Grundbegriffe der Informatik Aufgabenblatt 9

Aufgabe 9.1 (2+2+2+2 Punkte)

a) Für welche Konstanten c_a gilt $n^3 \cdot 2^n \in O(c_a^{n \log n})$?

 $c_a^{n \log n}$ ist nach oben durch die Konstante 1 beschränkt, falls $c_a \leq 1$ gilt; in diesem Fall kann $n^3 \cdot 2^n \in O(c_a^{n \log n})$ somit nicht gelten.

Für $c_a > 1$ gibt es eine Konstante $d \in \mathbb{R}_+$, so dass gilt $\log n = d \cdot \log_{c_a} n$, und es folgt

$$c_a^{n \log n} = c_a^{\log_{c_a} n \cdot dn} = n^{dn} = (n^d)^n.$$

Für hinreichend große n wird $n^d \ge 4$ und $2^n \ge n^3$ gelten, und es folgt für diese n: $c_a^{n \log n} \ge 4^n = 2^n \cdot 2^n \ge n^3 \cdot 2^n$.

Somit gilt für alle $c_a > 1$: $n^3 \cdot 2^n \in O(c_a^{n \log n})$.

(Antwort für volle Punktzahl: c_a muss echt größer als 1 sein.)

b) Sei $B = \sqrt[3]{2}$. Geben Sie eine möglichst kleine Konstante c_b an, so dass $n^3 \cdot 2^n \in O(c_b^{n+\log_B n})$ gilt.

Zeigen Sie durch Rechnung, dass für Ihr c_b $n^3 \cdot 2^n \in O(c_b^{n + \log_B n})$ gilt.

Die kleinste mögliche Konstante, die die Bedingung erfüllt, ist $c_b=2$.

Es gilt in diesem Fall:

$$c_b^{n+\log_b n} = 2^n \cdot 2^{\log_B n} = 2^n \cdot 2^{\frac{\log_2 n}{\log 2B}} = 2^n \cdot n^{\frac{1}{\log_2 B}}.$$

Da $B = 2^{\frac{1}{3}}$ gilt, folgt $\log_2 B = \frac{1}{3}$, und wir erhalten:

$$2^n \cdot n^{\frac{1}{\log_2 B}} = 2^n \cdot n^{\frac{1}{3}} = 2^n \cdot n^3.$$

Damit folgt offensichtlich $n^3 \cdot 2^n \in O(c_b^{n+\log_B n})$.

c) Welche der folgenden Aussagen sind korrekt:

$$4^{\sqrt{n}} \in O(2^n), 4^{\sqrt{n}} \in \Omega(2^n), 4^{\sqrt{n}} \in \Theta(2^n)$$
?

Beweisen Sie alle korrekten Behauptungen durch Rechnung.

Es gilt nur $4^{\sqrt{n}} \in O(2^n)$, alle anderen Aussagen sind falsch.

Es gilt $2^n = 4^{\frac{n}{2}}$, und es bleibt zu zeigen, dass für hinreichend große n immer gilt: $\frac{n}{2} \ge \sqrt{n}$.

Sei $n \ge 4$. Dann gilt $n \cdot (n-4) \ge 0$ und somit $n^2 \ge 4n$.

Wurzelziehen auf beiden Seiten führt zu $n \geq 2\sqrt{n}$, und es ergibt sich $\frac{n}{2} \geq \sqrt{n}$, wie zu zeigen war.

Aufgabe 9.2 (2+1+1 Punkte)

Gegeben sei folgendes Programm:

(Korrigiertes Programm:

)

a) Welchen Wert besitzt die Variable r nach Ablauf des Programmes in Abhängigkeit von n?

Originalprogramm, wenn davon ausgegangen wird, dass Schleifen mit größerem Anfangs- als Endwert rückwärts durchlaufen werden:

Falls n gerade ist, gilt am Ende $r = n(n+1)(\frac{n+1}{2}-n) - \frac{n^3}{4}$. Falls n ungerade ist, gilt am Ende $r = n(n+1)(\frac{n+1}{2}-n) - \frac{n}{4}(n^2-1)$.

Originalprogramm, wenn davon ausgegangen wird, dass Schleifen mit größerem Anfangs- als Endwert nicht durchlaufen, sondern übersprungen werden:

Falls n gerade ist, gilt am Ende $r = \frac{n(n+1)(n+2)}{4} - \frac{n^1(n+2)}{8} - n^2(n+1)$. Falls n ungerade ist, gilt am Ende $r = \frac{n(n+1)(2-7n)}{8}$.

Korrigiertes Programm: $\frac{n+2}{2} \frac{n^2+n}{2}$

b) Schätzen Sie den Wert von r nach Ablauf des Programmes möglichst präzise im O-Kalkül ab.

Originalprogramm: Da die Werte von r für hinreichend große n negativ werden, lässt sich das definierte O-Kalkül nicht einsetzen.

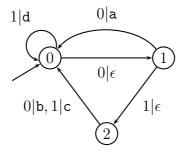
Korrigiertes Programm: Der Wert liegt in $\Theta(n^3)$.

c) Schätzen Sie die Anzahl der Durchläufe des innersten Schleifenrumpfes möglichst präzise im O-Kalkül ab.

Die Anzahl der Durchläufe liegt in $\Theta(n^2)$.

Aufgabe 9.3 (2+2 Punkte)

Gegeben sei folgender Mealy-Automat:



- a) Geben Sie die Wörter $g^{**}(100010), g^{**}(0111100)$ und $g^{**}(10101010)$ an. $g^{**}(100010) = \mathtt{dab}, g^{**}(0111100) = \mathtt{cdda} \text{ und } g^{**}(10101010) = \mathtt{dbdb}$
- b) Geben Sie eine Codierung $c:\{\mathtt{a},\mathtt{b},\mathtt{c},\mathtt{d}\}^*\to\{0,1\}^*$ an, so dass für alle $w\in\{\mathtt{a},\mathtt{b},\mathtt{c}\}^*$ gilt: $g^{**}(c(w))=w.$

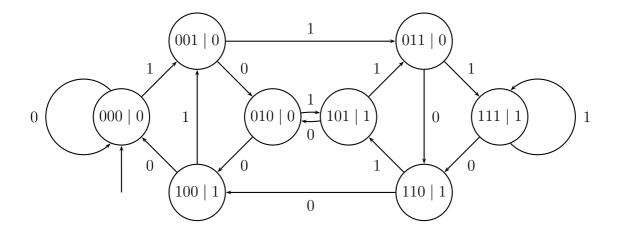
$$c(\mathbf{a}) = 00, c(\mathbf{b}) = 010, c(\mathbf{c}) = 011, c(\mathbf{d}) = 1.$$

Aufgabe 9.4 (2+2+2 Punkte)

Der Moore-Automat M sei gegeben durch Eingabealphabet $X=\{0,1\}$, Ausgabealphabet Y=X, Zustandsmenge $Z=X^3$, Anfangszustand 000 und

$$\forall w \in X^2 \forall x, y \in X : f(xw, y) = wy$$
$$\forall w \in X^2 \forall x \in X : g(xw) = x$$

a) Geben Sie eine graphische Darstellung von M an.



- b) Welche Ausgaben erhält man bei Eingabe der Wörter $w \in \{0001, 1100, 1010\}$? $g^{**}(0001) = 00000, g^{**}(1100) = 00011), g^{**}(00010)$
- c) Welches Wort w' erhält man bei Eingabe eines beliebigen Wortes w?

 Das Wort w' ist das Präfix der Länge |w| + 1 des Wortes 000w.