, ...y Xn, X

X1 R XA A Xy =X, = f(xq, ...

for any function f in X with arity n.

/
® VX1, X1, .-y Xny Xy

X1 XA A Xy R X = p(xa,
for any predicate p in X with arity n.

(This includes predicate ~)
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,Xn) & F(xgs -0 xp)
(Congruency)

7Xn)<_> (le"' n)
(Congruency)
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I Axioms for Equality T
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m Vx. x & x (Reflexivity)
® VX1, X1, - ey Xny X
XIR XA A Xy =X, = (X1, Xn) = F(X], ..., X))
for any function f in X with arity n. (Congruency)
® VX1, X1, - ey Xny X
X1 XA A Xy R X p(X1, e, Xn) < P(XT, -, X))
for any predicate p in X with arity n. (Congruency)

(This includes predicate ~)

Symmetry and transitivity of & are consequences of Eqy
~ Exercise
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| Satisfiability Modulo Theories (T
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SMT solvers

A lot of research in recent years:
(Simplify), Z3, CVC4, Yices, MathSAT, SPT, ...
Some for many theories, others only for a single theory.

(Common input format SMT-Lib 2)
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| Satisfiability Modulo Theories (T
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SMT solvers

A lot of research in recent years:
(Simplify), Z3, CVC4, Yices, MathSAT, SPT, ...
Some for many theories, others only for a single theory.

(Common input format SMT-Lib 2)

FmIQF < Fmi° .. .the set of quantifier-free formulas
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| Satisfiability Modulo Theories (T
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SMT solvers

A lot of research in recent years:
(Simplify), Z3, CVC4, Yices, MathSAT, SPT, ...
Some for many theories, others only for a single theory.

(Common input format SMT-Lib 2)
FmIQF < Fmi° .. .the set of quantifier-free formulas

Interesting questions for a theory T:
a SAT: Is ¢ € FmI® a T-satisfiable formula?
® QF-SAT: Is ¢ € Fm/®F a T-satisfiable formula?
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I Decision Procedure AT
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Decision Procedure

A decision procedure DP+ for a theory T is a deterministic
algorithm that always terminates.

It takes a formula ¢ as input and returns SAT if ¢ is T-satisfiable,
UNSAT otherwise.

N.B.:
m ¢is T-valid <= —¢ is not T-satisfiable.

a DPy can also be used to decide validity!
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I Decision Procedures

Theory QF-SAT ‘

Equality YES
Uninterpreted functions| YES
Integer arithmetic
Linear arithmetic
Real arithmetic

Bitvectors YES
Floating points YES
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Natural Arithmetic
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I Natural Numbers

Standard model of natural numbers

Let Ty = ({+,%,0,1}, {<}).
N = (N, Iy) with “obvious” meaning:

w({Z])ab) = a{ T} b.n(0) = 0. I(1) =1

T(N) is the set of all sentences over ¥ which are true in the
natural numbers.

Godel's Incompleteness Theorem

“Any consistent formal system F within which a certain amount of
elementary arithmetic can be carried out is incomplete.”

Natural number arithmetic is not axiomatisable
with a rec. enum. set of axioms
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I Peano Arithmetic

Natural number arithmetic is not axiomatisable ...
Let's approximate.

@ Vx(x+1#0)

@ VxVy(x+1l=y+1—-x=y)
@ Vx(x+0=x)

@ VxVy(x+(y+1)=(x+y)+1)
@ Vx(xx0=0)

@ VxVy(xx(y+1)=(x*xy)+x)
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I Peano Arithmetic AT
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Natural number arithmetic is not axiomatisable ...
Let's approximate.

@ Vx(x+1#0)

@ VxVy(x+1l=y+1—-x=y)
@ Vx(x+0=x)

@ VxVy(x+(y+1)=(x+y)+1)
@ Vx(xx0=0)

@ VxVy(xx(y+1) = (x*y)+x)

@ Forany ¢ € Fmls,,
(6(0) A Vx(d(x) = ¢(x +1))) — Vx(¢)
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I Peano Arithmetic AT
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Natural number arithmetic is not axiomatisable ...
Let's approximate.

@ Vx(x+1#0)
@ VxVy(x+1l=y+1—-x=y)
@ Vx(x+0=x)
@ VxVy(x+(y+1)=(x+y)+1)
@ Vx(xx0=0)
@ VxVy(xx(y+1)=(x*xy)+x)
@ Forany ¢ € Fmls,,
(0(0) A Vx(p(x) = ¢(x +1))) = Vx(4)

That's an infinite (yet recursive) set of Axioms.
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I Peano Arithmetic A“(IT

a Peano arithmetic approximates natural arithmetic.
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I Peano Arithmetic AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

a Peano arithmetic approximates natural arithmetic.
a More T(PA)-models than 7 (A)-models
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I Peano Arithmetic AT
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a Peano arithmetic approximates natural arithmetic.

a More T(PA)-models than 7 (A)-models
w 7(PA) is not complete.
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I Peano Arithmetic AT
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a Peano arithmetic approximates natural arithmetic.
a More T(PA)-models than 7 (A)-models
w 7(PA) is not complete.

