Klausur zur Vorlesung Grundbegriffe der Informatik 14. September 2015

	ausur- mmer						
Nachname:							
Vorname:							
MatrNr.:							
Diese Klausur ist mein 1. Versuch					2. Versu	ch in (GBI
Email-Adr.:					nur fal	lls 2. Vers	such
Aufgabe	1	2	3	4	5	6	7
max. Punkte	7	8	4	4	8	8	8
tats. Punkte							
				1			
Gesamtpunk	tzahl:				Note:		

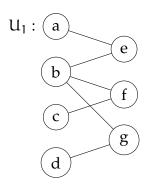
Punkte	Aufgabe 1 $(2 + 2 + 2 + 1 = 7 \text{ Punkte})$
	a) Für welche Zahlen $k \in \mathbb{N}_0$ ist die folgende Aussage richtig:
	Jeder gerichtete Graph, in dem jeder Knoten Ausgangsgrad k hat, ist nicht streng zusammenhängend.
	b) Es sei L die formale Sprache aller Wörter $w \in \{a, b\}^+$ mit der Eigenschaft, dass in w die Teilwörter ab und ba gleich oft vorkommen
	Ist L regulär?
	Begründen Sie kurz Ihre Antwort:
	c) Zeichnen Sie einen gerichteten Graphen G = (V, E) mit 4 Knoten, der die Eigenschaft hat:
	$\forall x \in V \ \forall y \in V \colon (x,y) \in E \lor (y,x) \in E$
	d) Begründen Sie, warum gilt: Wenn L_1 und L_2 reguläre Sprachen sind, dann ist auch $L_1 \cdot L_2$ eine reguläre Sprache.

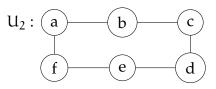
Weiterer Platz für Antworten zu Aufgabe 1:

Aufgabe 2 (2 + 1 + 2 + 3 = 8 Punkte)

Ein ungerichteter Graph U=(V,E) heißt bipartit, falls es Teilmengen $T_1\subseteq V$ und $T_2\subseteq V$ gibt mit den Eigenschaften

- $T_1 \cap T_2 = \{\}$ (leere Menge)
- $\bullet \ T_1 \cup T_2 = V$
- für jede Kante $\{x,y\} \in E$ ist $x \in T_1 \land y \in T_2$ oder $x \in T_2 \land y \in T_1$.
- a) Geben Sie explizit für jeden der beiden folgenden Graphen passende Teilmengen T_1 und T_2 wie oben an so, dass jeweils klar ist, dass der Graph bipartit ist:





 $T_1 =$ $T_2 =$

T ₁	=
T ₂	=

b) Zeichnen Sie einen ungerichteten Graphen, der nicht bipartit ist:

- c) Begründen Sie, warum jeder ungerichtete Baum bipartit ist.
- d) Es sei n=2k, $k\in\mathbb{N}_+$, eine positive gerade Zahl. Geben Sie einen ungerichteten Graphen mit n Knoten an, der bipartit ist und möglichst viele Kanten besitzt.

Platz für Antworten zu Aufgabe 2:

Aufgabe 3 (4 Punkte)

Beweisen Sie durch vollständige Induktion, dass für alle $\mathfrak{n}\in\mathbb{N}_+$ gilt:

$$\left(\sum_{i=1}^n i\right)^2 = \sum_{i=1}^n i^3$$

Hinweis: $\sum_{i=1}^n i = n(n+1)/2.$

Weiterer Platz für Antworten zu Aufgabe 3:

Aufgabe 4 (2 + 2 = 4 Punkte)

Es seien die beiden formalen Sprachen

$$\begin{split} L_1 = \{ a^k b^m c^{k+m} \mid k, m \in \mathbb{N}_+ \} \\ und \quad L_2 = \{ ccc \}^+ \end{split}$$

gegeben.

- a) Geben Sie einen Homomorphismus von $\{a,b,c\}^*$ nach $\{c\}^*$ an, so dass jedes Wort aus L_2 Bild mindestens eines Wortes aus L_1 ist.
- b) Begründen Sie, warum es keinen Homomorphismus von $\{c\}^*$ nach $\{a,b,c\}^*$ gibt, der jedes Wort aus L_2 auf ein Wort aus L_1 abbildet.

