Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 6

Aufgabe 6.1 (3 Punkte)

Gegeben seien die Homomorphismen

- $h_1: \{a, b, c\}^* \to \{0, 1\}^* \text{ mit } h_1(a) = 001, h_1(b) = 00, h_1(c) = 1001$
- $h_2: \{a,b\}^* \to \{0,1\}^* \text{ mit } h_2(a) = 0, h_2(b) = 010$
- $h_3: \{a, b, c, d, e\}^* \to \{0, 1\}^* \text{ mit } h_3(a) = 1, h_3(b) = 011, h_3(c) = 01110, h_3(d) = 1110 \text{ und } h_3(e) = 10011.$

Finden Sie nach Möglichkeit für jeden der Homomorphismen h_i zwei Wörter w_1, w_2 , für die gilt: $w_1 \neq w_2 \wedge h_i(w_1) = h_i(w_2)$. Geben Sie eine kurze Begründung für die Fälle, in denen sich keine 2 Wörter mit dieser Eigenschaft finden lassen.

Lösung 6.1

- $h_1(aa) = h_1(bc) = 001001$
- Der Homomorphismus ist injektiv. Daher existieren keine Wörter w_1, w_2 mit der Eigenschaft $h_2(w_1) = h_2(w_2)$.
- $h_3(aae) = h_1(db) = 1110011$

Hinweis: Pro Homomorphismus gibt es einen Punkt. Bei h_2 gibt es 0.5 Punkte für das Erkennen, dass kein Wortpaar gibt, dass die Anforderung erfüllt, und einen weiteren halben Punkt für die Begründung (Injektivität des Homomorphismus).

Aufgabe 6.2 (3+1 Punkte)

Für eine Zeichenmenge $A = \{a, b, c, d, e, f, g\}$ sind folgende relativen Häufigkeiten P gegeben:

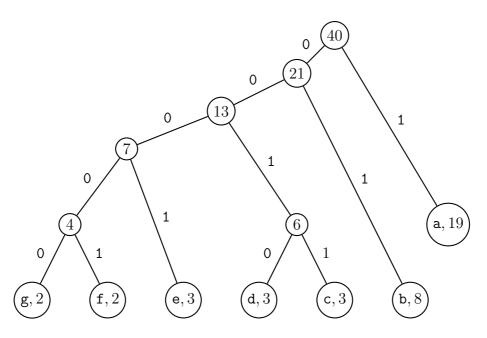
Zeichen
 a
 b
 c
 d
 e
 f
 g

 P

$$\frac{19}{40}$$
 $\frac{8}{40}$
 $\frac{3}{40}$
 $\frac{3}{40}$
 $\frac{3}{40}$
 $\frac{2}{40}$
 $\frac{2}{40}$

- a) Konstruieren Sie den für den Huffman-Code benötigten Baum.
- b) Geben Sie die Codierung von acab mit dem zu dem Baum gehörenden Huffman-Code an.

Lösung 6.2



a) $\label{eq:hinweis:hinweis:hinweis:} \mbox{\sc F\"{u}r jeden falsch zusammengefassten Knoten gibt es einen Punkt Abzug.}$

b) Die Codierung ist: 10011101

Hinweis: Der Baum, und damit die Codierung, ist nicht eindeutig!

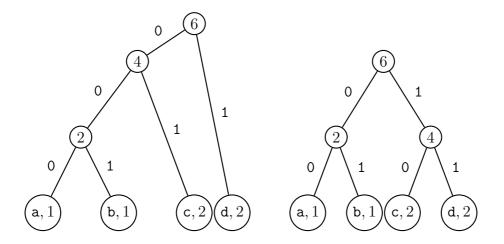
Hinweis: Folgefehler (z.B. auf Grund eines falschen Baumes) geben keinen Punktabzug, wenn es die Lösung nicht zu sehr vereinfacht.

Aufgabe 6.3 (3 Punkte)

Geben Sie eine Zeichenfolge an und konstruieren Sie daraus 2 unterschiedliche Huffman-Bäume mit jeweils verschiedenen Höhen.

Lösung 6.3

abccdd



Hinweis: Ein Punkt jeweils pro Baum und für das korrekte Wort.

Aufgabe 6.4 (3+2+4 Punkte)

Seien R, S und T binäre Relationen auf einer nichtleeren Menge M.

a) Beweisen Sie:

$$(R \circ S) \circ T = R \circ (S \circ T)$$

- b) R sei nun über \mathbb{N}_0 definiert als: $R = \{(x, y) \mid y = x + 5\}$. Geben Sie eine formale Beschreibung von R^* an, die nicht das Zeichen \circ enthält.
- c) Beweisen Sie, dass die in b) angegebene Relation gerade R^* ist.

Lösung 6.4

a)

$$x((R \circ S) \circ T)y \Leftrightarrow \exists a : xTa \land a(R \circ S)y$$

$$\Leftrightarrow \exists a : xTa \land \exists b : aSb \land bRy$$

$$\Leftrightarrow \exists a, b : xTa \land aSb \land bRy$$

$$\Leftrightarrow \exists b : x(S \circ T)b \land bRy$$

$$\Leftrightarrow x(R \circ (S \circ T))y$$

- b) $xR^*y \iff (y-x) \mod 5 = 0$
- c) Wir beweisen die Aussage $xR^ny \iff (y-x) \mod 5 = 0$ durch vollständige Induktion über $n \in \mathbb{N}_0$.

Induktionsanfang: n = 0: $xR^0y \iff x = y \iff 0 \mod 5 = 0 \checkmark$

Induktionsvoraussetzung:

Für ein beliebiges, aber festes $n \in \mathbb{N}_0$ gilt:

$$xR^n y \Rightarrow (y - x) \mod 5 = 0$$

Induktionsschluss: Wir zeigen, dass dann auch gilt: $xR^{n+1}y \Rightarrow (y-x) \mod$

$$5 = 0$$

Es gelte $xR^{n+1}y \Rightarrow \exists z \in \mathbb{N}_0 : xR^nz \wedge zRy$

$$\stackrel{IV}{\Rightarrow} \exists z \in \mathbb{N}_0 : (z - x) \bmod 5 = 0 \land zRy$$

$$\stackrel{IV}{\Rightarrow} \exists z \in \mathbb{N}_0 : (z - x) \bmod 5 = 0 \land zRy$$

\Rightarrow \Begin{aligned}
\exists z \in \mathbb{N}_0 : (z - x) \mod 5 = 0 \land y = z + 5
\end{aligned}

$$\Rightarrow (y - 5 - x) \mod 5 = 0$$

$$\Rightarrow (y-x) \mod 5 = 0$$

Analog wird auch die andere Richtung gezeigt:

Es gelte
$$(y-5-x) \mod 5 = 0 \Rightarrow xR^n(y-5) \land (y-5)Ry$$

$$\Rightarrow \exists z \in \mathbb{N}_0 : xR^nz \land zRy \Rightarrow xR^{n+1}y$$