Grundbegriffe der Informatik Aufgabenblatt 6

Matr.nr.:							
Nachname:							
Vorname:							
Tutorium:	Nr.				Name des Tutors:		
Ausgabe:	26. N	lovem [†]	ber :	2014	1		
Abgabe: 5. Dezember 2014, 12:30 Uhr im GBI-Briefkasten im Untergeschoss von Gebäude 50.34 Lösungen werden nur korrigiert, wenn sie • rechtzeitig,							
in Ihrer eigenen Handschrift,mit dieser Seite als Deckblatt und							
• in der ober abgegeben wer	en lir					_	ngeheftet
Vom Tutor au	ıszufü	llen:					
erreichte Pu	nkte						
Blatt 6:				/ 16	5+	5	
Blätter 1 – 6:			/	99	+ 18	8	

Vorbemerkung. Für alle Aufgaben auf diesem Blatt gelten die folgenden Annahmen, ohne dass sie jedes Mal erneut aufgeführt werden:

- Die Menge der möglichen Werte für eine Variable ist Z, sofern nicht ausdrücklich etwas anderes angegeben ist.
- Alle Variablen sind initialisiert. Der Anfangswert ist aber nicht immer explizit angegeben.
- Zu einer Anweisungsfolge S und einer Nachbedingung Q heißt P eine schwächste Vorbedingung, wenn $\{P\}$ S $\{Q\}$ ein gültiges Hoare-Tripel ist und für jedes gültige Hoare-Tripel $\{P'\}$ S $\{Q\}$ gilt: $P' \Longrightarrow P$.
- Zu einer Anweisungsfolge S und einer Vorbedingung P heißt Q eine stärkste Nachbedingung, wenn $\{P\}$ S $\{Q\}$ ein gültiges Hoare-Tripel ist und für jedes gültige Hoare-Tripel $\{P\}$ S $\{Q'\}$ gilt: $Q \Longrightarrow Q'$.

Aufgabe 6.1 (1 + 2 + 2 = 5 Punkte)

a) Es seien *x* und *y* zwei Variablen und es seien *a* und *b* zwei ganze Zahlen. Bestimmen Sie anhand des Hoare-Kalküls die schwächste Vorbedingung von

$$x \leftarrow x + y$$

$$y \leftarrow x - y$$

$$x \leftarrow x - y$$

$$\{x = b \land y = a\}$$

indem Sie vor jeder Zuweisung eine Zusicherung einfügen.

b) Es seien *x* und *y* zwei Variablen und es seien *a* und *b* zwei ganze Zahlen. Weiter bezeichne min die Abbildung

$$\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \colon (u, v) \mapsto \begin{cases} u, & \text{falls } u < v, \\ v, & \text{falls } u \ge v, \end{cases}$$

und es bezeichne max die Abbildung

$$\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \colon (u, v) \mapsto u + v - \min(u, v).$$

Bestimmen Sie eine stärkste Nachbedingung Q von

$$\{x = a \land y = b\}$$

if $x < y$ then
 $z \leftarrow x$
else
 $z \leftarrow y$

c) Es sei n eine nicht-negative ganze Zahl, es sei A ein Alphabet und es sei y eine Variable, deren Wertebereich die Menge der Listen von n Wörtern ist, also die Menge der Abbildungen $\mathbb{Z}_n \to A^*$. Weiter seien a und b zwei Wörter über dem Alphabet A. Ferner seien i und j zwei nicht-negative ganze Zahlen so, dass $i \le n-1$ und $j \le n-1$. Bestimmen Sie eine schwächste Vorbedingung von

$$y[i] \leftarrow a$$

$$y[j] \leftarrow b$$

$$\{y[i] = a \land y[j] = b\}$$

Hinweis: Hier müssen Sie nachdenken. Schematisches Vorgehen hilft nicht.

Lösung 6.1

- a) $x = a \land y = b$
- b) $x = a \land y = b \land z = \min(a, b)$
- c) $(i \neq j) \lor (i = j \land a = b)$

Aufgabe 6.2 (1+2=3 Punkte)

In dieser Aufgabe geht es um bedingte Anweisungen der Form if B then S fi.

