

Formale Systeme

Prof. Dr. Bernhard Beckert, WS 2019/2020

Endliche Automaten

Endliche Automaten Wiederholung

Definition

Ein endlicher Automat ist gegeben durch

► eine endliche Menge S von Zuständen

Definition

- ► eine endliche Menge S von Zuständen
- ► ein Alphabet *V* (terminale Zeichen)

Definition

- ► eine endliche Menge *S* von Zuständen
- ► ein Alphabet *V* (terminale Zeichen)
- ▶ einer Übergangsfunktion $\delta : S \times V \rightarrow S$

Definition

- ► eine endliche Menge S von Zuständen
- ► ein Alphabet *V* (terminale Zeichen)
- ▶ einer Übergangsfunktion $\delta : S \times V \rightarrow S$
- ▶ ein Anfangszustand $s_0 \in S$

Definition

- ► eine endliche Menge S von Zuständen
- ► ein Alphabet *V* (terminale Zeichen)
- ▶ einer Übergangsfunktion $\delta : S \times V \rightarrow S$
- ▶ ein Anfangszustand $s_0 \in S$
- ▶ eine nichtleere Teilmenge $S_1 \subseteq S$ als Menge von Endzuständen

Akzeptierte Sprachen

Die Übergangsfunktion $\delta: S \times V \to S$ wird fortgesetzt zu $\delta: S \times V^* \to S$:

$$\delta(s, \varepsilon) = s$$

 $\delta(s, aw_1) = \delta(s', w_1)$ wobei $\delta(s, a) = s'$

Definition von L(EA)

Jeder endliche Automat EA akzeptiert eine Menge von Wörtern L(EA).

$$L(EA) = \{ w \in V^* \mid \delta(s_0, w) \in S_1 \}$$

Vollständige endliche Automaten

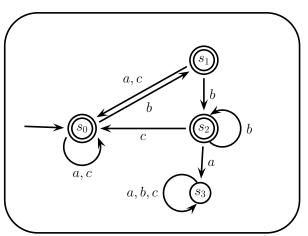
Variante

Gelegentlich wird in Beispielen die Übergangsfunktion δ nicht für alle Paare (s, a) definiert.

Wird während der Abarbeitung eines Wortes w eine Situation (s, a) erreicht, für die $\delta(s, a)$ nicht definiert ist, so gilt w als nicht akzeptiert.

Ein endlicher Automat, so daß $\delta(s, a)$ für alle $s \in S$ und $a \in V$ definiert ist, heißt ein vollständiger endlicher Automat.

Der Beispielautomat N_{bba}

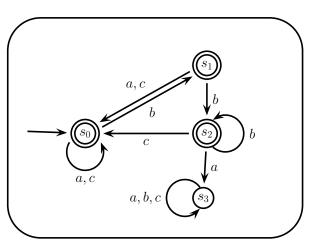


$$V = \{a, b, c\}$$

 $S_1 = \{s_0, s_1, s_2\}$

$$L(N_{bba}) =$$

Der Beispielautomat N_{bba}



$$V = \{a, b, c\} \ S_1 = \{s_0, s_1, s_2\}$$

$$L(N_{bba}) = \{w \in V^* \mid$$

bba ist kein Teilwort von w}

Definition

Ein nichtdeterministischer endlicher Automat wird durch die folgenden Bestimmungsstücke gegeben:

▶ eine endliche Menge S von Zuständen,

Definition

- ► eine endliche Menge S von Zuständen,
- ▶ ein Alphabet V,

Definition

- ► eine endliche Menge S von Zuständen,
- ► ein Alphabet *V*,
- ▶ ein Anfangszustand $s_0 \in S$,

Definition

- ► eine endliche Menge S von Zuständen,
- ► ein Alphabet *V*,
- ▶ ein Anfangszustand s₀ ∈ S,
- ▶ eine Übergangsfunktion $\delta : S \times V \rightarrow Pot(S)$,

Definition

- ► eine endliche Menge S von Zuständen,
- ► ein Alphabet *V*,
- ▶ ein Anfangszustand $s_0 \in S$,
- ▶ eine Übergangsfunktion $\delta : S \times V \rightarrow Pot(S)$,
- ▶ eine Menge $F \subseteq S$ von Finalzuständen,

Definition

- ► eine endliche Menge S von Zuständen,
- ► ein Alphabet *V*,
- ▶ ein Anfangszustand $s_0 \in S$,
- ▶ eine Übergangsfunktion $\delta : S \times V \rightarrow Pot(S)$,
- ▶ eine Menge $F \subseteq S$ von Finalzuständen,

Definition

Ein nichtdeterministischer endlicher Automat wird durch die folgenden Bestimmungsstücke gegeben:

- ► eine endliche Menge S von Zuständen,
- ▶ ein Alphabet V,
- ▶ ein Anfangszustand $s_0 \in S$,
- ▶ eine Übergangsfunktion $\delta : S \times V \rightarrow Pot(S)$,
- ▶ eine Menge $F \subseteq S$ von Finalzuständen,

Die Änderung gegenüber den deterministischen endlichen Automaten besteht also darin, daß die Übergangsfunktion δ als Werte Mengen von Zuständen annimmt:

Nichtdeterministisch akzeptierte Sprachen

Die Fortsetzung von $\delta: S \times V \to Pot(S)$ zu $\delta: S \times V^* \to Pot(S)$ wird jetzt wie folgt definiert:

$$\begin{array}{lcl} \delta(\boldsymbol{s},\varepsilon) & = & \{\boldsymbol{s}\} \\ \delta(\boldsymbol{s},a\boldsymbol{w}_1) & = & \{\boldsymbol{s}' \mid \text{ es gibt } \boldsymbol{s}_1 \in \boldsymbol{S} \text{ mit } \boldsymbol{s}_1 \in \delta(\boldsymbol{s},a) \text{ und } \boldsymbol{s}' \in \delta(\boldsymbol{s}_1,\boldsymbol{w}_1) \end{array}$$

Die von einem nichtdeterministischen endlichen Automaten NEA akzeptierte Sprache L(NEA) wird jetzt durch

$$L(NEA) = \{ w \in V^* \mid \delta(s_0, w) \cap F \neq \emptyset \}$$

definiert.

Definition

Ein endlicher Automat mit spontanen Übergängen wird durch die folgenden Bestimmungsstücke gegeben:

▶ eine endliche Menge S von Zuständen,

Definition

- ► eine endliche Menge S von Zuständen,
- ▶ ein Alphabet V,

Definition

- ▶ eine endliche Menge S von Zuständen,
- ▶ ein Alphabet V,
- ▶ ein Anfangszustand $s_0 \in S$,

Definition

- ▶ eine endliche Menge S von Zuständen,
- ▶ ein Alphabet V,
- ▶ ein Anfangszustand $s_0 \in S$,
- ▶ eine Menge $F \subseteq S$ von Finalzuständen,

Definition

- ▶ eine endliche Menge S von Zuständen,
- ▶ ein Alphabet V,
- ▶ ein Anfangszustand $s_0 \in S$,
- ▶ eine Menge $F \subseteq S$ von Finalzuständen,
- ▶ eine Übergangsfunktion $\delta : S \times (V \cup \{\varepsilon\}) \rightarrow Pot(S)$

Sei $A = (S, V, s_0, \delta, F)$ ein endlicher Automat mit spontanen Übergängen, dann ist die Funktion

$$\varepsilon$$
-cl : $Pot(S) \rightarrow Pot(S)$

für $I \subseteq S$ definiert als:

 ε -cl(I) ist die kleinste Teilmenge $J\subseteq S$ mit 1. $I\subseteq J$

Sei $A = (S, V, s_0, \delta, F)$ ein endlicher Automat mit spontanen Übergängen, dann ist die Funktion

$$\varepsilon$$
-cl : $Pot(S) \rightarrow Pot(S)$

für $I \subseteq S$ definiert als:

 ε -cl(I) ist die kleinste Teilmenge $J \subseteq S$ mit

- 1. *I* ⊂ *J*
- 2. für alle $s \in J$ gilt $\delta(s, \varepsilon) \subseteq J$.