= There are T(N)-valid formulas that are not 7 (PA)-valid
formulas.
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I Peano Arithmetic AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

a Peano arithmetic approximates natural arithmetic.
a More T(PA)-models than 7 (A)-models
w 7(PA) is not complete.

= There are T(N)-valid formulas that are not 7 (PA)-valid
formulas.

There are artificial examples in T(N)\ T(PA),
but also actual mathematical theorems:
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I Decision Procedures
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Theory QF-SAT| SAT
Equality YES YES
Uninterpreted functions| YES |co-SEMI
Integer arithmetic NO! NO
Linear arithmetic

Real arithmetic

Bitvectors YES YES
Floating points YES YES

1 Yuri Matiyasevich. Enumerable sets are diophantine. Journal of Sovietic

Mathematics, 1970.
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I Presburger Arithmetic T
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Let ¥p = ({0,1,+},{<}), the signature w/o multiplication.

@ Vx(x+1#0)
@ VxVy(x+1l=y+1—-x=y)
@ Vx(x+0=x)
@ VxVy(x+(y+1)=(x+y)+1)
@ For any ¢ € Fmly,,
(6(0) A Vx((x) = ¢(x +1))) — Vx(¢)

A subset of the Peano axioms (w/o those for multiplication).
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I Presburger Arithmetic T
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Let ¥p = ({0,1,+},{<}), the signature w/o multiplication.

@ Vx(x+1#0)
@ VxVy(x+1l=y+1—-x=y)
@ Vx(x+0=x)
@ VxVy(x+(y+1)=(x+y)+1)
@ For any ¢ € Fmly,,
(6(0) A Vx((x) = ¢(x +1))) — Vx(¢)

A subset of the Peano axioms (w/o those for multiplication).

Conventions:
3d§fl+1—|—1, 3xd§fx+x+x, etc.
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I Presburger Arithmetic

Mojzesz Presburger. Uber die Vollstindigkeit eines gewissen
Systems der Arithmetik, Warsaw 1929

Theorem

He proved Presburger arithmetic to be
m consistent,
m complete, and

m decidable.

We are interested in the 3rd property!
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I Quantifier Elimination AT

A theory T admits quantifier elimination (QE) if any formula
@Q1x1 -« QnXn- A(X1, -y Xny Y15+ -5 Ym) € FmI®
is T-equivalent to a quantifier-free formula

1/}(}/1,---,ym) € Fm/o .
Qi € {v,3}
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I Quantifier Elimination AT

A theory T admits quantifier elimination (QE) if any formula
@Q1x1 -« QnXn- A(X1, -y Xny Y15+ -5 Ym) € FmI®
is T-equivalent to a quantifier-free formula
YY1y, Ym) € Fml® .

Q; € {V7 3}

If T-ground instances in Fm/QF N Fml can be decided, QE gives us
a decision procedure for T.
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I Quantifier Elimination AN {]]
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Lemma
If T admits QE for any formula

Ix. P10, Y1y Ym) Ao A n(Xy1, oo Ym) € Fml®
with ¢; literals, then T admits QE for any formula in Fm/°.

Literal: atomic formula or a negation of one.
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I Quantifier Elimination AT
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Lemma
If T admits QE for any formula

Ix. P10, Y1y Ym) Ao A n(Xy1, oo Ym) € Fml®
with ¢; literals, then T admits QE for any formula in Fm/°.

Literal: atomic formula or a negation of one.

Proof: (Easy) exercise.
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I Presburger and Quantifier Elimination A\KlT

Does Presburger Arithmetic admit QE?
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I Presburger and Quantifier Elimination AN{]]
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Does Presburger Arithmetic admit QE?

Almost ... However

Jx.y = x + x has no quantifier-free P-equivalent
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I Presburger and Quantifier Elimination AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Does Presburger Arithmetic admit QE?

Almost ... However

Jx.y = x + x has no quantifier-free P-equivalent

Add predicates: {k|-: k € N5o} "k divides ..."

Ixy=x+x < 2y is P-valid

Presburger Arithmetic with divisibility admits QE.

~ Cooper's algorithm
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I Real arithmetic is decidable AT
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Y={+—-01}{<}), ¢€Fmk
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I Real arithmetic is decidable AT
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Y={+—-01}{<}), ¢€Fmk

N [= ¢ is not decidable, not even recursive enumerable (Godel).
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I Real arithmetic is decidable

Y={+—-0,1}{<}), ¢€Fmk

N [= ¢ is not decidable, not even recursive enumerable (Godel).

Tarski-Seidenberg theorem (c. 1948)

R | ¢ is decidable.
Complexity is double exponential (c. 1988).
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I Real arithmetic is decidable AT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Y={+—-01}{<}), ¢€Fmk

N [= ¢ is not decidable, not even recursive enumerable (Godel).

Tarski-Seidenberg theorem (c. 1948)

R | ¢ is decidable.
Complexity is double exponential (c. 1988).