- a) Drücken Sie eine solche Anweisung mithilfe einer bedingten Anweisung mit **else**-Teil aus. Sie dürfen die Variable *y* benutzen (die möglicherweise in *B* oder/und *S* vorkommt).
- b) Geben Sie eine schwächste Bedingung an, unter der das Hoare-Tripel $\{P\}$ if B then S fi $\{Q\}$ gültig ist.

Aufgabe 6.3 (4 Punkte)

Anhand eines Minimalmaschinenprogramms wurde in der letzten Übung die folgende Schleife spezifiziert:

repeat S until B end

- a) Drücken Sie diese mithilfe einer **while**-Schleife aus. Zur Negierung eines booleschen Ausdrucks dürfen Sie das Schlüsselwort **not** verwenden.
- b) Zeigen Sie mithilfe der vorangegangenen Teilaufgabe, dass aus der Gültigkeit des Hoare-Tripels

$${I \wedge \neg B}S{I}$$

die Gültigkeit des Hoare-Tripels

$$\{I \wedge \neg B\}$$

repeat
 S
until B end
 $\{I \wedge B\}$

folgt.

Lösung 6.3

a)

S

while not B do

S

od

b) Es sei $\{I \land \neg B\}S\{I\}$ gültig. Wir müssen zeigen, dass

$$\{I \land \neg B\}$$

while not B do

S

od

 $\{I \wedge B\}$

gültig ist. Aus dem Kapitel über Schleifeninvarianten aus der Vorlesung wissen wir, dass

{*I*}

while not B do

S

od

 $\{I \wedge B\}$

gültig ist. Nach der Sequenzen-Regel genügt es also zu zeigen, dass

$$\{I \land \neg B\}$$

$$S$$

 $\{I\}$

gültig ist. Das gilt jedoch nach Voraussetzung.

Aufgabe 6.4 (4 Punkte)

Es sei n eine nicht-negative ganze Zahl und es sei $a \colon \mathbb{Z}_n \to \mathbb{Z}$ eine Abbildung. Weiter seien z und x zwei ganzzahlige Variablen. Zeigen Sie anhand des Hoare-Kalküls und mithilfe einer Schleifeninvariante, dass das folgende Hoare-Tripel gültig ist:

$$\begin{aligned} &\{ \mathbf{true} \} \\ &z \leftarrow a(0) \\ &x \leftarrow 1 \\ &\mathbf{while} \ x \leq n-1 \ \mathbf{do} \\ &\mathbf{if} \ a(x) < z \ \mathbf{then} \\ &z \leftarrow a(x) \\ &\mathbf{else} \\ &z \leftarrow z \\ &\mathbf{fi} \\ &x \leftarrow x+1 \\ &\mathbf{od} \\ &\{ z = \min_{i \in \mathbb{Z}_n} a(i) \} \end{aligned}$$

Lösung 6.4

Zu zeigen:

$$\{z = a(0) \land x = 1\}$$
 while $x \le n-1$ do if $a(x) < z$ then $z \leftarrow a(x)$ else
$$z \leftarrow z$$
 fi
$$x \leftarrow x+1$$
 od
$$\{z = \min_{i \in \mathbb{Z}_n} a(i)\}$$

Schleifeninvariante: $z = \min_{i \in \mathbb{Z}_x} a(i) \land x \le n$

*Aufgabe 6.5 (4 Extrapunkte)

Für jede ganze Zahl a bezeichne p(a) die prädikatenlogische Formel

$$a \ge 2 \land \forall b \in \mathbb{Z} \colon (2 \le b \land b \le a \implies b \cdot b \ne a).$$

Es seien x und y zwei initialisierte ganzzahlwertige Variablen und es sei z eine boolesche Variable. Zeigen Sie anhand des Hoare-Kalküls und mithilfe einer

