Musterlösung (Stand 30.9.2014) zur

Klausur zur Vorlesung Grundbegriffe der Informatik 15. September 2014

	ausur- mmer						
Nachname:							
Vorname:							
MatrNr.:							
Aufgabe	1	2	3	4	5	6	7
max. Punkte	8	8	6	8	4	9	7
tats. Punkte							
Gesamtpunkt	zahl:				Note:		

Aufgabe 1 (2 + 2 + 1 + 1 + 2 = 8 Punkte)

• Geben Sie zwei Funktionen $f: \mathbb{N}_+ \to \mathbb{N}_+$ und $g: \mathbb{N}_+ \to \mathbb{N}_+$ derart an, dass $f(n) \in \Theta(n^2)$, $g(n) \in \Theta(n^2)$ und $(f(n) - g(n)) \in \Theta(n)$.

```
Beispiel: f(n) = n^2 und g(n) = n^2 + n
```

• Geben Sie einen endlichen Akzeptor mit 641 Zuständen und Eingabealphabet {a, b} an, der die formale Sprache L = {} akzeptiert.

Beispiel: $Z = \mathbb{Z}_{641}$, Anfangszustand 0, Menge akzeptierender Zustände $F = \emptyset$ und Überführungsfunktion f mit f(z, x) = z für alle $z \in Z$ und alle $x \in \{a, b\}$.

• Für welche Belegung mit Wahrheitswerten wird die aussagenlogische Formel $A \Rightarrow (B \Rightarrow A)$ wahr?

alle (Die Angabe einer erfüllenden Belegung genügte.)

 Geben Sie eine Menge M und eine totale Abbildung f : M → M an, die injektiv aber nicht surjektiv ist.

Beispiel: $M = \mathbb{N}$ und $\forall x \in \mathbb{N}$: f(x) = x + 1. (M muss unendlich sein.)

• Die Sprachen L_k , $k \in \mathbb{N}_0$, seien induktiv definiert durch

$$\label{eq:L0} \begin{split} L_0 = & \{\mathtt{a}\}\text{,} \\ \forall k \in \mathbb{N}_0 \colon L_{k+1} = L_k^* L_k. \end{split}$$

Geben Sie für jede nicht-negative ganze Zahl $k \in \mathbb{N}_0$ die Sprache L_{k+1} ohne Bezug auf andere L_i , $j \in \mathbb{N}_0$, in Mengenschreibweise an.

$$L_{k+1} = \{a\}^+$$

Aufgabe 2 (2 + 2 + 1 + 3 = 8 Punkte)

Punkte

Es sei L₁ die formale Sprache

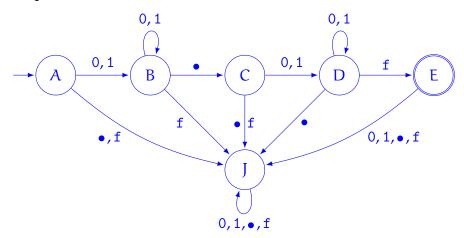
$$L_1 = \{ w \mid w \in \{0, 1, \bullet, f\}^* \land \exists w_1, w_2 \in \{0, 1\}^+ \colon w = w_1 \bullet w_2 f \}.$$

a) Geben Sie einen regulären Ausdruck R derart an, dass $\langle R \rangle = L_1$. Verwenden Sie in Ihrem regulären Ausdruck ausschließlich die Symbole 0, 1, \bullet , f, (,), |, * und \emptyset .

Lösung

$$R = (0|1)(0|1) * \bullet (0|1)(0|1) *f$$

b) Geben Sie einen endlichen Akzeptor an, der die formale Sprache L₁ akzeptiert.



Es sei L₂ die formale Sprache über dem Alphabet {a, b}, die genau diejenigen $w \in \{a, b\}^*$ enthält, für die gilt:

- w beginnt mit einem a und
- w endet mit einem b und
- w enthält mindestens zwei a und
- w enthält mindestens zwei b.
- c) Geben Sie drei Wörter an, die zu L_2 gehören, und drei Wörter, die nicht zu L_2 gehören.

Lösung

in L_2 : abab, aabb, aaaaababb nicht in L_2 : aab, aabba, ε

d) Geben Sie einen regulären Ausdruck an, der L₂ beschreibt.

Lösung: zum Beispiel a(a|b)*(ab|ba)(a|b)*b

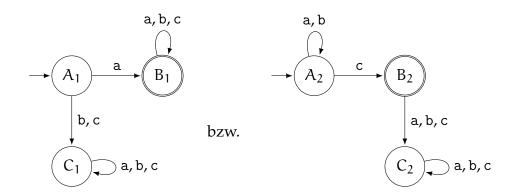
Aufgabe 3 (3 + 2 + 1 = 6 Punkte)

Gegeben seien zwei Akzeptoren $M_i = (Z_i, A_i, X_i, f_i, F_i)$, $i \in \{1, 2\}$. Deren *Produktakzeptor* $M_1 \times M_2$ ist festgelegt durch die Zustandsmenge $Z_1 \times Z_2$, den Anfangszustand (A_1, A_2) , das Eingabealphabet $X_1 \cap X_2$, die Zustandsüberführungsfunktion

f:
$$(Z_1 \times Z_2) \times (X_1 \cap X_2) \to Z_1 \times Z_2$$
,
 $f((z_1, z_2), x) = (f_1(z_1, x), f_2(z_2, x))$,

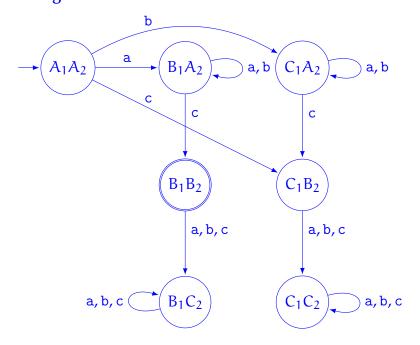
und die Menge $F_1 \times F_2$ als Menge der akzeptierenden Zustände.

a) Nachfolgend sind zwei Akzeptoren M₁ (links) und M₂ (rechts) graphisch dargestellt:



Geben Sie den Produktakzeptor $M_1 \times M_2$ graphisch an. Sie können dabei die Zustände, die nicht vom Anfangszustand erreichbar sind, weglassen.

Lösung



b) Welche Sprachen werden von den drei Akzeptoren M_1 , M_2 und $M_1 \times M_2$ der vorherigen Teilaufgabe akzeptiert?

```
Lösung: L(M_1) = \{a\}\{a,b,c\}^*, L(M_2) = \{a,b\}^*\{c\}, und  L(M_1 \times M_2) = \{a\}\{a,b\}^*\{c\}
```

c) Charakterisieren Sie die von einem Produktakzeptor $M_1 \times M_2$ akzeptierte Sprache $L(M_1 \times M_2)$ anhand der Sprachen $L(M_1)$ und $L(M_2)$. Nutzen Sie dabei ausschließlich die Mengenoperationen \cup , \cap und \times .

Lösung:
$$L(M_1 \times M_2) = L(M_1) \cap L(M_2)$$

Aufgabe 4(2 + 3 + 3 = 8 Punkte)

Gegeben sei für jede nicht-negative ganze Zahl $k \in \mathbb{N}_0$ ein gerichteter Graph $T_k = (V_k, E_k)$ mit Knotenmenge

$$V_k = \{ w \mid w \in \{ a, b \}^* \land |w| \le k \}$$

und Kantenmenge

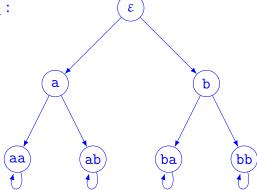
$$\begin{split} \mathsf{E}_k = & \{ (w_1, w_2) \mid w_1 \in \mathsf{V}_k \land w_2 \in \mathsf{V}_k \land \exists x \in \{\mathsf{a}, \mathsf{b}\} \colon w_2 = w_1 x \} \\ & \cup \{ (w, w) \mid w \in \mathsf{V}_k \land |w| = k \}. \end{split}$$

a) Zeichnen Sie T_0 , T_1 und T_2 .

 T_0 :

 T_1 :

 T_2 :



- b) Für welche nicht-negativen ganzen Zahlen $k \in \mathbb{N}_0$ ist die Relation E_k
 - reflexiv?