Weiterer Platz für Antworten zu Aufgabe 4:

Aufgabe 5
$$(2 + 1 + 3 + 1 + 1 = 8 \text{ Punkte})$$

Auf der $M=\mathbb{N}_0\times\mathbb{N}_0$ aller Paare nichtnegativer ganzer Zahlen wird eine binäre Relation \equiv wie folgt definiert:

$$\forall (a,b) \in M \ \forall (c,d) \in M \colon (a,b) \equiv (c,d) \iff a+d=b+c$$

Diese Relation ist reflexiv und symmetrisch.

- a) Zeigen Sie, dass die Relation \equiv transitiv ist.
- b) Welche Paare (a, b) sind in der Äquivalenzklasse $[(0, 0)]_{\equiv}$ von (0, 0) bezüglich \equiv ?
- c) Zeigen Sie: Wenn $(a, b) \equiv (c, d)$ ist und $(x, y) \equiv (u, v)$, dann ist auch $(a + x, b + y) \equiv (c + u, d + v)$.
- d) Definieren Sie eine binäre Operation \boxplus auf der Menge $M/_{\equiv}$ der Äquivalenzklassen so, dass die Aussage in Teilaufgabe c) gerade sicherstellt, dass \boxplus wohldefiniert ist.
- e) Geben Sie für ein beliebiges $(a,b) \in M$ ein $(c,d) \in M$ an mit

$$[(a,b)]_{\equiv} \boxplus [(c,d)]_{\equiv} = [(0,0)]_{\equiv}$$

Weiterer Platz für Antworten zu Aufgabe 5:

Aufgabe 6 (3 + 3 + 1 + 1 = 8 Punkte)

- a) Geben Sie einen endlichen Akzeptor an, der die formale Sprache erkennt, die durch den regulären Ausdruck (ab)*(aa)* beschrieben wird.
- b) Geben Sie eine kontextfreie Grammatik an, die die formale Sprache

$$L = \{a^k b^{m+k} c^{m+\ell} d^\ell \mid k, \ell, m \in \mathbb{N}_0\}$$

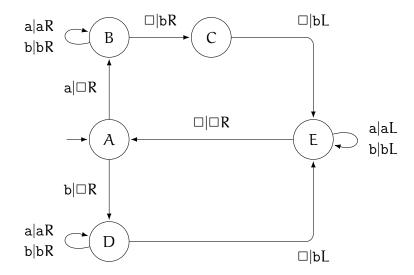
erzeugt.

- c) Zeichnen Sie den Ableitungsbaum des Wortes abbbccccdd für Ihre Grammatik aus Teilaufgabe b).
- d) Gibt es einen regulären Ausdruck, der die formale Sprache aus Teilaufgabe b) beschreibt?

Weiterer Platz für Antworten zu Aufgabe 6:

Aufgabe 7 (2 + 3 + 3 = 8 Punkte)

Gegeben sei die folgende Turingmaschine T mit Bandalphabet $X = \{a, b, \Box\}$:



Eingabe sei jeweils ein $w \in \{a,b\}^+$ umgeben von Blanksymbolen \square . Der Kopf der Turingmaschine stehe zu Beginn stets auf dem ersten Symbol von w.

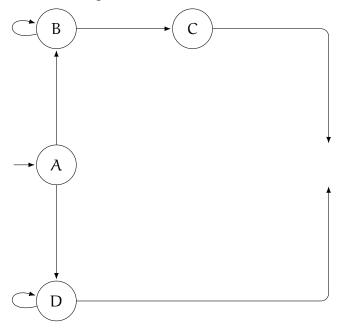
- a) Notieren Sie für das Eingabewort baab, welches Wort aus {a,b}⁺ jeweils auf dem Band steht, wenn die TM T zum ersten, zweiten, dritten und vierten Mal von Zustand E nach Zustand A übergeht.
 - 1.
 - 2.
 - 3.
 - 4.

Hinweis: Auf welchen Feldern das Wort jeweils steht, ist gleichgültig, wichtig sind nur die Folgen der a und b.

b) Erklären Sie, warum sich für jedes Eingabewort die Liste der Bandbeschriftungen bei den Übergängen von Zustand E nach Zustand A (wie in Teilaufgabe a) vorne) nach hinreichend vielen Durchläufen nicht mehr ändert.

- c) Ändern Sie die TM T so ab, dass sie
 - für jedes Eingabewort nach endlich vielen Schritten hält und
 - für jedes Eingabewort nach dem Halten das gleiche Wort auf dem Band steht wie bei der ursprünglichen TM T, wenn sich das Wort, das beim Übergang von Zustand E nach Zustand A auf dem Band steht, nicht mehr ändert.

Geben Sie die neue TM an, indem Sie nachfolgendes Diagramm vervollständigen:



Platz für Antworten zu Aufgabe 7: