
LLMs in Formal Verification

AI-generated

Chair: Application-oriented

 Formal Verification

Prof. Bernhard Beckert
Debasmita Lohar
Michael Kirsten
Philipp Kern
Samuel Teuber
Jonas Schiffl
Jonas Klamroth
Mattias Ulbrich April 30, 2025

Lecturers:

Kickoff Event

Logistics

 Course Registration

‣ Deadline: May 11, 2025

‣ Instruction Language: English

Note: No registration/deregistration possible after this date!

 Reading Assignment

‣ Read the assigned papers

‣ Find and read 1-2 additional papers in the area (more is welcome but not required!)

‣ Build a foundation on the given topic

Meetings: Once in every 2 weeks (schedule appointment with your advisor)

 Presentations / Discussion
Time — 15:45 - 17:15 (25 + 5 + 25 + 5 + 30 minutes), Room No. 236

presentation 1 Theorem Proving
presentation 2 Loop Invariant Synthesis

June 26:

presentation 3 Program Specification
presentation 4 Program Synthesis

July 17:
presentation 5 Bug Detection
presentation 6 Program Repair

presentation 7 Natural Language Requirements
July 3: July 24:

 Presentations / Discussion

Everyone must attend, points for contributing to the discussion!

Discussion — Presenters are responsible for leading the discussion

Feedback for Presenter: For future improvements! No impact on grades!

Time — 15:45 - 17:15 (25 + 5 + 25 + 5 + 30 minutes), Room No. 236

presentation 1 Theorem Proving
presentation 2 Loop Invariant Synthesis

June 26:

presentation 3 Program Specification
presentation 4 Program Synthesis

July 17:
presentation 5 Bug Detection
presentation 6 Program Repair

presentation 7 Natural Language Requirements
July 3: July 24:

 Writing Assignment

‣ Topic: brief overview including
• motivation,
• different methods, their strengths and weaknesses,
• discussion of results, and
• conclusion

Report: 7-8 pages (strict), ACM Generic Journal Manuscript Format
Submission: September 30, 2025

 Writing Assignment

‣ Topic: brief overview including
• motivation,
• different methods, their strengths and weaknesses,
• discussion of results, and
• conclusion

‣ In-class discussion: include relevant ones

Report: 7-8 pages (strict), ACM Generic Journal Manuscript Format
Submission: September 30, 2025

 Writing Assignment

‣ Topic: brief overview including
• motivation,
• different methods, their strengths and weaknesses,
• discussion of results, and
• conclusion

‣ In-class discussion: include relevant ones

Report: 7-8 pages (strict), ACM Generic Journal Manuscript Format

‣ Future extensions: potential applications of your methods to other topics and/or vice versa

points for ideas!

Submission: September 30, 2025

 Guidelines for using Generative AI

https://www.informatik.kit.edu/downloads/studium/Guidelines_Generative_AI_Informatics.pdf

“In all cases, students remain responsible for their work. This also applies
to the parts of their work that have been created using or influenced by AI.”

Polish the writing including spelling, grammar, style, translation
Generate new ideas, e.g., the future extension in the report

For example,

 Distribution of Points

‣ Presentation: 60%

‣ Report: 30%

‣ Bonus (in-class discussion): 5%

‣ Bonus (future extensions in the report): 5%

Note: Everybody needs to submit the report to pass!

About the Topics

Natural
Language
Requirements

• Pre/postconditions
• Loop Invariants

Formal Specifications

Program
Synthesis Theorem

Proving

Verified
Program
Repair

Bug
Detection

Natural
Language
Requirements

• Pre/postconditions
• Loop Invariants

Formal Specifications

Program
Synthesis

Verified
Program
Repair

Theorem
Proving

Bug
Detection

 For Natural Language Requirements (Advisor: Debasmita Lohar)

‣ Can LLMs translate informal specifications into formal?

‣ Are the specifications are as intended and useful?

Natural Language

Specification

(Informal, Hard, Ambiguous)

Manual Formalization
(Tedious, Error Prone)

 For Natural Language Requirements (Advisor: Debasmita Lohar)

‣ Can LLMs translate informal specifications into formal?

‣ Are the specifications are as intended and useful?

Natural Language

Specification

(Informal, Hard, Ambiguous)

Manual Formalization
(Tedious, Error Prone)

E.g., postconditions,
Temporal Logics etc.

Automatic Translation

Formal Specifications

Natural
Language
Requirements

• Pre/postconditions
• Loop Invariants

Formal Specifications

Program
Synthesis

Verified
Program
Repair

Theorem
Proving

Bug
Detection

 For Program Specifications (Advisor: Samuel Teuber)

‣ Can LLMs provide useful intermediate specifications?

‣ Can LLMs provide further specifications to guide program verification tools?

Source Program

Candidate Specifications
• Preconditions
• Postconditions
• Assertions

Program Verification

Feedback?

Validate

Natural
Language
Requirements

• Pre/postconditions
• Loop Invariants

Formal Specifications

Program
Synthesis

Verified
Program
Repair

Theorem
Proving

Bug
Detection

 For Loop Invariants (Advisor: Mattias Ulbrich)

‣ Can LLMs automatically find useful loop invariants?

‣ How can these invariants improve the scalability of verification (e.g., BMC)?

Program with loops
Generate
Candidate
Loop
Invariants

Validate

Verification

Natural
Language
Requirements

• Pre/postconditions
• Loop Invariants

Formal Specifications

Program
Synthesis

Verified
Program
Repair

Theorem
Proving

Bug
Detection

 For Program Synthesis (Advisor: Philipp Kern)

∃P∀x . σ(P, x)
Does there exist a function such that

for all possible inputs ,
the specification will evaluate to true for and ?

P
x

σ P x

Synthesize P

Verify

counter-example candidate P

‣ How can LLMs assist in synthesizing specific code?

‣ How can we ensure the generated code is correct and consistent?

Natural
Language
Requirements

• Pre/postconditions
• Loop Invariants

Formal Specifications

Program
Synthesis

Verified
Program
Repair

Theorem
Proving

Bug
Detection

 For Bug Detection (Advisor: Jonas Klamroth / Debasmita Lohar)

‣ Can LLMs help static analysis to find bugs without human specifications?

‣ Are these bugs real or false alarms?

Source Program

Traditional Static

Analysis

Needs Specifications
Reports false-positives

Integrate LLMs!

• Understand intents and code patterns
• Generate specifications or bug patterns
• Filter false alarms

LLM-assisted Static Analysis

Natural
Language
Requirements

• Pre/postconditions
• Loop Invariants

Formal Specifications

Program
Synthesis

Verified
Program
Repair

Theorem
Proving

Bug
Detection

 For Verified Program Repair (Advisor: Jonas Schiffl)

‣ Can LLMs help to generate high quality patches?

‣ Instead of general, can LLMs provide targeted repair of critical, real-world bugs?

Learning-Based
Patch by training

LLM + Static Analysis

for better Program Repair

Constraint-Based
Patch by solving constraints

LLM-Based
Patch by LLMs

• Scalability Issues
• Generic
• Low-Quality Patches

…

Natural
Language
Requirements

• Pre/postconditions
• Loop Invariants

Formal Specifications

Program
Synthesis

Verified
Program
Repair

Theorem
Proving

Bug
Detection

 For Theorem Proving (Advisor: Michael Kirsten)

‣ Can LLMs help in drafting formal theorems and proofs, and finalize existing proofs?

‣ Can LLMs come up with valid new theorems from existing proof libraries?

Questions?