Lösung: nur für k = 0

• transitiv?

Lösung: für k = 0 und k = 1

• symmetrisch?

Lösung: nur für k = 0

• antisymmetrisch?

Lösung: für alle $k \in \mathbb{N}_0$

c) Geben sie die reflexiv-transitive Hülle E_k^* in Mengenschreibweise an.

Lösung: $E_k^* = \{(w_1, w_2) \mid w_1 \in V_k \land w_2 \in V_k \land \exists w \in \{a, b\}^* : w_2 = w_1 w\}$

Name:

Aufgabe 5 (4 Punkte)

Punkte

Gegeben sei eine natürliche Zahl $\alpha\in\mathbb{N}_+.$ Die Abbildung $S\colon\mathbb{N}_0\to\mathbb{Z}$ sei induktiv definiert durch

$$S(0) = 1,$$

$$\forall k \in \mathbb{N}_0 \colon S(k+1) = \alpha^{k+1} + S(k).$$

Beweisen Sie durch vollständige Induktion, dass gilt:

$$\forall k \in \mathbb{N}_0 \colon (\alpha - 1)S(k) = \alpha^{k+1} - 1.$$

Lösung

Induktionsanfang: k = 0: Dann ist $(\alpha - 1)S(0) = \alpha - 1 = \alpha^{0+1} - 1$

Induktionsvoraussetzung: für ein beliebiges aber festes k gelte:

$$(a-1)S(k) = a^{k+1} - 1$$

 $\textbf{Induktionsschluss:} \ k \leadsto k+1 \text{: } zu \ zeigen: \ (\alpha-1)S(k+1) = \alpha^{(k+1)+1}-1.$

Es ist

$$\begin{split} (\alpha-1)S(k+1) &= (\alpha-1)(\alpha^{k+1}+S(k)) & \text{nach Definition} \\ &= (\alpha-1)\alpha^{k+1} + (\alpha-1)S(k) \\ &= \alpha \cdot \alpha^{k+1} - \alpha^{k+1} + \alpha^{k+1} - 1 & \text{nach Ind.voraussetzung} \\ &= \alpha^{(k+1)+1} - 1 \end{split}$$

Aufgabe 6 (2 + 3 + 4 = 9 Punkte)

Gegeben sei die kontextfreie Grammatik G mit Nichtterminalsymbolen

$$N = \{S, Q, V, K, R\},\$$

Terminalsymbolen

$$T = \{ \forall, \exists, x, y, z, (,), \land, \lor, \Rightarrow, =, \leq \},$$

Startsymbol S und Produktionsmenge

$$P = \{ S \rightarrow QV(S) \mid (S)K(S) \mid VRV,$$

$$Q \rightarrow \forall \mid \exists,$$

$$V \rightarrow \mathbf{x} \mid \mathbf{y} \mid \mathbf{z},$$

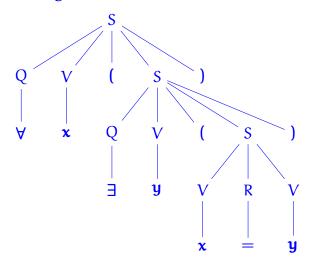
$$K \rightarrow \land \mid \lor \mid \Rightarrow,$$

$$R \rightarrow = \mid \leq \}.$$

a) Zeichnen Sie den Ableitungsbaum für das Wort

$$\forall x (\exists y (x = y))$$

Lösung



b) Es bezeichne L die von G erzeugte formale Sprache L(G). Beweisen Sie, dass

$$\{(\} \cdot L \cdot \{)\} \cdot \{\land, \lor, \Rightarrow\} \cdot \{(\} \cdot L \cdot \{)\} \subset L$$

gilt.