Schleifeninvariante, dass das folgende Hoare-Tripel gültig ist:

```
\{x \ge 2\}
z \leftarrow \text{true}
y \leftarrow 2
while y \le x do
if y \cdot y = x then
z \leftarrow \text{false}
fi
y \leftarrow y + 1
od
\{z = p(x)\}
```

Lösung 6.5

Für jede ganze Zahl a und jede ganze Zahl c bezeichne q(a,c) die prädikatenlogische Formel

$$a \ge 2 \land \forall b \in \mathbb{Z} \colon (2 \le b \land b \le c - 1 \implies b \cdot b \ne a).$$

Das gegebene Hoare-Tripel ist genau dann gültig, wenn das folgende Hoare-Tripel gültig ist:

$$\{x \ge 2 \land z = \text{true} \land y = 2\}$$

while $y \le x$ do
if $y \cdot y = x$ then
 $z \leftarrow \text{false}$
fi
 $y \leftarrow y + 1$
od
 $\{z = p(x)\}$

Als Schleifeninvariante wählen wir die prädikatenlogische Formel $z = q(x,y) \land y \le x + 1$. Dies ist tatsächlich eine Schleifeninvariante:

- a) Vor der Schleife ist y=2, z= **true** und $x\geq 2$. Somit ist $y\leq x+1$. Außerdem ist für jedes $b\in \mathbb{Z}$ die Konjunktion $2\leq b\wedge b\leq 2-1$ falsch. Somit ist für jedes $b\in \mathbb{Z}$ die Implikation $2\leq b\wedge b\leq 2-1\implies b\cdot b\neq x$ wahr. Damit ist die Formel q(x,2) wahr und folglich **true** =q(x,2) ebenfalls. Insgesamt gilt $z=q(x,y)\wedge y\leq x+1$.
- b) Zu Beginn des *i*-ten Schleifendurchlaufs gelte $z=q(x,y) \land y \leq x+1$. Außerdem gilt die Schleifenbedingung $y \leq x$. Wir müssen zeigen, dass am Ende des *i*-ten Schleifendurchlaufs $z=q(x,y) \land y \leq x+1$ gilt. Anders

ausgedrückt: Wir müssen zeigen, dass das folgende Hoare-Tripel gültig ist:

$$\{z = q(x,y) \land y \le x + 1 \land y \le x\}$$
if $y \cdot y = x$ then
$$z \leftarrow \mathbf{false}$$
fi
$$y \leftarrow y + 1$$

$$\{z = q(x,y) \land y \le x + 1\}$$

Das ist äquivalent dazu, dass das folgende Hoare-Tripel gültig ist:

$$\{z = q(x, y) \land y \le x\}$$
if $y \cdot y = x$ then
$$z \leftarrow \mathbf{false}$$
fi
$$\{z = q(x, y + 1) \land y + 1 < x + 1\}$$

Eine schwächste Vorbedingung von

if
$$y \cdot y = x$$
 then $z \leftarrow \mathbf{false}$ fi $\{z = q(x, y + 1) \land y + 1 \le x + 1\}$

ist

$$(y \cdot y \neq x \implies z = q(x, y+1)) \land (y \cdot y = x \implies$$
false $= q(x, y+1)) \land y \leq x.$

Die Aussage $y \cdot y \neq x \implies z = q(x, y + 1)$ folgt aus

$$y \cdot y \neq x \wedge z = q(x, y).$$

Die Aussage $y \cdot y = x \implies$ **false** = q(x, y + 1) gilt stets, folgt also insbesondere aus

$$y \cdot y = x \wedge z = q(x, y).$$

Damit folgt eine schwächste Vorbedingung aus $z = q(x,y) \land y \le x$. Und damit sind unsere Hoare-Tripel gültig.

Am Ende der Schleife gilt die Negation der Schleifenbedingung, also y > x. Gemeinsam mit $y \le x + 1$ aus der Schleifeninvariante gilt also y = x + 1. Außerdem gilt z = q(x,y). Somit gilt z = q(x,x+1). Wegen q(x,x+1) = p(x) folgt z = p(x).