Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 12

Aufgabe 12.1 (4 Punkte)

Die Sprache $L \subseteq \{a, b\}^*$ sei wie folgt definiert:

- $\varepsilon \in L$
- $\bullet \ \forall w_1,w_2 \in L: \mathtt{a} w_1 \mathtt{b} w_2 \in L \wedge \mathtt{b} w_1 \mathtt{a} w_2 \in L$
- Keine anderen Wörter liegen in L.

Zeigen Sie durch strukturelle Induktion, dass jedes Wort $w \in L$ ebenso viele a wie b enthält. (Schreibweise für Anzahl der a in $w : N_a(w)$)

Lösung 12.1

Induktionsanfang: $w = \varepsilon$: $N_a(w) = N_b(w) = 0.$

Induktionsvoraussetzung: Für beliebige aber feste $w_1, w_2 \in L$ gelte $N_a(w_1) = N_b(w_1)$ und $N_a(w_2) = N_b(w_2)$

Induktionsschluss: Wir zeigen, dass auch für $w \in \{aw_1bw_2, bw_1aw_2\}$ gilt: $N_a(w) = N_b(w)$

- $\bullet \ w = \mathtt{a} w_1 \mathtt{b} w_2 \Rightarrow N_\mathtt{a}(w) = 1 + N_\mathtt{a}(w_1) + N_\mathtt{a}(w_2) \overset{IV}{=} 1 + N_\mathtt{b}(w_1) + N_\mathtt{b}(w_2) = N_\mathtt{b}(w). \checkmark$
- $\bullet \ w = \mathbf{b} w_1 \mathbf{a} w_2 \Rightarrow N_\mathbf{a}(w) = N_\mathbf{a}(w_1) + 1 + N_\mathbf{a}(w_2) \overset{IV}{=} N_\mathbf{b}(w_1) + 1 + N_\mathbf{b}(w_2) = N_\mathbf{b}(w). \checkmark$

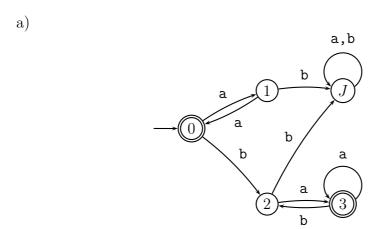
 \Box .

Aufgabe 12.2 (3+1+2 Punkte)

Gegeben sei die rechtslineare Grammatik $G = (\{S\}, \{a, b\}, S, P)$ mit $P = \{S \rightarrow baaS \mid baS \mid aaS \mid \epsilon\}$

- a) Geben Sie einen endlichen Akzeptor A an, so dass L(A) = L(G) gilt.
- b) Geben Sie einen regulären Ausdruck R an, so dass $\langle R \rangle = L(G)$ gilt.
- c) Geben Sie einen regulären Ausdruck R an, der nicht das Zeichen I enthält, und für den $\langle R \rangle = L(G)$ gilt.

Lösung 12.2



- b) (baa|ba|aa)*
- c) (aa)*(baa*)*

Aufgabe 12.3 (2+1+2+1 Punkte)

Die Turingmaschine T mit Anfangszustand S_0 und Eingabealphabet $\{A, C, D\}$ sei gegeben durch

	S_0	S_1	S_2	S_3	S_4	S_5
\overline{A}	$(A, S_1, 1)$	$(A, S_1, 1)$	$(A, S_3, 1)$	$(A, S_1, 1)$	$(D, S_5, -1)$	_
C	$(C, S_0, 1)$	$(C, S_0, 1)$	$(C, S_0, 1)$	$(C, S_4, -1)$	_	_
D	$(D, S_0, 1)$	$(D, S_2, 1)$	$(D, S_0, 1)$	$(D, S_2, 1)$	_	$(C, S_0, 1)$
	_	_	_	_	_	_

- a) Geben Sie ein kürzestes Eingabewort w an, so dass T bei Eingabe von w irgendwann in den Zustand S_4 kommt.
- b) Welches Wort steht am Ende der Berechnung auf dem Band, wenn die Eingabe das Wort w aus Teilaufgabe a) ist?
- c) Was macht die Turingmaschine allgemein mit einem Eingabewort w?
- d) Gibt es einen Mealy-Automaten $A = (Z, z_0, \{A, C, D\}, f, Y, g)$, so dass für jedes $w \in \{A, C, D\}^*$ gilt: $g^{**}(z_0, w)$ ist das Wort, das bei Eingabe von w am Ende der Berechnung von T auf dem Band steht.

Lösung 12.3

- 1. ADAC
- 2. ACDC
- 3. Die Turingmaschine ersetzt jedes Vorkommen von ADAC in w durch ACDC.
- 4. Nein.

Man könnte zwar einen Mealy-Automaten bauen, der jedes Vorkommen von ADAC mit ACDC ersetzt, jedoch wäre die Ausgabe bei einem Präfix von ADA das leere Wort.

Aufgabe 12.4 (4 Punkte)

Geben Sie eine Turingmaschine an, die bei Eingabe eines Wortes $w \in \{0, 1\}^+$ das Wort $w_1 = \mathbf{x}w$ auf dem Band produziert. Dabei soll das \mathbf{x} an die Stelle des ersten Symbols von w geschrieben werden und jedes Symbol von w um ein Feld nach rechts verschoben werden. Ihre Turingmaschine darf maximal 6 Zustände haben. Größere Maschinen werden nicht korrigiert.

Lösung 12.4

S ist der Startzustand der Turingmaschine.

	S	S_0	S_1	F
0	$(x, S_0, 1)$	$(0, S_0, 1)$	$(1, S_0, 1)$	-
1	$(x, S_1, 1)$	$(0, S_1, 1)$	$(1, S_1, 1)$	-
	-	(0, F, 0)	(1, F, 0)	-
Х	-	-	-	-

Hinweis: Die Turingmaschine kann natürlich auch anders dargestellt werden.