Idea: Quantifier elimination
Find formula ¢ such that (Ix.¢(x,y)) < ¥(y).
Computer algebra systems do this: REDLOG, Mathematica, (Z3)
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I Decision Procedures

Theory QF-SAT | SAT
Equality YES YES
Uninterpreted functions| YES |co-SEMI
Integer arithmetic NO NO
Linear arithmetic YES YES
Real arithmetic YES YES
Bitvectors YES YES
Floating points YES YES
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Combining Theories
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Combining Theories IT
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What if we have two (or more) theories within one formula?

f(a)=g(a+1) A g(a+b)>f(a) satisfiable?

Decision procedures exist for linear integers, and for uninterpreted
functions.

Find decision procedures for combinations of theories.

Combinations of theories
Let T1 C Fmls, and T> C Fmly, be theories.
The combined theory Ty 5 € Fmls, s, is defined as:

T172 d:ef T( T U Tg)
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I Purification AT

f(a)=g(a+1) AN gla+ b) > f(a) (1)

Extract expressions using fresh constants and equalities.
Make each atomic formula belong to one theory only.

flay=gly)Ay=a+1A
z=guyAhu=a+bAw="Ff(a)Az>w

is equisatisfiable to (1).

Note: This resembles the construction of the “short CNF".

Beckert, Ulbrich — Formale Systeme |l: Theorie 40/47



Convex Theories

A X theory T is convex if for every conjunctive ¢ € Fmly

(¢ = U;—1 xi = yi) is T-valid for some finite n > 1
implies that
(¢ = xi = yi) is T-valid for some i € {1,...,n}

where x;,y;, for i € {1,...,n}, are variables.
Examples:
m Linear arithmetic over R is convex.

a Linear arithmetic over N is not convex:

X1=1/\X2=2/\1§X3/\X3§2—>(X3=X1\/X3=X2)
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I Nelson-Oppen Combination Procedure A\‘(IT

In order for the Nelson—-Oppen procedure to be applicable, the
theories T7, To must comply with the following restrictions:

@ 71, T, are quantifier-free first-order theories with equality.
@ There is a decision procedure for each of the theories
@ The signatures are disjoint, i.e., for all ¥; N ¥, =

@ Ti, T, are theories are stably infinite: Every T-satisfiable
formula has an infinite model (e.g., linear arithmetic over R,
but not the theory of finite-width bit vectors).

(Generalisation to more than two theories: simple, see literature)
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| Example SIT

stitute of Technology

Example 10.7. Consider the formula

(f(x1,0) = x3) A (f(z2,0) < x3) A
(.'L'] = .'L'z) M (.'I:z 2.L1) I (10.12)
(3 — f(z1,0) > 1),

which mixes linear arithmetic and uninterpreted functions. Purification results

in
(a1 = z3) A (ag < x3) A (T = 22) A (22 > 21) A (23— a1 = 1)A
(ag =0) A
(ﬂ? = flx1,a0)) A (10.13)
(ﬂ.2 = f(:rZS G{])) .

from: D. Kroning, O.Strichman: Decision Procedures, Springer Verlag
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| Example T
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F1 (arithmetic over R)| F» (EUF)
ai = T3 a1 = f(x1,a0)
az < I3 az = f(xa,a0)
T > T2
o :-j I
rz —a =1
ag =0
* 1 = Iq Iy =Ia
1 = dg * ] = dg
* ] = I3
* FALSE
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T1, To convex theories with with the Nelsson-Oppen properties.
Assume convex (conjunctive) problem.

T bridges between T; and T» and is a conjunction of equalities
over variables

After purification: w1 € Fmly, 2 € Fmb, 7 C Fml=

@ If o1 A\ 7 is Ti-unsatisfiable, return UNSAT
@ If o A\ T is Tr-unsatisfiable, return UNSAT

@ ‘learn” new equalities:
Ti=7UU{x=y |1 AT — x=yis Ty-valid}
UU{x=y|p2AT— x=yis Tp-valid}
@ If nothing was “learnt”, return SAT
® Gotol
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I Soundness AT

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

This algorithm is a decision procedure for Ty .

To show: (1 A @7 is satisfiable <= algorithm returns SAT
Proof sketch on blackboard

see also: D. Kréning, O. Strichman: Decision Procedures, Springer
Verlag. Section 10.3.3.
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I Non-convex theories AT
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@ If o1 AT is Ti-unsatisfiable, return UNSAT
@ If o AT is Tr-unsatisfiable, return UNSAT

@ ‘learn” new equalities:
T=TAN{x=y|p1 AT —= x=yis T1-valid}
ANXx=y|p2AT = x=yis Tp-valid}
@ If nothing was “learnt”, split: If there exists / such that
m o> (x1=yV...Vxk =y and
= 9i 7 (X =)
then apply Nelson—Oppen recursively to adding x; = y; to the
different 7.
If any of these subproblems is satisfiable, return “Satisfiable”.
Otherwise, return “Unsatisfiable” .
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