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Reading Assignment

> Read the assigned papers

» Find and read 1-2 additional papers in the area (more is welcome but not required!)

> Build a foundation on the given topic

Meetings: Once in every 2 weeks (schedule appointment with your advisor)

Instruction Language: English




Presentations / Discussion

Time — 15:45 — 17:15 (25 + 5 + 25 + 5 + 30 minutes), Room No. 301

January 23: February o:

presentation 1 RL for Theorem Proving presentation 2 Fairness

presentation 3 Robustness

February 13:

presentation 4 | LMs for Formal Specifications
presentation 5 | Ms for Program Synthesis

Discussion — Presenters are responsible for leading the discussion

Everyone must attend,. points for contributing to the discussion!



Writing Assignment

Report: 7-8 pages, ACM Generic Journal Manuscript Format
Submission: March 31, 2025

> [opic: brief overview including
motivation,

different methods, their strengths and weaknesses,
discussion of results, and

conclusion

> |n-class discussion: include relevant ones

> Future extensions: potential applications of your methods to other topics and/or vice versa

. points for ideas!



Guidelines for using Generative Al

For example,

s/ Polish the writing including spelling, grammar, style, translation

x (Generate new ideas, e.g., the future extension in the report

“In all cases, students remain responsible for their work. This also applies
to the parts of their work that have been created using or influenced by Al.”

https://www.informatik.kit.edu/downloads/studium/Guidelines Generative Al Informatics.pdf




Distribution of Points

> Presentation: 60%
» Report: 30%
» Bonus (in-class discussion): 5%

» Bonus (future extensions in the report): 5%

Note: Everybody needs to submit the report to pass!



About the Topics

V1 Verification of Neural Networks

|



Do NNs in critical systems work as intended?

*Images created with copilot
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VERNON PRATER BRISHA BORDEN

Prior Offenses Prior Offenses
2 armed robberies, 1 4 juvenile
attempted armed
robbery

misdemeanors

Subsequent Offenses
Subsequent Offenses None

1grand theft

LOW RISK 3  HIGHRISK 8

data from ProPublica

JES

*Autonomous Driving *Al-powered Medical Equipment

Al-powered Decision Making

We aim to prove that NNs have certain desired properties!



Property 1: Robustness (Advisor: Philipp

any noise in the
perturbation set

> How can we verify If the network Is robust to input perturbations’?

> \What are the challenges in this verification problem?

Dog

7



Property 2: Explainabillity (Advisor: Philipp)

Dog

Goal: explain the decision!

> \What makes a good explanation, and how can we compute it efficiently?

> Which parts/features of inputs are the most critical for prediction??



Property 3: Quantization (Advisor: Debasmita)

High Precision 3 i

iNnput data— training

- S )

Low Precision System

Adaptive Cruise Controller

Quantization trades off precision for improved efficiency!

> How many bits are sufficient to ensure the safety of the quantized model?

» How can we scale the verification process efficiently?



Property 4. Fairness (Advisor: Samuel)

ML algorithms make critical predictions Machine Bias
bUt StUd|eS have ShOWﬂ poteﬂha‘ blasesl There's software used across the country to

predict future criminals. And it's biased
against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren
Kirchner, ProPublica

May 23, 2016

data from ProPublica

> How do we analyze influence of protected attributes?

> How do we verify at inference time”/



About the Topics
%

] Neural Networks for Verification



How can we use NNs to reduce verification efforts?

This is how deasfue
it s stoisecffy

andedctivey vrovury

software by hand.

Vienelive AAl for
Software Venifation! }

Prompt: Now create an image demonstrating how incredibly easy the

task becomes if you use clever Als like yourselr.
The person should be extremely happy. Anyone seeing the image should

be motivated to verify their software using Al.

Prompt: Generate a picture showing how tedious it is to specify and

deductively verify software by hand.
The picture should show how terribly boring the job is. So much so, that

anyone seeing the picture is scared of doing this task by hand.

But, Al Is not as reliable as we would like it to be...

Images are created with copilot!



Reinforcement Learning (RL) for Theorem Proving (Advisor: Samuel)
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Silver, David, et al. "Mastering the game of go without human knowledge.” Nature 550.7676 (2017): 354-359

> Problem Solving as a game that RL agent can win

> (Generation of training problem is just another game



Large Language Models (LLM) for Theorem

Statement

If gcd(n, 4) = 1 and
lcmin, 4) = 28,
show thatn is 7.

Informal
Proof Writer

comp|etmgtheproof. S

................................................................................

Draft informal proof

Formal sketch

Informal proof have cl: “1+28 = n*4”
We know that ged(a, b) - lem{a, b) = ab, RS aBs
<proof=>

hence l - 28 =n-4.

then have c2:
Thenn=1-28/4 =7,
- <proof>

N

Autoformalizer

==

Generate formal sketch

“n = 1*2B/4”

‘then show ?thesis

Proving (Advisor

Verified formal proof

have cl: “1+%*28 = n*4"
using assms

by (smt {(z3) prod gcd lcm nat):
then have c2: “n = 1*28/4~

by auto
‘then show ?thesis -
“'nxﬁb§“£ﬁ£éuf'ﬁu”'.'""””' evmererenret

4

Off-the-shelf

Prover

/5

Prove remaining gaps

. Michael)

» Can LLMs help in drafting formal theorems and proofs, and finalize existing proofs®

> Can LLMs come up with valid new theorems from existing proof libraries”



Large Language Models (LLM) for Formal Specifications (Advisor: Michael)

Step I. Code Decomposition Step IL Hierarchical Specification Generation
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(D) Construct Prompt

Role

INPUT E Task description

' *@ 3 SPEC PLACENCLEER *
——:—b . Rt e Few-shot examples
] Jj<1, |

(E) Query LLM

(J) Remove unsatisfiable/
redundant specifications
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placeholder
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] "
0

]

'

(K) Iterative Enhancement |
il ittt |
) . '
X _ ticn 2 4 e S | X (H) Mask next
! ’ ; ‘. ; $ .t . .
L) " ’ : L)

| <ot et Tl .
m '

outpuT" N
. If passes the () Verify "
theorem prover OR N | If all
placeholders (G) Fillin the code
are filled?

reaches iteration
limits? Verification
Tool

QO AUTOSPEL |

> Can LLMs provide intermediate specifications e.qg., loop invariants®

> Can LLLMs provide further specifications to guide program verification tools?



Large Language Models (LLM) for Program Synthesis (Advisor: Debasmita)

1P Vx.o(P, x) Synthesize P x

Does there exist a function P such that
for all possible inputs X,

the specification ¢ will evaluate to true for P and x? .
Verify

counter-example candidate P

v

> How can LLMs assist in synthesizing specific code”?

> How can we ensure the generated code is correct and consistent”