Lösung

Es gibt die Produktion $S \to (S)K(S)$. Aus S sind alle Wörter in L ableitbar und aus K die Wörter in $\{\land, \lor, \Rightarrow\}$. Folglich sind aus $\{S\}K(S)$

und wegen der genannten Produktion daher auch aus S alle Wörter in $\{(\} \cdot L \cdot \{)\} \cdot \{\Lambda, V, \Rightarrow\} \cdot \{(\} \cdot L \cdot \{)\}$ ableitbar. Diese Sprache ist also Teil von L.

c) Geben Sie eine kontextfreie Grammatik H derart an, dass L(H) die Sprache aller mathematischen Terme über den Zeichen

$$\mathbf{x}$$
, \mathbf{y} , \mathbf{z} , $+$, \cdot , (und)

ist, wobei jeder nichtleere Teilterm geklammert werden muss. Beispielsweise soll $L(\mathsf{G})$ die Terme

$$\varepsilon$$
 , (x) , $((x)+(y))$, $((x)+((y)\cdot(z)))$, $(((x)+(y))\cdot(z))$

und so weiter enthalten.

Lösung

Zum Beispiel leistet die Grammatik H = (N, T, S, P) mit

$$N = \{S, A, V, K\}$$

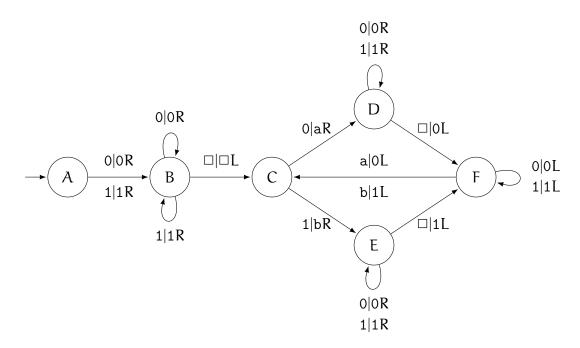
$$T = \{x, y, z, +, \cdot, (,)\}$$

$$P = \begin{cases} S \rightarrow \varepsilon \mid A \\ A \rightarrow (V) \mid (AKA) \\ K \rightarrow + \mid \cdot \\ V \rightarrow x \mid y \mid z \end{cases}$$

das Gewünschte.

Aufgabe 7(3 + 1 + 3 = 7 Punkte)

Gegeben sei die Turingmaschine T mit Zustandsmenge $Z = \{A, B, C, D, E, F\}$, Anfangszustand A und Bandalphabet $X = \{0, 1, a, b, \Box\}$, deren Arbeitsweise durch das folgende Diagramm festgelegt ist:



- a) Geben Sie für das Eingabewort 0100 (umgeben von Blanksymbolen) folgende Konfigurationen an:
 - die Konfiguration, die vorliegt, nachdem die Turingmaschine zum ersten Mal von Zustand C nach Zustand D gewechselt hat;
 - die Konfiguration, die vorliegt, nachdem die Turingmaschine zum ersten Mal von Zustand C nach Zustand E gewechselt hat;
 - die Endkonfiguration, die vorliegt, nachdem die Turingmaschine gehalten hat.

Nutzen Sie dazu die Raster auf der Folgeseite. Notieren Sie nur den Teil des Bandes, der *keine* Blanksymbole enthält.

Lösung: siehe nächste Seite

b) Erläutern Sie knapp für jedes Eingabewort $w \in \{0, 1\}^*$ die Gestalt des Wortes auf dem Band der Endkonfiguration.

Lösung: Am Ende steht auf dem Band ww^R , d.h. w gefolgt vom Spiegelbild von w.

c) Geben Sie eine scharfe obere asymptotische Schranke für die Laufzeit der Turingmaschine in Abhängigkeit der Länge $n \in \mathbb{N}_0$ des Eingabewortes an.

Lösung: $O(n^2)$

Erklärung (nicht verlangt): Schlimmstenfalls fährt die TM für jedes Eingabesymbol über (ca.) 2n Felder hin und zurück. Und für die ersten n/2 Symbole sind es jeweils mindestens n/2 Felder.

Platz für Antworten zu Aufgabe 7a): Schreiben Sie jeweils in die untere Zeile eines Kastens die Bandbeschriftung und in die obere über dem aktuell besuchten Feld den Zustand.

Anfangskonfiguration:

A					
0	1	0	0		

Nach dem ersten Wechsel von C nach D:

D								
0	1	0	a					

Nach dem ersten Wechsel von C nach E:

		Ε					
0	b	0	0	0	0		

Endkonfiguration:

C									
	0	1	0	0	0	0	1	0	