Sei $A = (S, V, s_0, \delta, F)$ ein endlicher Automat mit spontanen Übergängen, dann ist die Funktion

$$\varepsilon$$
-cl : $Pot(S) \rightarrow Pot(S)$

für $I \subseteq S$ definiert als:

 ε -cl(I) ist die kleinste Teilmenge $J \subseteq S$ mit

- 1. *I* ⊂ *J*
- 2. für alle $s \in J$ gilt $\delta(s, \varepsilon) \subseteq J$.

Sei $A = (S, V, s_0, \delta, F)$ ein endlicher Automat mit spontanen Übergängen, dann ist die Funktion

$$\varepsilon$$
-cl : $Pot(S) \rightarrow Pot(S)$

für $I \subseteq S$ definiert als:

 ε -cl(I) ist die kleinste Teilmenge $J \subseteq S$ mit

- 1. *I* ⊂ *J*
- 2. für alle $s \in J$ gilt $\delta(s, \varepsilon) \subseteq J$.

Die Bezeichnung ε -*cl* soll an ε -*closure* erinnern.

Akzeptierte Sprache

Die Fortsetzung von $\delta: S \times (V \cup \{\varepsilon\}) \rightarrow Pot(S)$ zu $\bar{\delta}: S \times V^* \rightarrow Pot(S)$ kann jetzt definiert werden als:

$$\begin{array}{lll} \bar{\delta}(\boldsymbol{s},\varepsilon) & = & \varepsilon\text{-}\boldsymbol{c}\boldsymbol{l}(\{\boldsymbol{s}\}) \\ \bar{\delta}(\boldsymbol{s},\boldsymbol{a}\boldsymbol{w}_1) & = & \{\boldsymbol{s}' \mid \text{es gibt } \boldsymbol{s}_1,\boldsymbol{s}_2 \text{ mit } \boldsymbol{s}_1 \in \varepsilon\text{-}\boldsymbol{c}\boldsymbol{l}(\{\boldsymbol{s}\}),\boldsymbol{s}_2 \in \delta(\boldsymbol{s}_1,\boldsymbol{a}), \\ & & \boldsymbol{s}' \in \bar{\delta}(\boldsymbol{s}_2,\boldsymbol{w}_1)\}) \end{array}$$

Akzeptierte Sprache

Die Fortsetzung von $\delta: \mathcal{S} \times (V \cup \{\varepsilon\}) \to Pot(\mathcal{S})$ zu $\bar{\delta}: \mathcal{S} \times V^* \to Pot(\mathcal{S})$ kann jetzt definiert werden als:

$$\begin{array}{lcl} \bar{\delta}(\boldsymbol{s},\varepsilon) & = & \varepsilon\text{-}\mathit{cl}(\{\boldsymbol{s}\}) \\ \bar{\delta}(\boldsymbol{s},\mathit{aw}_1) & = & \{\boldsymbol{s}' \mid \text{es gibt } \boldsymbol{s}_1,\boldsymbol{s}_2 \text{ mit } \boldsymbol{s}_1 \in \varepsilon\text{-}\mathit{cl}(\{\boldsymbol{s}\}),\boldsymbol{s}_2 \in \delta(\boldsymbol{s}_1,a), \\ & \qquad \qquad \boldsymbol{s}' \in \bar{\delta}(\boldsymbol{s}_2,\boldsymbol{w}_1)\}) \end{array}$$

Die von einem nichtdeterministischen endlichen Automaten NEA mit spontanen Übergängen akzeptierte Sprache L(NEA) wird wieder durch

$$L(\textit{NEA}) = \{ \textit{w} \in \textit{V}^* \mid \bar{\delta}(\textit{s}_0, \textit{w}) \cap \textit{F} \neq \emptyset \}$$

definiert.

Satz von Myhill und Büchi

Satz

Zu jedem nichtdeterministischen endlichen Automaten

$$A = (S, V, s_0, \delta, F)$$

gibt es einen deterministischen endlichen Automaten

$$B=(Q,V,q_0,\Delta,G)$$

mit

$$L(A) = L(B)$$

Satz von Myhill und Büchi

Satz

Zu jedem nichtdeterministischen endlichen Automaten

$$A = (S, V, s_0, \delta, F)$$

gibt es einen deterministischen endlichen Automaten

$$B = (Q, V, q_0, \Delta, G)$$

mit

$$L(A) = L(B)$$

Dabei kann A spontane Übergänge enthalten und muß auch nicht vollständig sein.

Liste der Operationen

1.
$$L_1L_2 = \{w_1w_2 \mid w_1 \in L_1, w_2 \in L_2\},\$$

Liste der Operationen

- 1. $L_1L_2 = \{w_1w_2 \mid w_1 \in L_1, w_2 \in L_2\},\$
- 2. $L^* = \{w_1 \dots w_n \mid n \geq 0, w_i \in L\}$

Liste der Operationen

- 1. $L_1L_2 = \{w_1w_2 \mid w_1 \in L_1, w_2 \in L_2\},\$
- 2. $L^* = \{w_1 \dots w_n \mid n \ge 0, w_i \in L\}$
- 3. $L_1 \cup L_2 =$ Mengenvereinigung

Liste der Operationen

- 1. $L_1L_2 = \{w_1w_2 \mid w_1 \in L_1, w_2 \in L_2\},\$
- 2. $L^* = \{w_1 \dots w_n \mid n \ge 0, w_i \in L\}$
- 3. $L_1 \cup L_2 =$ Mengenvereinigung
- 4. $L_1 \cap L_2 = Mengendurchschnitt$

Operationen mit Wortmengen

Liste der Operationen

Seien $L, L_1, L_2 \subseteq V^*$.

- 1. $L_1L_2 = \{w_1w_2 \mid w_1 \in L_1, w_2 \in L_2\},\$
- 2. $L^* = \{w_1 \dots w_n \mid n \ge 0, w_i \in L\}$
- 3. $L_1 \cup L_2 =$ Mengenvereinigung
- 4. $L_1 \cap L_2 = Mengendurchschnitt$
- 5. $L_1 \setminus L_2 = Mengendifferenz$

Reg_V = Menge der regulären Ausdrücke über V

1. $\emptyset \in Reg_V$,

- 1. $\emptyset \in Reg_V$,
- 2. $\varepsilon \in Reg_V$,

- 1. $\emptyset \in Reg_V$,
- 2. $\varepsilon \in Reg_V$,
- 3. für jedes $a \in V$ ist $a \in Reg_V$,

- 1. $\emptyset \in Reg_V$,
- 2. $\varepsilon \in Reg_V$,
- 3. für jedes $a \in V$ ist $a \in Reg_V$,
- 4. für $t \in Reg_V$ gilt auch $(t)^* \in Reg_V$,

- 1. $\emptyset \in Reg_V$,
- 2. $\varepsilon \in Reg_V$,
- 3. für jedes $a \in V$ ist $a \in Reg_V$,
- 4. für $t \in Reg_V$ gilt auch $(t)^* \in Reg_V$,
- 5. für $t_1, t_2 \in Reg_V$ gilt auch $(t_1t_2) \in Reg_V$ und $(t_1 + t_2) \in Reg_V$.

1.
$$S(\emptyset) = \emptyset$$
,

- 1. $S(\emptyset) = \emptyset$,
- 2. $S(\varepsilon) = \{\varepsilon\},\$

- 1. $S(\emptyset) = \emptyset$,
- 2. $S(\varepsilon) = \{\varepsilon\},\$
- 3. $S(a) = \{a\},\$

- 1. $S(\emptyset) = \emptyset$,
- 2. $S(\varepsilon) = \{\varepsilon\},\$
- 3. $S(a) = \{a\},\$
- 4. $S((t)^*) = (S(t))^*$,

- 1. $S(\emptyset) = \emptyset$,
- 2. $S(\varepsilon) = \{\varepsilon\},\$
- 3. $S(a) = \{a\},\$
- 4. $S((t)^*) = (S(t))^*$,
- 5. $S((t_1t_2)) = S(t_1)S(t_2)$ und $S((t_1 + t_2)) = S(t_1) \cup S(t_2)$.

Satz

Satz

Zu jedem endlichen Automaten A gibt es einen regulären Ausdruck t mit

$$S(t) = L(A)$$
.

Satz

Satz

Zu jedem endlichen Automaten A gibt es einen regulären Ausdruck t mit

$$S(t) = L(A)$$
.

Wir benutzen im folgenden stillschweigend die Assoziativität der Konkatenation und von + um in regulären Ausdrücken Klammern einzusparen, also (a+b+c) anstelle von ((a+b)+c).